DE102022101912A1 - Elektrischer Schaltungsaufbau für den alternierenden Heiz- und kapazitiven Messbetrieb mit Funktionsprüfung und zugehöriges Verfahren - Google Patents

Elektrischer Schaltungsaufbau für den alternierenden Heiz- und kapazitiven Messbetrieb mit Funktionsprüfung und zugehöriges Verfahren Download PDF

Info

Publication number
DE102022101912A1
DE102022101912A1 DE102022101912.8A DE102022101912A DE102022101912A1 DE 102022101912 A1 DE102022101912 A1 DE 102022101912A1 DE 102022101912 A DE102022101912 A DE 102022101912A DE 102022101912 A1 DE102022101912 A1 DE 102022101912A1
Authority
DE
Germany
Prior art keywords
heating
switching elements
test
heating wire
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102022101912.8A
Other languages
English (en)
Inventor
Friedrich Wieland
Georg Daniel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Preh GmbH
Original Assignee
Preh GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Preh GmbH filed Critical Preh GmbH
Priority to DE102022101912.8A priority Critical patent/DE102022101912A1/de
Priority to CN202310097535.4A priority patent/CN116500345A/zh
Priority to PCT/EP2023/051340 priority patent/WO2023144028A1/de
Priority to US18/159,888 priority patent/US20230257015A1/en
Publication of DE102022101912A1 publication Critical patent/DE102022101912A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/04Hand wheels
    • B62D1/06Rims, e.g. with heating means; Rim covers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0236Industrial applications for vehicles
    • H05B1/0238For seats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/002Seats provided with an occupancy detection means mounted therein or thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/56Heating or ventilating devices
    • B60N2/5678Heating or ventilating devices characterised by electrical systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/56Heating or ventilating devices
    • B60N2/5678Heating or ventilating devices characterised by electrical systems
    • B60N2/5685Resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/027Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems between relatively movable parts of the vehicle, e.g. between steering wheel and column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/04Hand wheels
    • B62D1/046Adaptations on rotatable parts of the steering wheel for accommodation of switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/04Hand wheels
    • B62D1/06Rims, e.g. with heating means; Rim covers
    • B62D1/065Steering wheels with heating and ventilating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/088Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with electric fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0236Industrial applications for vehicles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/78Heating arrangements specially adapted for immersion heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/035Electrical circuits used in resistive heating apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Die Erfindung betrifft eine Schaltung und ein Verfahren zur Durchführung eines alternierenden Heiz- und kapazitiven Messbetriebs mittels eines gemeinsamen Heizdrahts (2), aufweisend die folgenden Schritte: Durchführen eines Heizbetriebs, während dem durch Beschaltung durch eine Steuerschaltung (6a, 6b) ein Paar erster Schaltelemente (3a, 3b) und zweiter Schaltelemente (4a, 4b) in leitendem Zustand sind, die ersten Schaltelemente (3a, 3b) und die zweiten Schaltelemente (4a, 4b) und der Heizdraht (2) in Reihe geschaltet sind und der Heizdraht (2) jeweils über ein erstes Schaltelement (3a, 3b) und ein über einen Leiterabschnitt (5a, 5b) mit dem ersten Schaltelement (3a, 3b) verbundenes, zweites Schaltelement (4a, 4b) mit einem von zwei unterschiedlichen Heizpotenzialen (VH+, VH-) leitend verbunden ist, so dass der Heizdraht (2) mit einem Heizstrom beaufschlagt wird; Auslösen eines Wechsels von dem Heizbetrieb in einen Messbetrieb der ersten Schaltelemente (3a, 3b) und der zweiten Schaltelemente (4a, 4b) durch die Steuerschaltung (6a, 6b), so dass die beiden, im Heizbetrieb elektrisch leitenden Verbindungen des Heizdrahts (2) zu den zwei unterschiedlichen Heizpotenzialen (VH+, VH-) im Messbetrieb jeweils mehrfach unterbrochen sind; Durchführen des Messbetriebs, bei dem die Messkapazität des Heizdrahts (2) gegenüber einem Referenzpotenzial (16) durch Beaufschlagung des Heizdrahtes (2) mit einer Wechselspannung (VAC) einer Wechselspannungsquelle (12) durch eine Detektionsschaltung (9) ermittelt wird; Durchführen einer zeitlich innerhalb des Messbetriebs liegenden Prüfphase, während der mittels einer mindestens ein drittes Schaltelement (14) und eine Prüfimpedanz (15) beinhaltenden Prüfschaltung (14, 15), die Prüfschaltung (14, 15) durch die Steuerschaltung (6a, 6b, 13) so geschaltet wird, dass der Messkapazität eine Prüfimpedanz (15) zugeschaltet wird und eine zugehörige Messkapazitätsänderung und/oder eine Gesamtimpedanz aus der Messkapazität und Prüfimpedanz (15) durch die Detektionsschaltung (9) zumindest detektiert wird.

