DE102020216225A1 - Elektrische Maschine zum Antrieb eines Kraftfahrzeugs - Google Patents

Elektrische Maschine zum Antrieb eines Kraftfahrzeugs Download PDF

Info

Publication number
DE102020216225A1
DE102020216225A1 DE102020216225.5A DE102020216225A DE102020216225A1 DE 102020216225 A1 DE102020216225 A1 DE 102020216225A1 DE 102020216225 A DE102020216225 A DE 102020216225A DE 102020216225 A1 DE102020216225 A1 DE 102020216225A1
Authority
DE
Germany
Prior art keywords
electrical machine
air
stator cooling
air duct
cooling sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102020216225.5A
Other languages
English (en)
Inventor
Martin Lang
Thomas Auer
Maria Lang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Priority to DE102020216225.5A priority Critical patent/DE102020216225A1/de
Priority to CN202111541790.0A priority patent/CN114649884A/zh
Priority to US17/554,634 priority patent/US20220200372A1/en
Publication of DE102020216225A1 publication Critical patent/DE102020216225A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

Die Erfindung betrifft eine elektrische Maschine (1) zum Antrieb eines Kraftfahrzeugs. Die elektrische Maschine (1) umfasst einen Stator (2) mit einem Statorkern (7), ein Statorkühlbuchsensystem (8) und ein Gehäuse (4). Das Statorkühlbuchsensystem (8) umgibt den Statorkern (7) in einer radialen Richtung (r) der elektrischen Maschine (1) außen, und das Gehäuse (4) umgibt das Statorkühlbuchsensystem (8) in der radialen Richtung (r) der elektrischen Maschine (1) außen. Das Statorkühlbuchsensystem (8) bildet einen Fluidkanal (17), der innerhalb des Statorkühlbuchsensystems (8) angeordnet ist, wobei ein Fluid durch den Fluidkanal (17) fließt und dabei Wärme von dem Statorkern (7) aufnimmt. Weiterhin bildet das Statorkühlbuchsensystem (8) wenigstens einen Luftkanal (18, 18.1, 18.2), der getrennt von dem Fluidkanal (17) zwischen dem Statorkühlbuchsensystem (8) und dem Gehäuse (4) angeordnet ist. Luft strömt durch den wenigstens einen Luftkanal (18, 18.1, 18.2), wobei die Luft zuvor Wärme von zu kühlenden Komponenten (9, 10, 36) der elektrischen Maschine (1) aufgenommen hat. Das Fluid, das durch den Fluidkanal (17) fließt, nimmt Wärme von der Luft auf, die durch den wenigstens einen Luftkanal (18, 18.1, 18.2) strömt.

Description

  • Die Erfindung betrifft eine elektrische Maschine zum Antrieb eines Kraftfahrzeugs.
  • Eine elektrische Maschine, die ein Kraftfahrzeug antreibt, wird mit hohen Leistungen betrieben. Dies bedeutet jedoch auch, dass viel Wärme entsteht, die als Abwärme von der elektrischen Maschine möglichst gut abgeführt werden muss, um beispielsweise Lager oder eine Rotorwelle der elektrischen Maschine nicht zu schädigen. In diesem Zusammenhang offenbart die EP 2109207 A2 eine elektrische Maschine mit einem Maschinengehäuse, in dem ein Rotor und eine Statorwicklung aufgenommen sind, wobei die Statorwicklung auf gegenüberliegenden Seiten in jeweils einem Wickelkopfraum angeordnete Wickelköpfe aufweist, sowie mit einer Kühlvorrichtung, die einen Flüssigkühlkreis mit einer Statormantelkühlung und Kühlrohrschlangen sowie einen mit dem Rotor verbundenen Lüfter zur Luftumwälzung im Maschinengehäuse aufweist. Die durch die hohen Leistungen in einer elektrischen Maschine entstehende Wärme kann darüber hinaus auch leistungsgrenzend sein. Ab Erreichen einer bestimmten Wickelkopftemperatur senkt typischerweise eine Steuerung der elektrischen Maschine deren Leistung, was auch unter dem Begriff „Derating“ bekannt ist.
  • Eine Aufgabe der vorliegenden Erfindung kann darin gesehen werden, Abwärme insbesondere einer elektrischen Maschine eines Kraftfahrzeugs mit einfachen Mitteln besser abzuführen. Die Aufgabe wird gelöst durch die Gegenstände der unabhängigen Patentansprüche. Vorteilhafte Ausführungsformen sind Gegenstand der Unteransprüche, der folgenden Beschreibung sowie der Figuren.
  • Die vorliegende Erfindung stellt ein Kühlkonzept für eine elektrische Maschine eines Kraftfahrzeugs bereit. Die elektrische Maschine kann insbesondere zum Antrieb des Kraftfahrzeugs dienen, entweder allein oder in Kombination mit einem Verbrennungskraftmotor. Gemäß der vorliegenden Erfindung wird ein Kühlkonzept vorgeschlagen, gemäß welchem Luft, die innerhalb der elektrischen Maschine Wärme von zu kühlenden Komponenten aufgenommen hat (z.B. Aufnahme der Wärme bei Durchströmung einer Rotorwelle der elektrischen Maschine), diese Wärme optimal an eine wassergekühlte Statorkühlbuchse und an ein Gehäuse nach außen in die Umwelt abgeben kann.
  • In diesem Sinne wird gemäß einem ersten Aspekt der Erfindung eine elektrische Maschine zum Antrieb eines Kraftfahrzeugs bereitgestellt. Die elektrische Maschine umfasst einen Stator mit einem Statorkern, ein Statorkühlbuchsensystem und ein Gehäuse. Dabei umgibt das Statorkühlbuchsensystem den Statorkern in einer radialen Richtung der elektrischen Maschine außen, wobei das Gehäuse das Statorkühlbuchsensystem in der radialen Richtung der elektrischen Maschine außen umgibt. Das Statorkühlbuchsensystem bildet einen Fluidkanal, der innerhalb des Statorkühlbuchsensystem angeordnet ist, wobei ein Fluid (insbesondere ein Kühlwasser, z.B. eine Mischung aus Wasser und Glysantin) durch den Fluidkanal fließt und dabei Wärme von dem Statorkern aufnimmt. Das Statorkühlbuchsensystem bildet weiterhin wenigstens einen Luftkanal, der getrennt von dem Fluidkanal zwischen dem Statorkühlbuchsensystem und dem Gehäuse angeordnet ist. Luft strömt durch den wenigstens einen Luftkanal, wobei die Luft zuvor Wärme von zu kühlenden Komponenten der elektrischen Maschine aufgenommen hat. Das Fluid, das durch den Fluidkanal fließt, nimmt wiederum Wärme von der Luft auf, die durch den wenigstens einen Luftkanal strömt. Der Fluidkanal kann insbesondere einen Teil oder Abschnitt eines Kühlwasserkreislaufs der elektrischen Maschine bilden. Dieser Kühlwasserkreislauf weist insbesondere einen Wärmetauscher und eine Pumpe auf, die sowohl innerhalb der elektrischen Maschine als auch außerhalb der elektrischen Maschine angeordnet sein können.
  • Die Luft, die Wärme von den zu kühlenden Komponenten der elektrischen Maschine aufgenommen hat, kann weiterhin einen Teil dieser Wärme über das Gehäuse an eine äußere Umgebung der elektrischen Maschine abgeben, sodass die Luft rückgekühlt wird und anschließend wieder Wärme aufnehmen kann, um die Elemente der elektrischen Maschine weiter zu kühlen (geschlossener Luftkreislauf). Dadurch, dass der Luftkanal und der Fluidkanal durch das Statorkühlbuchsensystem geformt werden, ergibt sich eine geringe Anzahl und Komplexität von Bauteilen und damit geringere Kosten. Das Statorkühlbuchsensystem kann in eine Bohrung des Gehäuses eingesetzt werden, wobei die Bohrung einfach maschinell zu fertigen ist. Weiterhin nimmt das Statorkühlbuchsensystem einen besonders geringen Bauraum in Anspruch. Das Statorkühlbuchsensystem hat optimale Wärmeabgabeeigenschaften da die Luft sehr nahe an dem durch den Fluidkanal fließenden Fluid vorbei strömt und über dieses Fluid die meiste Wärme aus dem System abgeführt wird.
  • In einer Ausführungsform ist das Statorkühlbuchsensystem zweiteilig aufgebaut und umfasst eine innere Statorkühlbuchse sowie eine äußere Statorkühlbuchse. Die innere Statorkühlbuchse umgibt den Statorkern außen in der radialen Richtung der elektrischen Maschine, wobei die äußere Statorkühlbuchse die innere Statorkühlbuchse in der radialen Richtung der elektrischen Maschine außen umgibt, und wobei das Gehäuse die äußere Statorkühlbuchse in der radialen Richtung der elektrischen Maschine außen umgibt. Die innere Statorkühlbuchse bildet dabei den Fluidkanal, und die äußere Statorkühlbuchse bildet den wenigstens einen Luftkanal. Mithilfe der äußeren Statorkühlbuchse, vorzugsweise mit Luftspalten/Luftkanälen und Stegen als „Diagonalbuchse“ (d.h. diagonale Stege) ausgeführt, lassen sich enorm viele Vorteile für die Luftkühlung auf einfache Weise realisieren. So kann beispielsweise die äu-ßere Statorkühlbuchse über ihre Innenfläche die Wasserkühlung (Fluidkanal) der inneren Statorkühlbuchse abdichten. Dabei kann ebenso ein einfachstes Dichtungskonzept zum Einsatz kommen, z.B. mit lediglich zwei O-Ringen an voneinander abgewandten Stirnseiten der äußeren und inneren Statorkühlbuchse.
  • Gemäß einer weiteren Ausführungsform erstreckt sich der Luftkanal in einer axialen Richtung der elektrischen Maschine von einer ersten Stirnseite der äußeren Statorkühlbuchse bis zu einer zweiten Stirnseite der äußeren Statorkühlbuchse, wobei die äußere Statorkühlbuchse einen ersten Steg und einen zweiten Steg formt. Der erste Steg und der zweite Steg stehen dabei von einer äußeren Mantelfläche der äußeren Statorkühlbuchse in der radialen Richtung der elektrischen Maschine nach außen ab, wobei der erste Steg und der zweite Steg in einer Umfangsrichtung der äußeren Statorkühlbuchse zwischen sich den wenigstens einen Luftkanal begrenzen. Darüber hinaus können mehr als die zwei Stege vorgesehen sein, z.B. ein dritter Steg und ein vierter Steg, die dann entsprechend mehrere Kühlkanäle zwischen sich begrenzen.