Description

  • Das Lenkrad und der Fahrersitz eines Kraftfahrzeugs ist bei Fahrzeugen regelmäßig mit einer elektrischen Heizung als Komfortfunktion versehen, dazu ist der Griffbereich, insbesondere der Lenkradkranz des Lenkrads bzw. das Sitzpolster und das Rückenpolster des Sitzes mit einem Heizdraht durchzogen. Aus sicherheitstechnischen Überlegungen aber auch um zusätzliche Komfortfunktionen zu realisieren, besteht Bedarf ferner eine Berühr- oder zumindest eine Annäherungsdetektion durchführen zu können, wie die sogenannte Hands-On-Detektion, bei der es darum geht, das Ergreifen des Lenkradkranzes zu überwachen, oder die Fahrer-Beifahrer-Erkennung, bei der es beispielsweise darum geht, spezielle Komfortfunktionen sitzpositionsspezifisch zu aktivieren bzw. zu deaktivieren. Es bietet sich daher an, den Heizdraht in einer Nicht-Heizphase im sogenannten Messbetrieb als Elektrode zur kapazitiven Annäherungsdetektion zu verwenden. Da der Heizbetrieb üblicherweise mit einem pulsweitenmodulierten Heizstrom durchgeführt wird, sind Phasen, in denen kein Heizstrom anliegt, vorhanden, die für den Messbetrieb genutzt werden. Um in dem Messbetrieb „allseitige“, d.h. von allen den Heizstrom bereitstellenden Polen der Heizspannung Einstreuungen in die zwischen dem Heizdraht als kapazitive Elektrode und einer Referenzelektrode oder dem Massepotenzial zu vermeiden, ist es beispielsweise aus der DE 11 2014 002 044 T5 bekannt, den Heizdraht allpolig mittels Feldeffekttransistoren im Messbetrieb von denen die unterschiedlichen Heizpotenziale bereitstellenden Polen zu trennen. Schaltmittel, insbesondere Feldeffekttransistoren weisen parasitäre Kapazitäten auf, die bei der Bestimmung der eigentlichen Messkapazität störend wirken können. Die US 2010/0038351 A1 schlägt vor, die isolierende Wirkung der sperrenden Schaltmittel im Messbetrieb durch zusätzliche Impedanzen, insbesondere Dioden, zu unterstützen, wobei zusätzlich ein Abschirmsignal an die Verbindungsleitung zwischen den Dioden und den Schaltmitteln anliegen kann. Eine derartige Lösung hat den Nachteil, dass die zusätzlichen Impedanzen insbesondere die Dioden den Heizstrom beeinflussen, insbesondere ohmsche Verluste aufweisen und somit die elektrische Heizspannung nicht optimal in thermische vom Heizdraht abgegebene Heizleistung (Joulesche Wärme) umgesetzt werden kann. Ein weiteres Problem bei der Verwendung des Heizdrahtes als Elektrode zur kapazitiven Annäherungsdetektion ist, dass die Elektrode durch den Wechsel zwischen Heizbetrieb und dem Messbetrieb als Nicht-Heizbetrieb einer hohen thermischen Belastung und thermisch bedingter Ausdehnungsschwankungen unterliegt, wodurch sich letztlich auch ein Ausfall des Heizdrahtes aber auch Schwankungen der Sensitivität der mit dem Heizdraht verbundenen Detektionsschaltung ergeben.
  • Vor diesem Hintergrund ist es Aufgabe der vorliegenden Erfindung, einen Schaltungsaufbau für den alternierenden Heiz- und kapazitiven Messbetrieb bereitzustellen, bei dem neben der effizienten Nutzung des Heizstroms im Heizbetrieb gleichzeitig die Zuverlässigkeit der kapazitiven Annäherungsmessung im Messbetrieb zumindest sichergestellt oder gar verbessert wird.
  • Diese Aufgabe wird gelöst durch den Schaltungsaufbau des Anspruchs 1. Weitere Merkmale, Ausführungsformen, Eigenschaften und Vorteile ergeben sich mit den abhängigen Ansprüchen, der Beschreibung und den Figuren. Ein erfindungsgemäßes Verfahren zur Durchführung eines alternierenden Heiz- und kapazitiven Messbetriebs mittels eines gemeinsamen Heizdrahts sowie die erfindungsgemäße Verwendung der Schaltungsanordnung sind jeweils Gegenstand der nebengeordneten Ansprüche.
  • Die Erfindung betrifft einen elektrischen Schaltungsaufbau für den alternierenden Heiz- und kapazitiven Messbetrieb unter Verwendung eines gemeinsamen Heizdrahtes, wobei im Heizbetrieb der Heizdraht, der beispielsweise ein Widerstandsdraht, wie ein Nickel-Chrom-Draht ist, mit aus zwei auf zwei unterschiedlichen Heizpotenzialen liegenden Polen gespeisten elektrischen Heizstrom durchsetzt wird, wobei an dem Heizdraht eine Heizspannung abfällt. Die Schaltungsanordnung weist ein Paar erster Schaltelemente und ein Paar zweiter Schaltelemente auf. Bevorzugt sind die ersten Schaltelemente durch einen Transistor, bevorzugter jeweils durch einen Feldeffekttransistor, meist bevorzugt einen Metalloxid-Halbleiter-Feldeffekttransistoren (MOS-FET) ausgebildet. Noch bevorzugter sind erste und zweite Schaltelemente durch einen Transistor, bevorzugter jeweils durch einen Feldeffekttransistor, meist bevorzugt einen Metalloxid-Halbleiter-Feldeffekttransistoren (MOS-FET) realisiert. Der Heizdraht ist dabei so mit den ersten und zweiten Schaltelementen verschaltet, dass in dem Heizbetrieb, während dem die ersten und zweiten Schaltelemente, somit zeitgleich, in leitendem Zustand sind, die ersten und zweiten Schaltelemente und der Heizdraht in Reihe geschaltet sind. Dabei ist der Heizdraht jeweils über ein erstes Schaltelement und ein über einen Leiterabschnitt mit dem ersten Schaltelement verbundenes, zweites Schaltelement mit einem von zwei unterschiedlichen Heizpotenzialen, beispielsweise einerseits Fahrzeugmasse und andererseits dem positiven Batteriepotenzial, leitend verbunden. Dadurch, dass im Heizbetrieb die ersten und zweiten Schaltelemente durchgeschaltet sind, wird der Heizdraht mit dem Heizstrom durchsetzt. Ist mindestens ein Schaltelement der ersten und zweiten Schaltelemente im nicht-leitenden bzw. sperrenden Zustand liegt kein Heizstrom an. Durch periodisches Umschalten und Verändern der Dauer des jeweiligen Heizbetriebs, beispielsweise durch Ansteuerung wenigstens eines oder aller Schaltelemente mittels eines pulsweitenmodulierten Signals, kann somit die Heizleistung des Heizdrahtes eingestellt werden.
  • Erfindungsgemäß ist ferner eine Detektionsschaltung vorgesehen, um in einem zeitlich außerhalb des Heizbetriebs liegenden Messbetrieb, die Messkapazität des Heizdrahts gegenüber einem Referenzpotenzial, beispielsweise dem einer Referenzelektrode oder der Fahrzeugmasse, durch Beaufschlagung des Heizdrahtes mit einer Wechselspannung einer Wechselspannungsquelle zu ermitteln. Anhand einer Änderung dieser Messkapazität lässt sich beispielsweise eine Annäherung eines Fahrzeuginsassen oder zumindest die Annäherung einer Hand des Fahrzeuginsassen detektieren. Zur Bestimmung der Messkapazität dieser Art sind unterschiedliche Verfahren bekannt. Erfindungsgemäß werden hier solche Verfahren angewandt, bei denen die Messkapazität zuverlässig durch Anlegen einer Wechselspannung an den Heizdraht als Sendeelektrode detektierbar ist. Amplitudenmodulierte Detektionsschaltungen versorgen den durch den Heizdraht gebildeten zu messenden Kondensator mit hochfrequentem Wechselstrom (z. B. 20 kHz) und erfassen den resultierenden Blindstrom.