  • Die Stege sind über die äußere Mantelfläche verteilt, z.B. äquidistant und oder parallel zueinander. Der erste Steg und der zweite Steg können insbesondere in radialer Richtung besonders niedrig von der äußeren Mantelfläche nach außen abstehen, z.B. einige Millimeter, und besonders weit voneinander beabstandet sein, z.B. ein Vielfaches von 10 mm, sodass sehr breite, aber niedrige Luftkanäle entstehen. Die äußere Statorkühlbuchse hat dann optimale Wärmeabgabeeigenschaften, da die Luft in sehr breiten aber niedrigen Luftspalten strömen kann.
  • Der erste Steg und der zweite Steg können geradlinig und parallel zu der axialen Richtung der elektrischen Maschine verlaufen, sodass der wenigstens eine Luftkanal ebenfalls parallel zu der axialen Richtung der elektrischen Maschine verläuft.
  • Besonders bevorzugt können die Stege diagonal („Diagonalbuchse“) entlang der Mantelfläche verlaufen. Da die Luft aufgrund der Drehrichtung der elektrischen Maschine bzw. deren Rotorwelle einen Drall erhält, weist eine Diagonalbuchse besonders gute Strömungseigenschaften für die Luft auf, was durch Strömungssimulationen der Erfinder validiert wurde. Als besonders gute Luftströmungseigenschaften sind in diesem Zusammenhang insbesondere geringe Verwirbelungen, ein geringer Rückstau, gute Anströmung von „heißen“ Komponenten und geringe „Blind-Spots“ hinsichtlich der Anströmung zu nennen. In diesem Zusammenhang verlaufen gemäß einer weiteren Ausführungsform der erste Steg und der zweite Steg geradlinig und angewinkelt zu der axialen Richtung der elektrischen Maschine, sodass der wenigstens eine Luftkanal diagonal entlang der äußeren Mantelfläche der äußeren Statorkühlbuchse verläuft.
  • Ferner können der erste Steg und der zweite Steg eine radial äußere Abstützfläche formen, mit welcher sich die äußere Statorkühlbuchse - und die radial innerhalb der Statorkühlbuchse befindlichen Elemente der elektrischen Maschine - an dem Gehäuse der elektrischen Maschine abstützen können. Gemäß dieser Ausführungsform stützen sich somit die Buchsen und nahezu die ganze elektrische Maschine über die Stege am Motorgehäuse ab, z.B. über einen Presssitz zu dem Gehäuse der elektrischen Maschine. Das Statorkühlbuchsensystem muss nicht zwangsweise in das Motorgehäuse eingepresst sein, ist dies jedoch vorzugsweise. Es könnte auch eine Übergangspassung oder Spielpassung sein und ein anderes Maschinenelement z.B. ein Bolzen, kann dafür sorgen, dass sich die Buchse im Motorgehäuse nicht verdreht.
  • Besonders effektiv und effizient ist die Kühlung der elektrischen Maschine, wenn eine Luftkühlung ermöglicht wird, gemäß derer Luft innerhalb der elektrischen Maschine zirkuliert und dabei einerseits Wärme von zu kühlenden Komponenten aufnimmt, z.B. von den Wickelköpfen oder von einer Rotorwelle, und andererseits wieder abgeben kann, insbesondere an das Fluid in dem Fluidkanal und an die äußere Umgebung der elektrischen Maschine. Das Statorkühlbuchsensystem ermöglicht dabei über die Luftspalte bzw. über beispielsweise den wenigstens einen Luftkanal, dass ein Luftkreislauf mit Wärmeaufnahmebereich und Wärmeabgabebereich entstehen kann. Durch einen Ventilator kann ein zirkulierender Volumenstrom Luft innerhalb des Luftkreislaufs generiert werden. In diesem Sinne ist gemäß einer weiteren Ausführungsform vorgesehen, dass die elektrische Maschine einen geschlossenen Luftkreislauf und einen Ventilator umfasst, der innerhalb des geschlossenen Luftkreislaufs angeordnet ist. Dabei bildet der wenigstens eine Luftkanal einen Abschnitt des geschlossenen Luftkreislaufs. Der Ventilator fördert dabei Luft innerhalb des geschlossenen Luftkreislaufs, d. h. er bringt Luft, die sich innerhalb des geschlossenen Luftkreislauf befindet, zum Zirkulieren.
  • Besonders vorteilhaft für die Kühlung der elektrischen Maschine ist es, wenn die innerhalb des geschlossenen Luftkreislaufs zirkulierende Luft Wärme von einer Rotorwelle der elektrischen Maschine aufnehmen kann. So kann die Luft, die durch den Luftkreislauf gefördert wird, den Rotor in Freigängen einer z.B. kreuz- oder sternförmigen Rotorwelle durchströmen. Die Luft strömt im Luftkreislauf und kann dabei Wärme im Rotor aufnehmen und nach außen über das Gehäuse oder an die wassergekühlte innere Statorkühlbuchse abgeben. In diesem Sinne kann die elektrische Maschine einen Rotor mit einer Rotorwelle aufweisen und der Luftkreislauf einen Rotorluftkanal. Der Rotorluftkanal kann dabei beispielsweise in der axialen Richtung der elektrischen Maschine durch die Rotorwelle verlaufen. Dazu kann die Rotorwelle derart geformt sein, dass sie zumindest einen Teil des Rotorluftkanals formt. Beispielsweise kann die Rotorwelle dazu einen sternförmigen oder kreuzförmigen Querschnitt aufweisen, sodass Freigänge gebildet werden, über welche die Luft die Rotorwelle durchströmen kann. Alternativ kann der Rotorluftkanal durch Bohrungen im Rotor selbst gebildet werden. In dem Rotorluftkanal strömende Luft nimmt Wärme von der Rotorwelle auf und kühlt die Rotorwelle dadurch.
  • Um eine Luftkühlung von Wickelköpfen des Stators zu ermöglichen, ist gemäß einer weiteren Ausführungsform vorgesehen, dass der Luftkreislauf einen ersten Wickelkopf-Luftkanal und einen zweiten Wickelkopf-Luftkanal umfasst. Der erste Wickelkopf-Luftkanal verläuft entlang des ersten Wickelkopfs, sodass Luft, die in dem ersten Wickelkopf-Luftkanal strömt, Wärme von dem ersten Wickelkopf aufnimmt. Auf ähnliche Weise verläuft der zweite Wickelkopf-Luftkanal entlang des zweiten Wickelkopfs, sodass Luft, die in dem zweiten Wickelkopf-Luftkanal strömt, Wärme von dem zweiten Wickelkopf aufnimmt. Der Rotorluftkanal kann an seinen beiden axialen Enden einerseits mit dem ersten Wickelkopf-Luftkanal und andererseits mit dem zweiten Wickelkopf-Luftkanal verbunden sein, wobei Luft aus dem zweiten Wickelkopf-Luftkanal in den Rotorluftkanal einströmt, und wobei Luft aus dem Rotorluftkanal ausströmt und in den ersten Wickelkopf-Luftkanal strömt.
  • Das Gehäuse der elektrischen Maschine kann ein stirnseitiges Gehäuseteil aufweisen, welches die elektrische Maschine auf einer ersten axialen Stirnseite der elektrischen Maschine zumindest teilweise verschließt. Der erste Wickelkopf-Luftkanal wird gemäß dieser Ausführungsform zumindest zum Teil durch das stirnseitige Gehäuseteil geformt. Auf ihrer anderen axialen Stirnseite kann die elektrische Maschine weiterhin einen Gehäusedeckel aufweisen. Dieser Gehäusedeckel kann sich insbesondere dadurch auszeichnen, dass er die elektrische Maschine auf der zweiten axialen Stirnseite zumindest teilweise verschließt, und dass er gleichzeitig zumindest einen Teil des zweiten Luftkanals formt.