  • Bei frequenzmodulierten Detektionsschaltungen wird die zu messende Messkapazität mit einer Induktivität zu einem Schwingkreis als Bestandteil eines LC-Oszillators zusammengeschaltet, dessen Frequenz gemessen wird, indem sie mit einer Referenz verglichen wird. Bei einer anderen Variante der frequenzmodulierten Detektionsschaltung ist die Messkapazität Bestandteil eines astabilen Multivibrators. Bevorzugt ist die Detektionsschaltung ausgelegt, im Messbetrieb einen aus der Beaufschlagung mit der Wechselspannung resultierenden Stromverlauf zwischen dem Heizleiter und der Wechselspannungsquelle zu messen, um daraus anhand einer Phasenverschiebung zwischen der Wechselspannung und dem Stromverlauf die jeweilige Messkapazität zu ermitteln. Beispielsweise wird der Stromverlauf anhand eines Spannungsabfalls an einem Nebenschlusswiderstand (shunt) unter Signalverstärkung durch einen Messverstärker gemessen.
  • Erfindungsgemäß ist ferner eine Steuerschaltung vorgesehen, um die ersten Schaltelemente und zweiten Schaltelemente von dem Heizbetrieb in den Messbetrieb zu schalten, während dem die ersten Schaltelemente und die zweiten Schaltelemente in sperrendem Zustand sind, so dass die beiden im Heizbetrieb elektrisch leitenden Verbindungen des Heizdrahts zu den zwei unterschiedlichen Heizpotenzialen im Messbetrieb jeweils mehrfach unterbrochen sind. Die mehrfache Unterbrechung zu den beiden Heizpotenzialen hat den Vorteil, dass neben der besonders effektiven, kapazitiven Entkopplung des Heizdrahtes gegenüber den Heizpotenzialen und der Verminderung der parasitären Kapazitäten auf der mehrfach unterbrochenen Verbindung zu den Heizpotenzialen, bei der nunmehr die Schaltelemente als in Reihe geschaltete kapazitive Impedanzen zu betrachten sind, ferner eine eine Wechselspannung nutzende Detektionsschaltung verbessert genutzt werden kann, da die ersten Schaltelemente, beispielsweise anders als die nicht symmetrisch geschalteten Dioden im Stand der Technik, symmetrisch trennen und sich diese Trennung auf beide Stromrichtungen des im Messbetrieb generierten Wechselstroms auswirkt, was die Ermittlung der Messkapazität mittels Wechselspannung, aber insbesondere den bevorzugten Weg über die Detektion der Phasenverschiebung erleichtert und verbessert.
  • Erfindungsgemäß ist die Steuerschaltung ferner ausgebildet, in einer innerhalb des Messbetriebs liegenden Prüfphase eine mindestens ein drittes Schaltelement und eine Prüfimpedanz beinhaltende Prüfschaltung so zu schalten, dass der Messkapazität die Prüfimpedanz zugeschaltet wird, und eine zugehörige Messkapazitätsänderung und/oder eine Gesamtimpedanz aus der Messkapazität und Prüfimpedanz durch die Detektionsschaltung zumindest detektiert wird. Beispielsweise wird eine durch die Zuschaltung der Prüfimpedanz bewirkte Änderung der Messkapazität lediglich qualitativ detektiert. In einer anderen Ausgestaltung ist eine quantitative Messung der resultierenden Gesamtimpedanz aus Messkapazität und Prüfimpedanz vorgesehen, um eine Kalibrierung der Detektionsschaltung mittels der vorgegebenen Prüfimpedanz zu ermöglichen. In einer einfachen Ausgestaltung wird lediglich hinsichtlich zeitlicher Koinzidenz zwischen Messkapazitätsänderung und Schaltzustandsänderung untersucht. Durch das Vorsehen der Prüfphase und den zugehörigen konstruktiven Merkmalen ist es möglich durch vergleichsweise einfache technische konstruktive Erweiterung einer Heiz- und Messschaltung einerseits die Unversehrtheit des Heizdrahtes aber auch die Detektionsschaltung auf Funktion zu überprüfen und bei quantitativer Untersuchung, beispielsweise durch Ermitteln der Messkapazitätsänderung oder der in der Prüfphase resultierenden Gesamtimpedanz eine Kalibrierung der Detektionsschaltung oder nachgeschalteter Auswerteinrichtungen durchzuführen. Bevorzugt ist die Dauer der Prüfphase kürzer als die Dauer eines zwischen zwei abfolgenden Heizbetrieben durchgeführten Messbetriebs. In dem außerhalb der Prüfphase liegenden Zeitbereich ist wenigstens ein drittes Schaltelement in sperrendem Zustand. Beispielsweise ist das Zeitverhältnis aus der Dauer der Prüfphase zu Gesamtdauer des die Prüfphase beinhaltenden Messbetriebs weniger als 1/10.
  • In einer Ausgestaltung findet die Prüfphase ausschließlich über einen Zeitraum statt, innerhalb dessen eine händische Annäherung an das Lenkrad ausgeschlossen ist, beispielsweise im verriegelten, unbesetzten Zustand der Fahrzeugkabine. In einer anderen Ausgestaltung wird die Prüfphase ausschließlich dann durchgeführt, wenn in einem zeitlich vorhergehenden, sich außerhalb der Prüfphase befindlichen Messbetrieb keine Annäherung detektiert wurde. In einer Ausgestaltung wird die Prüfphase zu Beginn eines Messbetriebs durchgeführt. Bei der alternierenden Abfolge von Heizbetrieb und Messbetrieb kann vorgesehen sein, dass bei mehreren Messbetrieben wenigstens einer ohne Prüfphase, bevorzugt die Mehrzahl von Messbetrieben ohne Prüfphase durchgeführt werden.
  • Das Zuschalten umfasst beispielsweise, dass der Messkapazität eine Prüfimpedanz in Serie zugeschaltet wird. Bevorzugt ist jedoch vorgesehen, dass die zur Prüfschaltung gehörige Prüfimpedanz in der Prüfphase der Messkapazität parallel zugeschaltet ist.
  • Bevorzugt verbindet in der Prüfphase das dritte Schaltelement den Heizdraht über die Prüfimpedanz mit dem Referenzpotenzial elektrisch leitend. Bevorzugt ist die Prüfimpedanz ein Kondensator mit einer vorgegebenen Prüfkapazität. Zur Vermeidung parasitärer Kapazitäten ist das dritte Schaltelement bevorzugt ein Bipolartransistor.
  • Bevorzugt ist der Schaltungsaufbau ausgelegt, dass der Heizbetrieb und Messbetrieb im alternierenden Wechsel betrieben wird. Beispielsweise ist die Steuerschaltung ausgebildet, ein pulsweitenmoduliertes Steuersignal für die ersten und/oder zweiten Schaltelemente zu erzeugen. Ferner ist beispielsweise ein Mikrokontroller vorgesehen, um den Tastgrad des pulsweitenmodulierten Steuersignals in Abhängigkeit einer gewünschten und/oder vorgegebenen Heizleistung zu variieren.
  • Gemäß einer bevorzugten Ausgestaltung des erfindungsgemäßen Schaltungsaufbaus ist ferner eine Abschirmschaltung vorgesehen, die ausgebildet ist, während des Messbetriebs mindestens die Leiterabschnitte zwischen jeweils dem ersten und zweiten Schaltelement mit der Wechselspannung der Wechselspannungsquelle zu beaufschlagen. Hierbei soll mit der erneuten Verwendung des Begriffs Wechselspannung darauf abgestellt, dass die im Messbetrieb am Heizdraht anliegende Wechselspannung und die an den Leiterabschnitten anliegende Wechselspannung im Wesentlichen in Amplitude, Frequenz und Phase übereinstimmen, um eine optimale Abschirmung zu erreichen.
  • Gemäß einer bevorzugten Ausgestaltung sind zumindest die ersten Schaltelemente Transistoren, insbesondere Feldeffekttransistoren, und ist die Abschirmschaltung ausgelegt, dass die Wechselspannung im Messbetrieb jeweils an einem Steueranschluss des zugehörigen Transistors, wie Basis oder Gate, anliegt, um eine besonders effektive Abschirmung zu erreichen. Dabei ist die Wechselspannung und/oder sind die ersten Schaltelemente so ausgelegt, dass ein Schaltvorgang der ersten Schaltelemente im Messbetrieb ausgeschlossen ist.