  • Gemäß einem zweiten Aspekt der Erfindung wird ein Kraftfahrzeug bereitgestellt, welches eine elektrische Maschine gemäß dem ersten Aspekt der Erfindung umfasst. Das Kraftfahrzeug kann einen elektrischen Achsantrieb aufweisen, der von der elektrischen Maschine angetrieben wird. Die elektrische Maschine ist dabei derart in dem Kraftfahrzeug angeordnet, dass das Kraftfahrzeug von der elektrischen Maschine angetrieben werden kann, wenn sich die elektrische Maschine im Motorbetrieb befindet. Weiterhin kann die elektrische Maschine derart innerhalb des Kraftfahrzeugs angeordnet sein, dass die elektrische Maschine durch das Kraftfahrzeug angetrieben wird, wenn sich die elektrische Maschine im Generatorbetrieb befindet. Bei dem Fahrzeug handelt es sich beispielsweise um ein Nutzfahrzeug, ein Automobil (z.B. ein Personenkraftfahrwagen mit einem Gewicht von weniger als 3,5 t), Motorrad, Motorroller, Moped, Fahrrad, E-Bike, Bus oder Lastkraftwagen (Bus und Lastkraftwagen z.B. mit einem Gewicht von über 3,5 t), oder aber auch um ein Schienenfahrzeug, ein Schiff, ein Luftfahrzeug wie Helikopter oder Flugzeug. Mit anderen Worten ist die Erfindung in allen Bereichen des Transportwesens wie Automotive, Aviation, Nautik, Astronautik etc. einsetzbar. Das Kraftfahrzeug kann beispielsweise zu einer Fahrzeugflotte gehören. Das Kraftfahrzeug kann durch einen Fahrer gesteuert werden, möglicherweise unterstützt durch ein Fahrerassistenzsystem. Das Kraftfahrzeug kann jedoch auch beispielsweise ferngesteuert und/oder (teil-)autonom gesteuert werden.
  • Im Folgenden werden Ausführungsbeispiele der Erfindung anhand der schematischen Zeichnung näher erläutert, wobei gleiche oder ähnliche Elemente mit dem gleichen Bezugszeichen versehen sind. Hierbei zeigt
    • 1 eine Längsschnittdarstellung durch einen Teil einer erfindungsgemäßen elektrischen Maschine,
    • 2 eine perspektivische Darstellung insbesondere einer inneren Statorkühlbuchse der elektrischen Maschine nach 1,
    • 3 eine perspektivische Darstellung einer äußeren Statorkühlbuchse der elektrischen Maschine nach 1,
    • 4 eine perspektivische Darstellung der inneren und äußeren Statorkühlbuchse der elektrischen Maschine nach 1 in zusammengesetztem Zustand,
    • 5 eine vergrößerte Darstellung insbesondere der inneren und äußeren Statorkühlbuchse der elektrischen Maschine nach 1 gemäß einer alternativen Schnittführung,
    • 6 eine Seitenansicht eines Kraftfahrzeugs, das durch die elektrische Maschine nach 1 angetrieben werden kann, und
    • 7 eine Draufsicht auf einen Antriebsstrang eines weiteren Kraftfahrzeugs, das durch die elektrische Maschine nach 1 angetrieben werden kann.
  • 1 zeigt eine elektrische Maschine 1 mit einem Stator 2 und mit einem Rotor 3. Die elektrische Maschine 1 umfasst weiterhin ein Gehäuse 4 und einen Gehäusedeckel 5. Die elektrische Maschine 1 kann als Motor und als Generator betrieben werden. Die elektrische Maschine 1 kann ein Kraftfahrzeug 6/38 antreiben, das durch 6 bzw. 7 gezeigt ist.
  • Wenn die elektrische Maschine 1 als Motor betrieben wird, kann eine zeitvariable Spannung an den Stator 2 und an die darin befindlichen Wicklungen angelegt werden, um ein zeitvariables Magnetfeld zu erzeugen, das im Rotor 3 wirkt, um ein Drehmoment zu induzieren und damit eine Drehbewegung zu erzeugen. Wenn die elektrische Maschine 1 als Generator betrieben wird, kann elektrische Energie durch Induktion eines variierenden Magnetfeldes (z.B. durch Rotation des Rotors 3) in einem geschleiften oder gewickelten Leiter des Stators 2 erzeugt werden, um einen Strom in den Leiter zu induzieren.
  • Der Stator 2 umfasst einen Statorkern 7 und ein zweiteilig aufgebautes Statorkühlbuchsensystem 8 mit einer inneren Statorkühlbuchse 15 und mit einer äußeren Statorkühlbuchse 20. Die innere Statorkühlbuchse 15 umgibt den Statorkern 7 außen in einer radialen Richtung r der elektrischen Maschine 1. Die äußere Statorkühlbuchse 20 umgibt die Statorkühlbuchse 15 außen in der radialen Richtung r der elektrischen Maschine 1. Das Gehäuse 4 umgibt die äußere Statorkühlbuchse 20 au-ßen in der radialen Richtung r der elektrischen Maschine 1.
  • Der Statorkern 7 weist einen zylindrischen Innenhohlraum auf, in welchem der Rotor 3 angeordnet ist. Der Rotor 3 weist eine mehrteilige Rotorwelle 36 auf, die drehbar um eine Längsachse L der elektrischen Maschine 1 in einem ersten Wälzlager 11 und in einem zweiten Wälzlager 12 gelagert ist. Die Längsachse L verläuft in der axialen Richtung der elektrischen Maschine 1. Der Statorkern 7 und das Statorkühlbuchsensystem 8 sind fest (d.h. sie rotieren nicht) über einen Presssitz in einer axialen Bohrung 16 des Gehäuses 4 aufgenommen.
  • Die innere Statorkühlbuchse 15 bildet einen Fluidkanal 17, der zwischen dem Statorkern 7 und der äußeren Statorkühlbuchse 20 angeordnet ist. Der Fluidkanal 17 verläuft in dem gezeigten Ausführungsbeispiel spiralförmig um eine äußere Mantelfläche 31 der inneren Statorkühlbuchse 15. Die innere Statorkühlbuchse 15 formt den Fluidkanal 17 durch Ausnehmungen an ihrer äußeren Oberfläche 31. Eine innere Mantelfläche 22 der äußeren Statorkühlbuchse 20 verschließt den Fluidkanal 17 in der radialen Richtung r nach außen hin und dichtet den Fluidkanal 17 in dieser Richtung hin ab. In der axialen Richtung x wird der Fluidkanal 17 durch zwei O-Ringe 23 abgedichtet, die an zwei voneinander abgewandten axialen Stirnseiten des Statorkühlbuchsensystems 8 zwischen der inneren Statorkühlbuchse 15 und der äußeren Statorkühlbuchse 20 angeordnet sind.
  • Der Fluidkanal 17 verläuft derart zwischen der inneren Statorkühlbuchse 15 und der äußeren Statorkühlbuchse 20, dass durch den Fluidkanal 17 gefördertes Kühlfluid (insbesondere Kühlwasser, z.B. eine Mischung aus Wasser und Glysantin) den Statorkern 7 kühlen kann. Kühlfluid, das durch den Fluidkanal 17 fließt, kann Wärme von dem Statorkern 7 aufnehmen. Anschließend bzw. stromabwärts kann das Kühlfluid durch einen Wärmetauscher (nicht gezeigt) eines Fluidkühlkreislaufs rückgekühlt werden. Das Kühlfluid kann mittels einer Pumpe (nicht gezeigt) des Fluidkühlkreislaufs gefördert werden.
  • Die äußere Statorkühlbuchse 20 bildet mehrere Luftkanäle 18, von denen ein Luftkanal 18 durch 1 gezeigt ist und von denen exemplarisch in 3 ein erster Luftkanal mit dem Bezugszeichen 18.1 sowie ein zweiter Luftkanal mit dem Bezugszeichen 18.2 versehen ist. Die Luftkanäle 18, 18.1, 18.2 erstrecken sich in einer axialen Richtung x der elektrischen Maschine 1 von einer ersten Stirnseite 24 der äußeren Statorkühlbuchse 20 bis zu einer zweiten Stirnseite 28 der äußeren Statorkühlbuchse 20, wobei die äußere Statorkühlbuchse 20 mehrere Stege formt, von welchen ein erster Steg 29.1, ein zweiter Steg 29.2 und ein dritter Steg 29.3 in 3 dargestellt sind.