  • Gemäß einer bevorzugten Ausgestaltung ist die Detektionsschaltung zur Kompensation eines temperaturabhängigen Sperrverhaltens der ersten Schaltelemente durch eine Kompensationsschaltung ergänzt, insbesondere wenn diese als Feldeffekttransistoren ausgebildet sind und ein temperaturabhängiger Blindstrom nicht ganz unterbunden werden kann. Um dies zu kompensieren, ist die Kompensationsschaltung beispielsweise ausgebildet, den Arbeitspunkt des den Wechselstromverlauf messenden Messverstärkers temperaturabhängig, der Änderung des Sperrverhaltens entgegenwirkend zu ändern. Dazu weist die Kompensationsschaltung beispielsweise eine ein R2R-Netzwerk ausbildende, mikrocontrollergesteuerte Referenzschaltung auf.
  • Die Erfindung betrifft ferner eine Verwendung des Schaltungsaufbaus in einer der zuvor beschriebenen Ausführungsformen in einem Kraftfahrzeug, wobei der Heizdraht in ein Lenkrad des Kraftfahrzeugs, beispielsweise in einen Lenkradkranz des Lenkrades, integriert ist.
  • Die Erfindung betrifft ferner ein Verfahren zur Durchführung eines alternierenden Heiz- und kapazitiven Messbetriebs mittels eines gemeinsamen Heizdrahts mit den folgenden Schritten.
  • In einem Heizbetrieb sind durch eine Steuerschaltung ein Paar aus ersten Schaltelementen und ein Paar aus zweiten Schaltelementen in leitendem Zustand geschaltet. Während dieses Heizbetriebs sind die ersten Schaltelemente und die zweiten Schaltelemente und der Heizdraht in Reihe geschaltet. Ferner ist im Heizbetrieb der Heizdraht jeweils über ein erstes Schaltelement und ein über einen Leiterabschnitt mit dem ersten Schaltelement verbundenes, zweites Schaltelement mit einem von zwei unterschiedlichen Heizpotenzialen leitend verbunden, so dass der Heizdraht aufgrund der unterschiedlichen Heizpotentiale mit einem Heizstrom beaufschlagt wird.
  • In einem nachfolgenden Schritt erfolgt ein Auslösen eines Wechsels der ersten Schaltelemente und der zweiten Schaltelemente von dem Heizbetrieb in einen Messbetrieb durch die Steuerschaltung, wobei während des Messbetriebs die ersten Schaltelemente und die zweiten Schaltelemente in sperrendem Zustand sind. Dadurch sind im Messbetrieb die beiden im Heizbetrieb elektrisch leitenden Verbindungen des Heizdrahts zu den zwei unterschiedlichen Heizpotenzialen jeweils mehrfach unterbrochen. Während des Messbetriebs wird die Messkapazität des Heizdrahts gegenüber einem Referenzpotenzial durch Beaufschlagung des Heizdrahtes mit einer Wechselspannung durch eine Detektionsschaltung ermittelt. Nachfolgend erfolgt bevorzugt ein Wechsel von dem Messbetrieb in den Heizbetrieb, noch bevorzugter werden Heizbetrieb und Messbetrieb im alternierenden Wechsel betrieben.
  • Erfindungsgemäß wird in einer innerhalb des Messbetriebs liegenden Prüfphase durchgeführt, während der mittels einer mindestens ein drittes Schaltelement und eine Prüfimpedanz beinhaltenden Prüfschaltung, die Prüfschaltung durch die Steuerschaltung so geschaltet wird, dass der Messkapazität eine Prüfimpedanz zugeschaltet wird und eine zugehörige Messkapazitätsänderung und/oder eine Gesamtimpedanz aus der Messkapazität und Prüfimpedanz durch die Detektionsschaltung zumindest detektiert wird.
  • Beispielsweise wird eine durch die Zuschaltung der Prüfimpedanz bewirkte Änderung der Messkapazität lediglich qualitativ detektiert. In einer anderen Ausgestaltung ist eine quantitative Messung der resultierenden Gesamtimpedanz aus Messkapazität und Prüfimpedanz vorgesehen, um eine Kalibrierung der Detektionsschaltung mittels der vorgegebenen Prüfimpedanz zu ermöglichen. In einer einfachen Ausgestaltung wird lediglich hinsichtlich zeitlicher Koinzidenz zwischen Messkapazitätsänderung und Schaltzustandsänderung untersucht.
  • Durch das Vorsehen der Prüfphase und den zugehörigen konstruktiven Merkmalen ist es möglich durch vergleichsweise einfache technische konstruktive Erweiterung einer Heiz- und Messschaltung einerseits die Unversehrtheit des Heizdrahtes aber auch die Detektionsschaltung auf Funktion zu überprüfen und bei quantitativer Untersuchung, beispielsweise durch Ermitteln der Messkapazitätsänderung oder der in der Prüfphase resultierenden Gesamtimpedanz eine Kalibrierung der Detektionsschaltung oder nachgeschalteter Auswerteinrichtungen durchzuführen. Bevorzugt ist die Dauer der Prüfphase kürzer als die Dauer eines zwischen zwei abfolgenden Heizbetrieben durchgeführten Messbetriebs. In dem außerhalb der Prüfphase liegenden Zeitbereich ist wenigstens ein drittes Schaltelement in sperrendem Zustand. Beispielsweise ist das Zeitverhältnis aus der Dauer der Prüfphase zu Gesamtdauer des die Prüfphase beinhaltenden Messbetriebs weniger als 1/10.
  • In einer Ausgestaltung findet die Prüfphase ausschließlich über einen Zeitraum statt, innerhalb dessen eine händische Annäherung an das Lenkrad ausgeschlossen ist, beispielsweise im verriegelten, unbesetzten Zustand der Fahrzeugkabine. In einer anderen Ausgestaltung wird die Prüfphase ausschließlich dann durchgeführt, wenn in einem zeitlich vorhergehenden, sich außerhalb der Prüfphase befindlichen Messbetrieb keine Annäherung detektiert wurde. In einer Ausgestaltung wird die Prüfphase zu Beginn eines Messbetriebs durchgeführt. Bei der alternierenden Abfolge von Heizbetrieb und Messbetrieb kann vorgesehen sein, dass bei mehreren Messbetrieben wenigstens einer ohne Prüfphase, bevorzugt die Mehrzahl von Messbetrieben ohne Prüfphase durchgeführt werden.
  • Das Zuschalten umfasst beispielsweise, dass der Messkapazität eine Prüfimpedanz in Serie zugeschaltet wird. Bevorzugt ist jedoch vorgesehen, dass die zur Prüfschaltung gehörige Prüfimpedanz während der Prüfphase der Messkapazität parallel zugeschaltet ist.
  • Bevorzugt verbindet in der Prüfphase das dritte Schaltelement den Heizdraht über die Prüfimpedanz mit dem Referenzpotenzial elektrisch leitend. Bevorzugt ist die Prüfimpedanz ein Kondensator mit einer vorgegebenen Prüfkapazität. Zur Vermeidung parasitärer Kapazitäten ist das dritte Schaltelement bevorzugt ein Bipolartransistor.
  • Gemäß einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens werden während des Messbetriebs die Leiterabschnitte durch eine Abschirmschaltung mit der Wechselspannung der Wechselspannungsquelle beaufschlagt. Hierbei wird mit der Verwendung des Begriffs Wechselspannung darauf abgestellt, dass die im Messbetrieb am Heizdraht anliegende Wechselspannung und die an den Leiterabschnitten anliegende Wechselspannung im Wesentlichen in Amplitude, Frequenz und Phase übereinstimmen, um eine optimale Abschirmung zu erreichen.
  • Gemäß einer bevorzugten Ausgestaltung sind zumindest die ersten Schaltelemente durch Transistoren, insbesondere Feldeffekttransistoren, realisiert, wobei durch Auslegung der Abschirmschaltung die Wechselspannung im Messbetrieb jeweils an einem Steueranschluss des zugehörigen Transistors, wie Basis oder Gate, anliegt, um eine besonders effektive Abschirmung zu erreichen. Dabei ist die Wechselspannung und/oder sind die ersten Schaltelemente so ausgelegt, dass ein Schaltvorgang der ersten Schaltelemente im Messbetrieb ausgeschlossen ist.
  • Gemäß einer bevorzugten Ausgestaltung des Verfahrens wird im Messbetrieb ein aus der Beaufschlagung mit der Wechselspannung resultierender Stromverlauf zwischen dem Heizleiter und der Wechselspannungsquelle durch die Detektionsschaltung gemessen, um daraus anhand einer Phasenverschiebung zwischen der Wechselspannung und dem Stromverlauf die Kapazität zu ermitteln.
  • Gemäß einer bevorzugten Ausgestaltung des Verfahrens wird ein temperaturabhängiges Sperrverhaltens der ersten Schaltelemente bei der Detektion kompensiert, insbesondere wenn diese als Feldeffekttransistoren ausgebildet sind und ein temperaturabhängiger Blindstrom nicht ganz unterbunden werden kann. Um dies zu kompensieren, ist die Detektionsschaltung um eine Kompensationsschaltung ergänzt, die den Arbeitspunkt des den Wechselstromverlauf messenden Messverstärkers temperaturabhängig und der Änderung des Sperrverhaltens entgegenwirkend ändert. Dazu weist die Kompensationsschaltung beispielsweise eine ein R2R-Netzwerk ausbildende, mikrocontrollergesteuerte Referenzschaltung auf.
  • Die Erfindung wird anhand der nachfolgenden Figuren näher erläutert. Die Figuren sind dabei nur beispielhaft zu verstehen und stellen lediglich eine bevorzugte Ausführungsvariante dar. Es zeigen:
    • 1 eine schematische Aufsicht auf ein Lenkrad mit einem darin integrierten, zum erfindungsgemäßen Schaltungsaufbau gehörigen Heizdraht;
    • 2 eine schematische Ansicht des erfindungsgemäßen Schaltungsaufbaus.
  • 1 zeigt die Verwendung der erfindungsgemäßen Schaltungsaufbaus 1 in einem Lenkrad 10 eines nicht dargestellten Kraftfahrzeugs. Ein Heizdraht 2, der beispielsweise ein Widerstandsdraht, wie ein Nickel-Chrom-Draht ist, ist in den Griffbereich 20, hier den Lenkradkranz, des Lenkrads integriert, um einerseits den Griffbereich 20 für einen das Lenkrad 10 ergreifenden Fahrzeuginsassen B in einem Heizbetrieb des Schaltungsaufbaus 1 zu beheizen und um andererseits eine kapazitive Berühr-bzw. Annäherungsdetektion betreffend die Berührung des Griffbereichs 20 oder Annäherung an den Griffbereich 20 durch die Hand des Fahrzeuginsassen B durchzuführen. Aus sicherheitstechnischen Überlegungen aber auch um zusätzliche Komfortfunktionen zu realisieren, ist diese kapazitive Berühr- oder zumindest eine Annäherungsdetektion vorgesehen, um beispielsweise die sogenannte Hands-On-Detektion durchzuführen, bei der es darum geht, das Ergreifen des Lenkradkranzes zu überwachen, oder die Fahrer-Beifahrer-Erkennung durchzuführen, bei der es beispielsweise darum geht, spezielle Komfortfunktionen sitzpositionsspezifisch zu aktivieren bzw. zu deaktivieren. Wie 1 andeutet, wird im Heizbetrieb der Heizdraht 2 mit einem Heizstrom aus den unterschiedlichen Heizpotenzialen VH+, VH- beaufschlagt. Beispielsweise liegt VH- auf Fahrzeugmassepotenzial. Im Messbetrieb wird der Heizdraht 2 durch den erfindungsgemäßen Schaltungsaufbau 1 mit einer Wechselspannung VAC beaufschlagt.
  • 2 zeigt schematisch den elektrischen Schaltungsaufbau 1 für den alternierenden Heiz- und kapazitiven Messbetrieb unter Verwendung eines gemeinsamen Heizdrahtes 2. Dabei wird im Heizbetrieb der Heizdraht 2 mit einem aus zwei auf den zwei unterschiedlichen Heizpotenzialen VH+, VH- liegenden Polen gespeisten elektrischen Heizstrom durchsetzt, wobei an dem Heizdraht 2 eine Heizspannung abfällt. Die Schaltungsanordnung 1 weist dazu ein Paar erster Schaltelemente 3a, 3b und ein Paar zweiter Schaltelemente 4a, 4b auf. Hier sind die ersten Schaltelemente 3a, 3b jeweils durch einen Feldeffekttransistor, insbesondere einen selbstsperrenden Feldeffekttransistor, bevorzugt einen Metalloxid-Halbleiter-Feldeffekttransistoren (MOS-FET) ausgebildet. Die zweiten Schaltelemente 4a, 4b sind beispielsweise ebenfalls jeweils durch einen Transistor, bevorzugter jeweils durch einen Feldeffekttransistor, meist bevorzugt einen Metalloxid-Halbleiter-Feldeffekttransistoren (MOS-FET) realisiert. Der Heizdraht 2 ist dabei so mit den ersten Schaltelementen 3a, 3b und den zweiten Schaltelementen 4a, 4b verschaltet, dass in dem Heizbetrieb, während dem die ersten Schaltelemente 3a, 3b und die zweiten Schaltelemente 4a, 4b, somit zeitgleich, in leitendem Zustand sind, die ersten Schaltelemente 3a, 3b und die zweiten Schaltelemente 4a, 4b und der Heizdraht 2 in Reihe geschaltet sind. Dabei ist der Heizdraht 2 jeweils über ein erstes Schaltelement 3a, 3b und ein über einen Leiterabschnitt 5a, 5b mit dem ersten Schaltelement 3a, 3b verbundenes, zweites Schaltelement 4a, 4b mit einem der zwei unterschiedlichen Heizpotenziale VH+, VH-leitend verbunden. Dadurch, dass im Heizbetrieb die ersten Schaltelemente 3a, 3b und die zweiten Schaltelemente 4a, 4b durchgeschaltet (leitend) sind, wird der Heizdraht 2 mit dem Heizstrom durchsetzt. Ist mindestens ein Schaltelement der ersten Schaltelemente 3a, 3b und zweiten Schaltelemente 4a, 4b im nicht-leitenden bzw. sperrenden Zustand liegt kein Heizstrom an. Durch periodisches Umschalten und Verändern der Dauer des jeweiligen Heizbetriebs, beispielsweise durch Ansteuerung wenigstens eines oder aller Schaltelemente 3a, 3b; 4a, 4b mittels eines pulsweitenmodulierten Steuersignals PWMa bzw. PWMb eines zur Steuerschaltung 6a, 6b, 13 gehörigen Mikrocontrollers 13, der die den Schaltelementen 3a, 3b; 4a, 4b zugeordnete Steuerschaltungsteile 6a, 6b der Steuerschaltung 6a, 6b, 13 ansteuert, kann somit die Heizleistung des Heizdrahtes 2 eingestellt werden. Während des Heizbetriebs ist das zur nachfolgend eingehend erläuterten Prüfschaltung 14, 15 gehörige Schaltelement 14 in den sperrenden Zustand geschaltet.
  • Erfindungsgemäß ist ferner eine Detektionsschaltung 9 vorgesehen, um in einem zeitlich außerhalb des Heizbetriebs liegenden Messbetrieb, die Messkapazität des Heizdrahts 2 gegenüber einem Referenzpotenzial, wie der Fahrzeugmasse 16, durch Beaufschlagung des Heizdrahtes 2 mit einer Wechselspannung VAC einer Wechselspannungsquelle 12, hier ein durch den Mikrokontroller 12 gesteuerten Sinusgenerator, zu ermitteln. Anhand einer Änderung dieser Kapazität lässt sich beispielsweise eine Annäherung eines Fahrzeuginsassen B oder zumindest die Annäherung einer Hand des Fahrzeuginsassen B detektieren. Dabei ist die Detektionsschaltung 9 ausgelegt, im Messbetrieb einen aus der Beaufschlagung mit der Wechselspannung VAC resultierenden Stromverlauf zwischen dem Heizleiter 2 und der Wechselspannungsquelle 12 zu messen, um daraus anhand einer Phasenverschiebung zwischen der Wechselspannung VAC und dem Stromverlauf die Kapazität zu ermitteln. Im Detail wird der Stromverlauf anhand eines Spannungsabfalls an einem Nebenschlusswiderstand 8 (shunt) unter Signalverstärkung durch einen Messverstärker der Detektionsschaltung gemessen, dessen Messergebnis dem Mikrocontroller 12 übermittelt wird.