  • Der erste Steg 29.1, der zweite Steg 29.2 und der dritte Steg 29.3 stehen von der äußeren Mantelfläche 30 in der radialen Richtung r der elektrischen Maschine 1 nach außen ab. Der erste Steg 29.1 und der zweite Steg 29.2 begrenzen in einer Umfangsrichtung U der äußeren Statorkühlbuchse 20 zwischen sich den ersten Luftkanal 18.1. Der zweite Steg 29.2 und der dritte Steg 29.3 begrenzen in der Umfangsrichtung U der äußeren Statorkühlbuchse 20 zwischen sich den zweiten Luftkanal 18.2. Die drei Stege 29.1 bis 29.3 sind breite Streifen, die von der äußere Mantelfläche 30 im Vergleich zu ihrer Breite lediglich mit einer geringen Höhe abstehen. Auf diese Weise entstehen sehr breite, aber niedrige Luftkanäle 18, 18.1, 18.2. In der insbesondere durch 3 gezeigten Ausführungsform sind die Stege 29.1 bis 29 3 allesamt gleich geformt und mit gleichem Abstand in der Umfangsrichtung U zueinander (äquidistant) sowie parallel zueinander angeordnet. In der durch 3 gezeigten Ausführungsform verlaufen die Stege 29.1 bis 29.3 geradlinig und angewinkelt zu der axialen Richtung x der elektrischen Maschine 1, sodass die Luftkanäle 18, 18.1, 18.2 diagonal entlang der äußeren Mantelfläche 30 der äußeren Statorkühlbuchse verlaufen. Die Stege 29.1 bis 29.3 bilden ferner eine radial äußere Abstützfläche, mit welcher sich die äußere Statorkühlbuchse 20 - und die radial innerhalb der äußeren Statorkühlbuchse 20 befindlichen Elemente der elektrischen Maschine 1 - an dem Gehäuse 4 der elektrischen Maschine abstützen können. Die Stege 29.1 bis 29.3 sind in die Bohrung 16 des Gehäuses 4 eingepresst. Die äußeren Statorkühlbuchse 20 formt noch weitere Stege und Luftkanäle in der vorstehend beschriebenen Weise, die allerdings durch 3 nicht dargestellt sind.
  • Der Stator 2 umfasst weiterhin einen ersten Wickelkopf 9 auf einer ersten Stirnseite S1 der elektrischen Maschine 1 und einen zweiten Wickelkopf 10 auf einer zweiten Stirnseite S2 der elektrischen Maschine 1. Der erste Wickelkopf 9 ist innerhalb eines ersten Wickelkopfraumes 13 angeordnet, der links in 1 dargestellt ist (erste Stirnseite S1). Der zweite Wickelkopf 10 ist innerhalb eines zweiten Wickelkopfraumes 14 angeordnet, der rechts in 1 dargestellt ist (zweite Stirnseite S2).
  • Der erste Wickelkopfraum 13 ist ein Hohlraum. In einer axialen Richtung x der elektrischen Maschine 1 wird der erste Wickelkopfraum 13 durch ein Gehäuseteil 19 des Gehäuses 4 begrenzt, wobei das Gehäuseteil 19 die elektrische Maschine 1 auf der ersten Stirnseite S1 verschließt. Der erste Wickelkopfraum 13 wird weiterhin in einer radialen Richtung r der elektrischen Maschine 1 außen durch das Gehäuse 4 begrenzt. Innen in der radialen Richtung r geht der Wickelkopfraum 13 in einen ersten Rotorraum 25 über. Der erste Wickelkopfraum 13 und der erste Rotorraum 25 sind trocken, d.h. es befindet sich kein Kühlfluid innerhalb des ersten Wickelkopfraums 13 und innerhalb des ersten Rotorraums 25.
  • Der zweite Wickelkopfraum 14 ist ebenfalls ein Hohlraum. In der axialen Richtung x der elektrischen Maschine 1 wird der zweite Wickelkopfraum 14 durch den Gehäusedeckel 5 begrenzt, welcher die elektrische Maschine 1 auf der zweiten Stirnseite S2 nach außen verschließt. Der zweite Wickelkopfraum 14 wird weiterhin in einer radialen Richtung r der elektrischen Maschine 1 außen durch das Gehäuse 4 begrenzt. Innen in der radialen Richtung r geht der zweite Wickelkopfraum 14 in einen zweiten Rotorraum 27 über. Der zweite Wickelkopfraum 14 und der zweite Rotorraum 27 sind trocken, d.h. es befindet sich kein Kühlfluid innerhalb des zweiten Wickelkopfraums 14 und innerhalb des zweiten Rotorraums 27.
  • Die Rotorwelle 36 und die beiden Wickelköpfe 9, 10 werden durch einen Luftkreislauf gekühlt, der geschlossen innerhalb der elektrischen Maschine 1 verläuft. Der Verlauf des Luftkreislaufs ist in 1 und 4 durch eine Reihe von Strömungspfeilen 37 verdeutlicht. Ein Ventilator 53 ist innerhalb des Luftkreislaufs 37 angeordnet und fördert darin befindliche Luft, sodass sie innerhalb des Luftkreislaufs 37 zirkuliert. Der Ventilator 53, insbesondere dessen Lüfterrad, ist in dem gezeigten Ausführungsbeispiel benachbart zu dem ersten Rotorlager 11 drehfest auf der Rotorwelle 36 gelagert.
  • Der Luftkreislauf 37 weist einen ersten Wickelkopf-Luftkanal 54 und einen zweiten Wickelkopf-Luftkanal 55 auf. Der erste Wickelkopf-Luftkanal 54 und der zweite Wickelkopf-Luftkanal 55 verlaufen in dem gezeigten Ausführungsbeispiel in der radialen Richtung r der elektrischen Maschine 1 von innen nach außen und entlang des ersten Wickelkopfs 9 bzw. entlang des zweiten Wickelkopfs 10. Das stirnseitige Gehäuseteil 19 begrenzt dabei den ersten Wickelkopf-Luftkanal 54 auf der ersten Stirnseite S1. Luft, die durch den ersten Wickelkopf-Luftkanal 54 strömt, nimmt Wärme von dem ersten Wickelkopf 9 auf. Auf diese Weise wird der erste Wickelkopf 9 durch Luft gekühlt. Der Gehäusedeckel 5 begrenzt auf der zweiten Stirnseite S2 den zweiten Wickelkopf-Luftkanal 55. Luft, die durch den zweiten Wickelkopf-Luftkanal 55 strömt, nimmt Wärme von dem zweiten Wickelkopf 10 auf. Auf diese Weise wird der zweite Wickelkopf 10 durch Luft gekühlt.
  • Zur Kühlung der Rotorwelle 36 weist der Luftkreislauf 37 einen Rotorluftkanal 56 auf. Der Rotorluftkanal 56 verläuft in der axialen Richtung x der elektrischen Maschine 1 durch die Rotorwelle 36. Die Rotorwelle 36 bildet den Rotorluftkanal 56 beispielsweise, in dem die Rotorwelle 36 einen sternförmigen Querschnitt aufweist. Auf der zweiten Stirnseite S2 mündet der zweite Luftkanal 55 in den zweiten Rotorraum 27, der wiederum in den Rotorluftkanal 56 mündet. Auf diese Weise ist der Rotorluftkanal 56 über den zweiten Rotorraum 27 mit dem zweiten Luftkanal 55 verbunden. Somit kann Luft aus dem zweiten Luftkanal 55 über den zweiten Rotorraum 27 in den Rotorluftkanal 56 strömen. Auf der ersten Stirnseite S1 mündet der Rotorluftkanal 56 in den ersten Rotorraum 25, der wiederum in den ersten Luftkanal 54 mündet. Auf diese Weise ist der Rotorluftkanal 56 über den ersten Rotorraum 25 mit dem ersten Luftkanal 54 verbunden. Somit kann Luft aus dem Rotorluftkanal 56 über den ersten Rotorraum 25 in den ersten Luftkanal 54 strömen. Die durch den Rotorluftkanal 56 strömende Luft nimmt Wärme von der Rotorwelle 36 auf und kühlt dadurch die Rotorwelle 36.
  • Um die Luft, die zuvor Wärme von dem zweiten Wickelkopf 10, von der Rotorwelle 36 und von dem ersten Wickelkopf 9 aufgenommen hat, wieder abzukühlen, damit sie im Folgenden erneut Wärme von den vorstehend genannten Komponenten aufnehmen kann, um diese zu kühlen, durchströmt die Luft die Luftkanäle 18, 18.1, 18.2 des Statorkühlbuchsensystems 8. Auf der ersten Stirnseite S1 mündet der erste Wickelkopf-Luftkanal 54 in den ersten Wickelkopfraum 13 (bzw. der erste Wickelkopf-Luftkanal 54 geht in den ersten Wickelkopfraum 13 über), der wiederum in die Luftkanäle 18, 18.1, 18.2 mündet. Auf diese Weise sind die die Luftkanäle 18, 18.1, 18.2 über den ersten Wickelkopfraum 13 mit dem ersten Luftkanal 54 verbunden. Somit kann Luft aus dem ersten Wickelkopf-Luftkanal 54 über den ersten Wickelkopfraum 13 in die Luftkanäle 18, 18.1, 18.2 strömen.
  • Luft, die aus dem ersten Wickelkopf-Luftkanal 14 über den ersten Wickelkopfraum 13 in die Luftkanäle 18, 18.1, 18.2 strömt, kann zum einen Wärme an das Gehäuse 4 abgeben, welches die aufgenommene Wärme zumindest zum Teil wieder an die äußere Umgebung 32 der elektrischen Maschine 1 abgeben kann. Zum anderen kann die Luft, die durch die Luftkanäle 18, 18.1, 18.2 strömt, Wärme an das Kühlfluid abgeben, welches durch den Fluidkanal 17 strömt.
  • Auf diese Weise wird die Luft, die durch die Luftkanäle 18, 18.1, 18.2 strömt, in beiden radialen Richtung r (nämlich radial nach innen und radial nach außen) abgekühlt bzw. rückgekühlt. Auf der zweiten Stirnseite münden die Luftkanäle 18, 18.1, 18.2 in den zweiten Wickelkopfraum 14, der wiederum in den zweiten Wickelkopf-Luftkanal 55 mündet bzw. in diesen übergeht. Auf diese Weise sind die Luftkanäle 18, 18.1, 18.2 über den zweiten Wickelkopfraum 14 mit dem zweiten Wickelkopf-Luftkanal 55 verbunden. Somit kann Luft aus den Luftkanälen 18, 18.1, 18.2 über den zweiten Wickelkopfraum 14 in den zweiten Wickelkopf-Luftkanal 55 strömen. Da sich die Luft abkühlt, während sie die Luftkanäle 18, 18.1, 18.2 durchströmt, steht stromabwärts der Luftkanäle 18, 18.1, 18.2 erneut kühle Luft zur Verfügung, um insbesondere den zweiten Wickelkopf 10, die Rotorwelle 36 und den ersten Wickelkopf 9 zu kühlen.
  • Eine Drehrichtung des Rotors 3 ist in 1 und 4 durch einen Drehrichtungspfeil 21 angezeigt. Aufgrund der Drehrichtung 21, die beispielsweise einer Vorwärtsfahrt des Kraftfahrzeugs 6, 38 entsprechen kann, erhält die Luft innerhalb des Luftkreislaufs 37 einen Drall. Dies ist insbesondere innerhalb der diagonal verlaufenden Luftkanäle 18, 18.1, 18.2 von Vorteil, da hierdurch besonders gute Strömungseigenschaften der Luft erzielt werden können. Insbesondere entstehen in den diagonal verlaufenden Luftkanälen 18, 18.1, 18.2 lediglich geringe Verwirbelungen und ein geringer Rückstau. Weiterhin können die zu kühlenden Komponenten 9, 10, 36 besonders gut angeströmt werden, wobei nur geringe „Blind-spots“ hinsichtlich der Anströmung vorkommen.
  • 6 zeigt rein beispielhaft einen Antriebsstrang eines Kraftfahrzeugs 6 mit der elektrischen Maschine 1 nach 1. In dem gezeigten Ausführungsbeispiel handelt es sich um ein Hybridfahrzeug 6. Ein Verbrennungskraftmotor 33 kann dabei mit einem Getriebe 34 gekoppelt werden, sodass ein Drehmoment von einer Ausgangswelle des Verbrennungskraftmotors 33 auf eine Eingangswelle des Getriebes 34 übertragen werden kann. Auf ähnliche Weise kann die elektrische Maschine 1 mit dem Getriebe 34 gekoppelt werden, sodass ein Drehmoment von einer Ausgangswelle der elektrischen Maschine 1 auf eine Eingangswelle des Getriebes 34 übertragen werden kann.
  • Bei dem Getriebe 34 kann es sich somit um ein Hybridgetriebe handeln, wobei der Verbrennungskraftmotor 33 und/oder die elektrische Maschine 1 mit dem Getriebe 34 gekoppelt werden können. Das Getriebe 34 kann ein Automatikgetriebe sein. Ein Antrieb des Kraftfahrzeugs 6 kann wahlweise über den Verbrennungskraftmotor 33, den elektrischen Motor 1 (d.h. die elektrische Maschine 1 im Motorbetrieb) oder über eine Kombination beider Antriebsaggregate 1, 33 erfolgen. Der rein beispielhafte Antriebsstrang mit dem Getriebe 34 ist in dem gezeigten Ausführungsbeispiel ein Parallelhybrid mit P2-Architektur, wobei die elektrische Maschine 1 zwischen dem Verbrennungskraftmotor 33 und dem Getriebe 34 angeordnet ist. Der Verbrennungskraftmotor 33 kann dabei über eine Trennkupplung 35 von der elektrischen Maschine 1 und von dem Getriebe 34 getrennt werden.
  • 7 zeigt ein weiteres Kraftfahrzeug 38, z.B. ein Nutzfahrzeug oder ein Personenkraftfahrwagen (Pkw). Das Kraftfahrzeug 38 weist einen im Folgenden näher erläuterten Antriebstrang 39 auf, der optional einen zuschaltbaren und abschaltbaren Allradantrieb ermöglicht. Der Antriebsstrang 39 umfasst eine Antriebseinheit 40. Die Antriebseinheit 40 umfasst in dem gezeigten Ausführungsbeispiel einen Motor 41, z.B. einen Verbrennungskraftmotor (z.B. den Verbrennungskraftmotor 33 nach 6) oder eine elektrische Maschine 1, wie sie durch 1 gezeigt ist, sowie ein Getriebe 42 (z.B. das Getriebe 34 nach 6). Die Antriebseinheit 40 treibt in dem gezeigten Ausführungsbeispiel über ein vorderes Differenzialgetriebe 43 zwei Vorderräder 44 und 45 permanent an, die an einer Vorderachse 46 des Kraftfahrzeugs 38 angebracht sind.
  • Der Antriebsstrang 39 kann alternativ oder zusätzlich zu dem beschriebenen Vorderachsantrieb einen zuschaltbaren und abschaltbaren elektrischen Achsantrieb 47 aufweisen, der in dem gezeigten Ausführungsbeispiel eine elektrische Maschine 1 nach 1 und ein hinteres Differentialgetriebe 48 umfasst. Der elektrische Achsantrieb 47 kann (wie durch 7 gezeigt) als zentraler Achsantrieb ausgeführt sein und beispielsweise sowohl ein erstes Hinterrad 49 über eine erste Seitenwelle 50 als auch ein zweites Hinterrad 51 über eine zweite Seitenwelle 26 antreiben. Alternativ kann auch die erste Seitenwelle 50 über einen ersten elektrischen Achsantrieb 47 und die zweite Seitenwelle 26 über einen zweiten elektrischen Achsantrieb 47 angetrieben werden, wobei die elektrischen Achsantriebe 47 dann jeweils kein Differentialgetriebe 48 aufweisen müssen.
  • Bezugszeichenliste
  • L
    Längsachse
    r
    radiale Richtung
    S1
    erste Stirnseite elektrische Maschine
    S2
    zweite Stirnseite elektrische Maschine
    U
    Umfangsrichtung
    x
    axiale Richtung
    1
    elektrische Maschine
    2
    Stator
    3
    Rotor
    4
    Gehäuse
    5
    Gehäusedeckel
    6
    Kraftfahrzeug
    7
    Statorkern
    8
    Statorkühlbuchsensystem
    9
    erster Wickelkopf
    10
    zweiter Wickelkopf
    11
    erstes Rotorlager
    12
    zweites Rotorlager
    13
    erster Wickelkopfraum
    14
    zweiter Wickelkopfraum
    15
    innerer Statorkühlbuchse
    16
    axiale Gehäusebohrung
    17
    Fluidkanal
    18
    Luftkanal
    18.1
    erste Luftkanal
    18.2
    zweiter Luftkanal
    19
    Gehäuseteil auf der ersten Stirnseite
    20
    äußere Statorkühlbuchse
    21
    Drehrichtung Rotor
    22
    innere Mantelfläche der äußeren Statorkühlbuchse
    23
    O-Ring
    24
    erste Stirnseite der äußeren Statorkühlbuchse
    25
    erster Rotorraum
    26
    Seitenwelle
    27
    zweiter Rotorraum
    28
    zweite Stirnseite der äußeren Statorkühlbuchse
    29.1
    erster Steg
    29.2
    zweiter Steg
    29.3
    dritter Steg
    30
    äußere Mantelfläche der äußeren Statorkühlbuchse
    31
    äußere Mantelfläche der inneren Statorkühlbuchse
    32
    äußere Umgebung der elektrischen Maschine
    33
    Verbrennungskraftmotor
    34
    Getriebe
    35
    Trennkupplung
    36
    Rotorwelle
    37
    Luftkreislauf
    38
    Kraftfahrzeug
    39
    Antriebsstrang
    40
    Antriebseinheit
    41
    Motor
    42
    Getriebe
    43
    vorderes Differentialgetriebe
    44
    Vorderrad
    45
    Vorderrad
    46
    Vorderachse
    47
    elektrischer Achsantrieb
    48
    hinteres Differentialgetriebe
    49
    erstes Hinterrad
    50
    erste Seitenwelle
    51
    zweites Hinterrad
    52
    zweite Seitenwelle
    53
    Ventilator
    54
    erster Luftkanal
    55
    zweiter Luftkanal
    56
    Rotorluftkanal
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • EP 2109207 A2 [0002]