  • Der Wechsel vom Heizbetrieb in den Messbetrieb wird durch den Mikrokontroller 13 in Zusammenwirken mit den Steuerschaltungsteilen 6a, 6b bewirkt, so dass im Messbetrieb die ersten Schaltelemente 3a, 3b und die zweiten Schaltelemente 4a, 4b in sperrendem Zustand sind, so dass die beiden im Heizbetrieb elektrisch leitenden Verbindungen des Heizdrahts 2 zu den zwei unterschiedlichen Heizpotenzialen VH+, VH- im Messbetrieb jeweils mehrfach unterbrochen sind.
  • Die mehrfache Unterbrechung zu den beiden Heizpotenzialen VH+, VH- hat den Vorteil, dass neben der besonders effektiven, kapazitiven Entkopplung des Heizdrahtes 2 gegenüber den Heizpotenzialen VH+, VH- und der Verminderung der parasitären Kapazitäten auf der mehrfach unterbrochenen Verbindung zu den Heizpotenzialen VH+, VH-, bei der nunmehr die Schaltelemente 3a, 3b; 4a, 4b als in Reihe geschaltete kapazitive Impedanzen zu betrachten sind, ferner eine eine Wechselspannung VAC zur Detektion nutzende Detektionsschaltung 9 verbessert genutzt werden kann, da die ersten Schaltelemente 3a, 3b, beispielsweise anders als die nicht symmetrisch geschalteten Dioden im Stand der Technik, symmetrisch trennen und sich diese Trennung auf beide Stromrichtungen des im Messbetrieb generierten Wechselstroms auswirkt, was die Ermittlung der Kapazität mittels Wechselspannung VAC aber insbesondere den bevorzugten Weg über die Detektion der Phasenverschiebung erleichtert und verbessert. Durch die Ansteuerung mittels der pulsweitenmodulierten Steuersignale PWMa bzw. PWMb der Steuerschaltungsteile 6a, 6b durch den Mikrocontroller 13 ist der Schaltungsaufbau 1 ausgelegt, dass der Heizbetrieb und Messbetrieb im alternierenden Wechsel betrieben wird. Der Mikrocontroller 13 regelt dabei den Tastgrad der pulsweitenmodulierten Steuersignale PWMa bzw. PWMb in Abhängigkeit einer gewünschten und/oder vorgegebenen Heizleistung.
  • Bei dem gezeigten erfindungsgemäßen Schaltungsaufbau 1 ist ferner eine Abschirmschaltung 7 vorgesehen, die ausgebildet ist, während des Messbetriebs nicht nur die Leiterabschnitt 5a, 5b zwischen jeweils dem ersten Schaltelement 3a, 3b und dem zweiten Schaltelement 4a, 4b sondern auch die Steueranschlüsse Ga, Gb der ersten Schaltelemente 3a, 3b mit der Wechselspannung VAC der Wechselspannungsquelle 12 zu beaufschlagen. Hierbei wird mit der Verwendung des Begriffs Wechselspannung darauf abgestellt, dass die im Messbetrieb am Heizdraht 2 anliegende Wechselspannung VAC und die an den Leiterabschnitten 5a, 5b anliegende Wechselspannung VAC im Wesentlichen in Amplitude, Frequenz und Phase übereinstimmen, um eine optimale Abschirmung zu erreichen.
  • Die Detektionsschaltung 9 ist zur Kompensation eines temperaturabhängigen Sperrverhaltens der ersten Schaltelemente 3a, 3b durch eine Kompensationsschaltung 11 ergänzt, um einen temperaturabhängigen Blindstrom bzw. ein temperaturabhängiges Sperrverhalten dieser ersten Schaltelemente 3a, 3b zu kompensieren. Hier ist die Kompensationsschaltung 11 vorgesehen und ausgebildet, den Arbeitspunkt des den Wechselstromverlauf messenden Messverstärkers der Detektionsschaltung 9 temperaturabhängig, der Änderung des Sperrverhaltens entgegenwirkend zu ändern. Dazu weist die Kompensationsschaltung beispielsweise eine ein R2R-Netzwerk ausbildende Referenzschaltung auf, die mit dem Mikrokontroller 13 zur Steuerung der Kompensation verbunden ist.
  • Erfindungsgemäß ist die Steuerschaltung 6a, 6b 13 ferner ausgebildet, in einer innerhalb des Messbetriebs liegenden Prüfphase eine ein drittes Schaltelement 14 und eine Prüfimpedanz 15 beinhaltende Prüfschaltung 14, 15 so zu schalten, dass der Messkapazität die Prüfimpedanz 15 zugeschaltet wird, und eine zugehörige Messkapazitätsänderung und/oder eine Gesamtimpedanz aus der Messkapazität und Prüfimpedanz durch die Detektionsschaltung 9 zumindest detektiert wird. Beispielsweise wird eine durch die Zuschaltung der Prüfimpedanz 15 bewirkte Änderung der Messkapazität lediglich qualitativ detektiert. In einer anderen Ausgestaltung ist eine quantitative Messung der resultierenden Gesamtimpedanz aus Messkapazität und Prüfimpedanz 15 vorgesehen, um eine Kalibrierung der Detektionsschaltung mittels der vorgegebenen Prüfimpedanz zu ermöglichen. In einer einfachen Ausgestaltung wird lediglich hinsichtlich zeitlicher Koinzidenz zwischen Messkapazitätsänderung und Schaltzustandsänderung untersucht. Durch das Vorsehen der Prüfphase und den zugehörigen konstruktiven Merkmalen ist es möglich durch vergleichsweise einfache technische konstruktive Erweiterung einer Heiz- und Messschaltung einerseits die Unversehrtheit des Heizdrahtes 2 aber auch die Detektionsschaltung 9 auf Funktion zu überprüfen und bei quantitativer Untersuchung, beispielsweise durch Ermitteln der Messkapazitätsänderung oder der in der Prüfphase resultierenden Gesamtimpedanz eine Kalibrierung der Detektionsschaltung 9 oder nachgeschalteter Auswerteinrichtungen durchzuführen. Bevorzugt ist die Dauer der Prüfphase kürzer als die Dauer eines zwischen zwei abfolgenden Heizbetrieben durchgeführten Messbetriebs. In dem außerhalb der Prüfphase liegenden Zeitbereich des Messbetrieb ist zumindest das dritte Schaltelement 14 in sperrendem Zustand. Um den Heizdraht 2 über seine gesamte Länge überprüfen zu können, erfolgt dabei die Einspeisung der Wechselspannung VAC an einem Ende des Heizdrahtes 2, während die Prüfimpedanz 15 am entgegengesetzten Ende des Heizdrahtes 2 zugeschaltet wird, so dass die zur Prüfschaltung 14, 15 gehörige Prüfimpedanz 15 in der Prüfphase der Messkapazität parallel zugeschaltet ist. Hier verbindet in der Prüfphase das dritte Schaltelement 14 den Heizdraht 2 über die Prüfimpedanz 15 mit dem Referenzpotenzial 16 elektrisch leitend. Dabei ist die Prüfimpedanz 15 ein Kondensator mit einer vorgegebenen Prüfkapazität. Zur Vermeidung parasitärer Kapazitäten ist das dritte Schaltelement 14 ein Bipolartransistor. Beispielsweise beträgt das Zeitverhältnis aus der Dauer der Prüfphase zu Gesamtdauer des die Prüfphase beinhaltenden Messbetriebs weniger als 1/10.
  • Die zeitliche Abfolge von Heizbetrieb und Messbetrieb ist nicht näher dargestellt. In einer Ausgestaltung findet die Prüfphase ausschließlich über einen Zeitraum statt, innerhalb dessen eine händische Annäherung an das Lenkrad ausgeschlossen ist, beispielsweise im verriegelten, unbesetzten Zustand der Fahrzeugkabine. In einer anderen Ausgestaltung wird die Prüfphase ausschließlich dann durchgeführt, wenn in einem zeitlich vorhergehenden, sich außerhalb der Prüfphase befindlichen Messbetrieb keine Annäherung detektiert wurde. In einer Ausgestaltung wird die Prüfphase zu Beginn eines Messbetriebs durchgeführt. Bei der alternierenden Abfolge von Heizbetrieb und Messbetrieb kann vorgesehen sein, dass bei mehreren Messbetrieben wenigstens einer ohne Prüfphase, bevorzugt die Mehrzahl von Messbetrieben ohne Prüfphase durchgeführt werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 112014002044 T5 [0001]
    • US 2010/0038351 A1 [0001]