Claims (10)

  1. Elektrische Maschine (1) zum Antrieb eines Kraftfahrzeugs (6, 38), die elektrische Maschine (1) umfassend - einen Stator (2) mit einem Statorkern (7), - ein Statorkühlbuchsensystem (8) und - ein Gehäuse (4), wobei - das Statorkühlbuchsensystem (8) den Statorkern (7) in einer radialen Richtung (r) der elektrischen Maschine (1) außen umgibt, - das Gehäuse (4) das Statorkühlbuchsensystem (8) in der radialen Richtung (r) der elektrischen Maschine (1) außen umgibt, - das Statorkühlbuchsensystem (8) einen Fluidkanal (17) bildet, der innerhalb des Statorkühlbuchsensystems (8) angeordnet ist, - ein Fluid durch den Fluidkanal (17) fließt und dabei Wärme von dem Statorkern (7) aufnimmt, - das Statorkühlbuchsensystem (8) wenigstens einen Luftkanal (18, 18.1, 18.2) bildet, der getrennt von dem Fluidkanal (17) zwischen dem Statorkühlbuchsensystem (8) und dem Gehäuse (4) angeordnet ist, - Luft durch den wenigstens einen Luftkanal (18, 18.1, 18.2) strömt, wobei die Luft zuvor Wärme von zu kühlenden Komponenten (9, 10, 36) der elektrischen Maschine (1) aufgenommen hat, und - das Fluid, das durch den Fluidkanal (17) fließt, Wärme von der Luft aufnimmt, die durch den wenigstens einen Luftkanal (18, 18.1, 18.2) strömt.
  2. Elektrische Maschine (1) nach Anspruch 1, wobei - das Statorkühlbuchsensystem (8) zweiteilig aufgebaut ist und eine innere Statorkühlbuchse (15) sowie eine äußere Statorkühlbuchse (20) umfasst, - die innere Statorkühlbuchse (15) den Statorkern (7) in der radialen Richtung (r) der elektrischen Maschine (1) außen umgibt, - die äußere Statorkühlbuchse (20) die innere Statorkühlbuchse (15) in der radialen Richtung (r) der elektrischen Maschine (1) außen umgibt, - das Gehäuse (4) die äußere Statorkühlbuchse (20) in der radialen Richtung (r) der elektrischen Maschine (1) außen umgibt, - die innere Statorkühlbuchse (15) den Fluidkanal (17) bildet, und - die äußere Statorkühlbuchse (20) den wenigstens einen Luftkanal (18, 18.1, 18.2) bildet.
  3. Elektrische Maschine (1) nach Anspruch 2, wobei - sich der Luftkanal (18.1) in einer axialen Richtung (x) der elektrischen Maschine (1) von einer ersten Stirnseite (24) der äußeren Statorkühlbuchse (20) bis zu einer zweiten Stirnseite (28) der äußeren Statorkühlbuchse (20) erstreckt, - die äußere Statorkühlbuchse (20) einen ersten Steg (29.1) und einen zweiten Steg (29.2) formt, - der erste Steg (29.1) und der zweite Steg (29.2) von einer äußeren Mantelfläche (30) der äußeren Statorkühlbuchse (20) in der radialen Richtung (r) der elektrischen Maschine (1) nach außen abstehen, - der erste Steg (29.1) und der zweite Steg (29.2) in einer Umfangsrichtung (U) der äußeren Statorkühlbuchse (20) zwischen sich den wenigstens einen Luftkanal (18.1) begrenzen.
  4. Elektrische Maschine (1) nach Anspruch 3, wobei der erste Steg und der zweite Steg geradlinig und parallel zu der axialen Richtung (x) der elektrischen Maschine (1) verlaufen, sodass der wenigstens eine Luftkanal ebenfalls parallel zu der axialen Richtung (x) der elektrischen Maschine (1) verläuft.
  5. Elektrische Maschine (1) nach Anspruch 3, wobei der erste Steg (29.1) und der zweite Steg (29.2) geradlinig und angewinkelt zu der axialen Richtung (x) der elektrischen Maschine (1) verlaufen, sodass der wenigstens eine Luftkanal (18, 18.1, 18.2) diagonal entlang der äußeren Mantelfläche (30) der äußeren Statorkühlbuchse (20) verläuft.
  6. Elektrische Maschine (1) nach einem der Ansprüche 3 bis 5, wobei der erste Steg (29.1) und der zweite Steg (29.2) eine radial äußere Abstützfläche formen, mit welcher sich die äußere Statorkühlbuchse (20) an dem Gehäuse (4) der elektrischen Maschine (1) abstützt.
  7. Elektrische Maschine (1) nach einem der vorstehenden Ansprüche, die elektrische Maschine (1) umfassend - einen geschlossenen Luftkreislauf (37) und - einen Ventilator (53), der innerhalb des geschlossenen Luftkreislaufs (37) angeordnet ist, wobei - der wenigstens eine Luftkanal (18, 18.1, 18.2) einen Abschnitt des geschlossenen Luftkreislaufs (37) bildet, und - der Ventilator (53) Luft innerhalb des geschlossenen Luftkreislaufs (37) zum Zirkulieren bringt.
  8. Elektrische Maschine (1) nach Anspruch 7, die elektrische Maschine (1) umfassend einen Rotor (3) mit einer Rotorwelle (36), wobei - der Luftkreislauf (37) einen Rotorluftkanal (56) umfasst, - der Rotorluftkanal (56) in der axialen Richtung (x) der elektrischen Maschine (1) durch die Rotorwelle (36) verläuft, und - in dem Rotorluftkanal (56) strömende Luft Wärme von der Rotorwelle (36) aufnimmt.
  9. Elektrische Maschine (1) nach einem der vorstehenden Ansprüche, der Luftkreislauf (37) umfassend - einen ersten Wickelkopf-Luftkanal (54) und - einen zweiten Wickelkopf-Luftkanal (55), wobei - der erste Wickelkopf-Luftkanal (54) entlang des ersten Wickelkopfs (9) verläuft, sodass in dem ersten Wickelkopf-Luftkanal (54) strömende Luft Wärme von dem ersten Wickelkopf (9) aufnimmt, - der zweite Wickelkopf-Luftkanal (55) entlang des zweiten Wickelkopfs (10) verläuft, sodass in dem zweiten Wickelkopf-Luftkanal (55) strömende Luft Wärme von dem zweiten Wickelkopf (10) aufnimmt.
  10. Kraftfahrzeug (6, 38) umfassend - eine elektrische Maschine (1) nach einem der vorstehenden Ansprüche und - einen elektrischen Achsantrieb (47), der von der elektrischen Maschine (1) angetrieben wird.
DE102020216225.5A 2020-12-18 2020-12-18 Elektrische Maschine zum Antrieb eines Kraftfahrzeugs Pending DE102020216225A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102020216225.5A DE102020216225A1 (de) 2020-12-18 2020-12-18 Elektrische Maschine zum Antrieb eines Kraftfahrzeugs
CN202111541790.0A CN114649884A (zh) 2020-12-18 2021-12-16 用于驱动机动车辆的电动机器
US17/554,634 US20220200372A1 (en) 2020-12-18 2021-12-17 Electric Machine for Driving a Motor Vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020216225.5A DE102020216225A1 (de) 2020-12-18 2020-12-18 Elektrische Maschine zum Antrieb eines Kraftfahrzeugs