Claims (19)

  1. Elektrischer Schaltungsaufbau (1) für den alternierenden Heiz- und kapazitiven Messbetrieb, aufweisend: ein Paar erster Schaltelemente (3a, 3b) und ein Paar zweiter Schaltelemente (4a, 4b); einen Heizdraht (2), der so mit den ersten Schaltelementen (3a, 3b) und zweiten Schaltelementen (4a, 4b) verschaltet ist, dass in einem Heizbetrieb, während dem die ersten Schaltelemente (3a, 3b) und zweiten Schaltelemente (4a, 4b) in leitendem Zustand sind, die ersten Schaltelemente (3a, 3b) und die zweiten Schaltelemente (4a, 4b) und der Heizdraht (2) in Reihe geschaltet sind und der Heizdraht (3) jeweils über ein erstes Schaltelement (3a, 3b) und ein über einen Leiterabschnitt (5a, 5b) mit dem ersten Schaltelement (3a, 3b) verbundenes, zweites Schaltelement (4a, 4b) mit einem von zwei unterschiedlichen Heizpotenzialen (VH+, VH-) leitend verbunden ist, so dass der Heizdraht (2) mit einem Heizstrom beaufschlagt wird; eine Detektionsschaltung (9), um in einem zeitlich außerhalb des Heizbetriebs liegenden Messbetrieb, die Messkapazität des Heizdrahts (2) gegenüber einem Referenzpotenzial (16) durch Beaufschlagung des Heizdrahtes mit einer Wechselspannung (VAC) einer Wechselspannungsquelle (12) ermittelt wird; eine Prüfschaltung (14, 15), aufweisend mindestens ein drittes Schaltelement (14) und eine Prüfimpedanz (15); eine Steuerschaltung (6a, 6b, 13), die ausgebildet ist, die ersten Schaltelemente (3a, 3b) und zweiten Schaltelemente (4a, 4b) von dem Heizbetrieb in den Messbetrieb zu schalten, wobei während des Messbetriebs die ersten Schaltelemente (3a, 3b) und die zweiten Schaltelemente (4a, 4b) in sperrendem Zustand sind, so dass die beiden, im Heizbetrieb elektrisch leitenden Verbindungen des Heizdrahts (2) zu den zwei unterschiedlichen Heizpotenzialen (VH+, VH-) im Messbetrieb jeweils mehrfach unterbrochen sind und die Steuerschaltung (6a, 6b, 13) ferner ausgebildet ist, in einer innerhalb des Messbetriebs liegenden Prüfphase die Prüfschaltung (6a, 6b, 13) so zu schalten, dass der Messkapazität die Prüfimpedanz (15) zugeschaltet wird, und eine zugehörige Messkapazitätsänderung und/oder eine Gesamtimpedanz aus der Messkapazität und der Prüfimpedanz (15) durch die Detektionsschaltung (9) zumindest detektiert wird.
  2. Elektrischer Schaltungsaufbau (1) gemäß Anspruch 1, wobei die Prüfimpedanz (15) in der Prüfphase der Messkapazität parallel zugeschaltet ist.
  3. Elektrischer Schaltungsaufbau (1) gemäß einem der vorhergehenden Ansprüche, wobei in der Prüfphase das dritte Schaltelement (14) den Heizdraht (2) über die Prüfimpedanz (15) mit dem Referenzpotenzial (16) elektrisch leitend verbindet.
  4. Elektrischer Schaltungsaufbau (1) gemäß einem der vorhergehenden Ansprüche, wobei die Prüfimpedanz (15) ein Kondensator mit einer vorgegebenen Prüfkapazität ist.
  5. Elektrischer Schaltungsaufbau (1) gemäß einem der vorhergehenden Ansprüche, wobei das dritte Schaltelement (14) ein Bipolartransistor ist.
  6. Elektrischer Schaltungsaufbau (1) gemäß einem der vorhergehenden Ansprüche, ferner aufweisend eine Abschirmschaltung (7), die ausgebildet ist, während des Messbetriebs mindestens die Leiterabschnitte (5a, 5b) mit der Wechselspannung (VAC) der Wechselspannungsquelle (12) zu beaufschlagen.
  7. Elektrischer Schaltungsaufbau (1) gemäß einem der vorhergehenden Ansprüche, wobei zumindest die ersten Schaltelemente (3a, 3b) Transistoren, insbesondere Feldeffekttransistoren sind, und die Abschirmschaltung (7) ausgebildet ist, dass die Wechselspannung (VAC) im Messbetrieb jeweils an einem Steueranschluss (Ga, Gb) des zugehörigen Transistors, wie Basis oder Gate, anliegt.
  8. Elektrischer Schaltungsaufbau (1) gemäß einem der vorhergehenden Ansprüche, wobei die Detektionsschaltung (9) ausgelegt ist, im Messbetrieb einen aus der Beaufschlagung mit der Wechselspannung (VAC) resultierenden Stromverlauf zwischen dem Heizleiter (2) und der Wechselspannungsquelle (12) zu messen, um daraus anhand einer Phasenverschiebung zwischen der Wechselspannung (VAC) und dem Stromverlauf die Messkapazität zu ermitteln und in der Prüfphase die Messkapazitätsänderung zu detektieren und/oder die Gesamtimpedanz zu ermitteln.
  9. Elektrischer Schaltungsaufbau (1), wobei die Detektionsschaltung (9) um eine Kompensationsschaltung (11) zur Kompensation eines temperaturabhängigen Sperrverhaltens der ersten Schaltelemente (3a, 3b) ergänzt ist.
  10. Verwendung des Schaltungsaufbaus (1) gemäß einem der vorhergehenden Ansprüche in einem Kraftfahrzeug, wobei der Heizdraht (1) in ein Lenkrad (10) des Kraftfahrzeugs integriert ist.
  11. Verfahren zur Durchführung eines alternierenden Heiz- und kapazitiven Messbetriebs mittels eines gemeinsamen Heizdrahts (2), aufweisend die folgenden Schritte: Durchführen eines Heizbetriebs, während dem durch Beschaltung durch eine Steuerschaltung (6a, 6b) ein Paar erster Schaltelemente (3a, 3b) und ein Paar zweiter Schaltelemente (4a, 4b) in leitendem Zustand sind, die ersten Schaltelemente (3a, 3b) und die zweiten Schaltelemente (4a, 4b) und der Heizdraht (2) in Reihe geschaltet sind und der Heizdraht (2) jeweils über ein erstes Schaltelement (3a, 3b) und ein über einen Leiterabschnitt (5a, 5b) mit dem ersten Schaltelement (3a, 3b) verbundenes, zweites Schaltelement (4a, 4b) mit einem von zwei unterschiedlichen Heizpotenzialen (VH+, VH-) leitend verbunden ist, so dass der Heizdraht (2) mit einem Heizstrom beaufschlagt wird; Auslösen eines Wechsels von dem Heizbetrieb in einen Messbetrieb der ersten Schaltelemente (3a, 3b) und der zweiten Schaltelemente (4a, 4b) durch die Steuerschaltung (6a, 6b), wobei während des Messbetriebs die ersten Schaltelemente (3a, 3b) und die zweiten Schaltelemente (4a, 4b) in sperrendem Zustand sind, so dass die beiden, im Heizbetrieb elektrisch leitenden Verbindungen des Heizdrahts (2) zu den zwei unterschiedlichen Heizpotenzialen (VH+, VH-) im Messbetrieb jeweils mehrfach unterbrochen sind; Durchführen des Messbetriebs, bei dem die Messkapazität des Heizdrahts (2) gegenüber einem Referenzpotenzial (16) durch Beaufschlagung des Heizdrahtes (2) mit einer Wechselspannung (VAC) einer Wechselspannungsquelle (12) durch eine Detektionsschaltung (9) ermittelt wird; Durchführen einer zeitlich innerhalb des Messbetriebs liegenden Prüfphase, während der mittels einer mindestens ein drittes Schaltelement (14) und eine Prüfimpedanz (15) beinhaltenden Prüfschaltung (14, 15), die Prüfschaltung (14, 15) durch die Steuerschaltung (6a, 6b, 13) so geschaltet wird, dass der Messkapazität eine Prüfimpedanz (15) zugeschaltet wird und eine zugehörige Messkapazitätsänderung und/oder eine Gesamtimpedanz aus der Messkapazität und Prüfimpedanz (15) durch die Detektionsschaltung (9) zumindest detektiert wird.
  12. Verfahren gemäß dem vorhergehenden Anspruch, wobei die Prüfimpedanz (15) in der Prüfphase der Messkapazität parallel zugeschaltet wird.
  13. Verfahren gemäß einem der vorhergehenden Ansprüche 11 oder 12, wobei in der Prüfphase das dritte Schaltelement (14) den Heizdraht (2) über die Prüfimpedanz (15) mit dem Referenzpotenzial (16) elektrisch leitend verbunden wird.
  14. Verfahren gemäß einem der vorhergehenden Ansprüche 11 bis 13, wobei die Prüfimpedanz (15) ein Kondensator mit einer vorgegebenen Prüfkapazität ist.
  15. Verfahren gemäß einem der vorhergehenden Ansprüche 11 bis 14, wobei das dritte Schaltelement (14) ein Bipolartransistor ist.
  16. Verfahren gemäß einem der vorhergehenden Ansprüche 11 bis 15, wobei während des Messbetriebs die Leiterabschnitte (5a, 5b) durch eine Abschirmschaltung (7) mit der Wechselspannung (VAC) der Wechselspannungsquelle (12) beaufschlagt werden.
  17. Verfahren gemäß einem der vorhergehenden Ansprüche 11 bis 16, wobei zumindest die ersten Schaltelemente (3a, 3b) Transistoren, insbesondere Feldeffekttransistoren sind, und die Wechselspannung (VAC) im Messbetrieb jeweils an einem Steueranschluss (Ga, Gb) des Transistors, wie Basis oder Gate, anliegt.
  18. Verfahren gemäß einem der vorhergehenden Ansprüche 11 bis 17, wobei im Messbetrieb ein aus der Beaufschlagung mit der Wechselspannung (VAC) resultierender Stromverlauf zwischen dem Heizleiter (2) und der Wechselspannungsquelle (12) durch die Detektionsschaltung (9) gemessen wird, um anhand einer Phasenverschiebung zwischen der Wechselspannung (VAC) und dem Stromverlauf die Messkapazität und in der Prüfphase die Messkapazitätsänderung zu detektieren und/oder die Gesamtimpedanz zu ermitteln.
  19. Verfahren gemäß einem der vorhergehenden Ansprüche 11 bis 18, wobei ein temperaturabhängiges Sperrverhalten der ersten Schaltelemente (3a, 3b) im Messbetrieb kompensiert wird.
DE102022101912.8A 2022-01-27 2022-01-27 Elektrischer Schaltungsaufbau für den alternierenden Heiz- und kapazitiven Messbetrieb mit Funktionsprüfung und zugehöriges Verfahren Pending DE102022101912A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102022101912.8A DE102022101912A1 (de) 2022-01-27 2022-01-27 Elektrischer Schaltungsaufbau für den alternierenden Heiz- und kapazitiven Messbetrieb mit Funktionsprüfung und zugehöriges Verfahren
CN202310097535.4A CN116500345A (zh) 2022-01-27 2023-01-19 用于交替加热运行和电容测量运行的电路***及相关方法
PCT/EP2023/051340 WO2023144028A1 (de) 2022-01-27 2023-01-20 Elektrischer schaltungsaufbau für den alternierenden heiz- und kapazitiven messbetrieb mit funktionsprüfung und zugehöriges verfahren sowie verwendung
US18/159,888 US20230257015A1 (en) 2022-01-27 2023-01-26 Electric circuit structure for an alternating heating and capacitive measuring mode with function test, and associated method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102022101912.8A DE102022101912A1 (de) 2022-01-27 2022-01-27 Elektrischer Schaltungsaufbau für den alternierenden Heiz- und kapazitiven Messbetrieb mit Funktionsprüfung und zugehöriges Verfahren

Publications (1)

Publication Number Publication Date
DE102022101912A1 true DE102022101912A1 (de) 2023-07-27

Family

ID=85122488

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102022101912.8A Pending DE102022101912A1 (de) 2022-01-27 2022-01-27 Elektrischer Schaltungsaufbau für den alternierenden Heiz- und kapazitiven Messbetrieb mit Funktionsprüfung und zugehöriges Verfahren

Country Status (4)

Country Link
US (1) US20230257015A1 (de)
CN (1) CN116500345A (de)
DE (1) DE102022101912A1 (de)
WO (1) WO2023144028A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100038351A1 (en) 2008-08-15 2010-02-18 Tk Holdings Inc. Capacitive sensing system
DE112012000923T5 (de) 2011-02-21 2013-11-28 Iee International Electronics & Engineering S.A. Als kapazitive Erfassungselekrode betriebenes Heizelement
DE112014002044T5 (de) 2013-05-15 2016-01-14 Gentherm Canada Ltd. Leitfähige Heizeinrichtung mit Fühlereigenschaften

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014085577A1 (en) * 2012-11-30 2014-06-05 Tk Holdings Inc. Hand sensing on steering wheel using heater element
DE102014117823A1 (de) * 2014-12-04 2016-06-09 Valeo Schalter Und Sensoren Gmbh Lenkrad für ein Kraftfahrzeug mit einem Sensorsystem und Verfahren zum Erkennen einer Anwesenheit einer menschlichen Hand in einem Greifbereich eines solchen Lenkrads
US11032875B2 (en) * 2017-05-15 2021-06-08 Joyson Safety Systems Acquisition Llc Systems and methods for heating and sensing proximity to vehicle components
DE102019128887A1 (de) * 2019-10-25 2021-04-29 Valeo Schalter Und Sensoren Gmbh Kombinierte, kapazitive Sensor- und Heizvorrichtung, Verfahren zum Betrieb einer Sensor- und Heizvorrichtung, Lenkeingabevorrichtungs-Baugruppe mit einer Sensor- und Heizvorrichtung und Fahrzeug mit einer Lenkeingabevorrichtungs-Baugruppe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100038351A1 (en) 2008-08-15 2010-02-18 Tk Holdings Inc. Capacitive sensing system
DE112012000923T5 (de) 2011-02-21 2013-11-28 Iee International Electronics & Engineering S.A. Als kapazitive Erfassungselekrode betriebenes Heizelement
DE112014002044T5 (de) 2013-05-15 2016-01-14 Gentherm Canada Ltd. Leitfähige Heizeinrichtung mit Fühlereigenschaften

Also Published As

Publication number Publication date
CN116500345A (zh) 2023-07-28
WO2023144028A1 (de) 2023-08-03
US20230257015A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
EP1753356B1 (de) Verfahren und Messvorrichtung zur Bestimmung der Übergangsimpendanz zwischen zwei Teilelektroden einer geteilten Neutralelektrode
DE112014001880B4 (de) Kapazitive Erfassungsvorrichtung
DE102011005551B4 (de) Belegungserkennungsvorrichtung zum Erkennen einer Belegung eines Sitzplatzes eines Kraftfahrzeuges
DE112014001890B4 (de) Kapazitive Erfassungsvorrichtung
DE102007047887A1 (de) Kapazitätserfassungsvorrichtung
DE112015004612T5 (de) Kapazitive Erfassungsvorrichtung
EP1066178B1 (de) Verfahren zur kapazitiven objekterkennung bei fahrzeugen
DE112012000923T5 (de) Als kapazitive Erfassungselekrode betriebenes Heizelement
DE112015004792T5 (de) Kostengünstige Messschaltung für eine komplexe Impedanz für kapazitive Schutz-Mess-Sensoren, die im Lademodus betrieben werden
DE102019120136A1 (de) Kapazitive Sensorvorrichtung, Lenkrad mit einer kapazitiven Sensorvorrichtung, Verfahren zum Betrieb einer kapazitiven Sensorvorrichtung und/oder eines Lenkrads sowie Fahrzeug mit einer kapazitiven Sensorvorrichtung
DE112015005011T5 (de) Kostengünstige Messschaltung für eine komplexe Impedanz
DE112017005428T5 (de) Sensordiagnose für ein kapazitives Fühlersystem
DE112012002877T5 (de) Sitzheizung und kapazitiver Belegungssensor in Kombination
DE112017000507T5 (de) Kapazitive Sensorvorrichtung mit EMI-robuster kapazitiver Messschaltung
DE102021124564B3 (de) Elektrischer Schaltungsaufbau für den alternierenden Heiz- und kapazitiven Messbetrieb und zugehöriges Verfahren
DE102011105112A1 (de) Verfahren und Vorrichtung zur Überwachung eines Schaltzustandes
DE112019005884T5 (de) Sensoranordnung zur kapazitiven Positionserfassung einer Hand an einem Lenkrad
DE102022101912A1 (de) Elektrischer Schaltungsaufbau für den alternierenden Heiz- und kapazitiven Messbetrieb mit Funktionsprüfung und zugehöriges Verfahren
EP1151310B1 (de) Messverfahren für kapazitives messsystem
DE112019000888T5 (de) System zur Erdung und Diagnose
DE102021006601A1 (de) Elektrischer Schaltungsaufbau für den alternierenden Heiz- und kapazitiven Messbetrieb und zugehöriges Verfahren
DE112022002103T5 (de) Kostengünstige, geschützte kapazitive Abfühlschaltung für einen Betrieb von Heizungselemente verwendenden kapazitiven Sensoren im Lademodus
DE102019106959A1 (de) Kapazitiver Berührungs- oder Annäherungssensor für ein Kraftfahrzeug
DE112021005999T5 (de) Kostengünstige kapazitive Abfühlschaltung mit hoher Messgeschwindigkeit für den Betrieb von kapazitiven Sensoren im Lademodus
DE102020007246B4 (de) Verfahren zum Kalibrieren eines ersten Isolationswächters eines elektrischen Bordnetzes, sowie elektrisches Bordnetz

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: LOHMANNS, BERNARD, DIPL.-PHYS., DE

R016 Response to examination communication