Publications (1)

Publication Number Publication Date
DE102020216225A1 true DE102020216225A1 (de) 2022-06-23

Family

ID=81847555

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102020216225.5A Pending DE102020216225A1 (de) 2020-12-18 2020-12-18 Elektrische Maschine zum Antrieb eines Kraftfahrzeugs

Country Status (3)

Country Link
US (1) US20220200372A1 (de)
CN (1) CN114649884A (de)
DE (1) DE102020216225A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020216230A1 (de) * 2020-12-18 2022-06-23 Zf Friedrichshafen Ag Elektrische Maschine zum Antrieb eines Kraftfahrzeugs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29714740U1 (de) 1996-11-19 1997-10-23 Siemens Ag Elektrische Maschine
EP2109207A2 (de) 2008-04-09 2009-10-14 Liebherr-Werk Biberach GmbH Flüssigkeitsgekühlte elektrische Maschine sowie Verfahren zur Kühlung einer solchen elektrischen Maschine
DE112012006221T5 (de) 2012-04-10 2015-01-15 General Electric Company System und Verfahren zum Kühlen eines Elektromotors
DE102016110658A1 (de) 2016-06-09 2017-12-14 Rainer Puls Kühlgehäuse für einen Elektromotor
WO2019008220A1 (en) 2017-07-05 2019-01-10 The Switch Drive Systems Oy ELECTRIC MACHINE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879116B2 (ja) * 2011-12-15 2016-03-08 株式会社日立製作所 回転電機及びそれを備えた鉄道車両並びに電動車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29714740U1 (de) 1996-11-19 1997-10-23 Siemens Ag Elektrische Maschine
EP2109207A2 (de) 2008-04-09 2009-10-14 Liebherr-Werk Biberach GmbH Flüssigkeitsgekühlte elektrische Maschine sowie Verfahren zur Kühlung einer solchen elektrischen Maschine
DE112012006221T5 (de) 2012-04-10 2015-01-15 General Electric Company System und Verfahren zum Kühlen eines Elektromotors
DE102016110658A1 (de) 2016-06-09 2017-12-14 Rainer Puls Kühlgehäuse für einen Elektromotor
WO2019008220A1 (en) 2017-07-05 2019-01-10 The Switch Drive Systems Oy ELECTRIC MACHINE

Also Published As

Publication number Publication date
CN114649884A (zh) 2022-06-21
US20220200372A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
DE102017120985A1 (de) Elektrisches fahrzeugantriebssystem
DE19916489C2 (de) Hybridantrieb für Kraftfahrzeuge
EP3673568B1 (de) Mehrteilige rotorwelle für eine elektrische maschine
DE102012202460A1 (de) Elektromotorische Getriebevorrichtung mit einstückigem Gehäuse
EP3766164B1 (de) Elektrofahrzeug
DE102018005947A1 (de) Elektrischer Antriebsstrang für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
DE102007039186A1 (de) Läufer eines Traktionsmotors
EP3058641B1 (de) Antriebsvorrichtung
DE102020209606A1 (de) Elektrische Antriebsvorrichtung
DE102017214560A1 (de) Mehrteilige Rotorwelle für eine elektrische Maschine
DE102005037726A1 (de) Antriebsachse mit einem Elektro-Wandler
DE102020216225A1 (de) Elektrische Maschine zum Antrieb eines Kraftfahrzeugs
DE102011084038A1 (de) Elektroachse mit optimierter Wasserkühlung des Elektromotors sowie Leistungsübertragungsseinheit
DE102014207468A1 (de) Kühlung für einen Wickelkopf einer E-Maschine
DE102018111419A1 (de) Antriebsmodul für ein Fahrzeug
DE102005037727A1 (de) Fahrantrieb mit einem Elektro-Wandler
DE102020216230A1 (de) Elektrische Maschine zum Antrieb eines Kraftfahrzeugs
DE102019120787A1 (de) Elektrische Antriebseinheit, Hybridmodul und Antriebsanordnung für ein Kraftfahrzeug
DE102011113654A1 (de) Vorrichtung und Verfahren zum Kühlen elektrischer Fahrmotoren
EP1561051A1 (de) Kraftfahrzeug-antriebsvorrichtung
DE102020216226A1 (de) Elektrische Maschine zum Antrieb eines Kraftfahrzeugs
DE102017122367A1 (de) Antriebsmodul
DE102019214911A1 (de) Elektrische Maschine zum Antrieb eines Kraftfahrzeugs
EP4007133A1 (de) Elektrische maschine mit integriertem wärmetauscher
DE102011084033A1 (de) Elektromotorische Getriebevorrichtung mit Getriebekühlbereich

Legal Events

Date Code Title Description
R163 Identified publications notified