DE102018204057A1 - Ladestation für Elektrofahrzeuge mit mindestens zwei Ladesäulen - Google Patents

Ladestation für Elektrofahrzeuge mit mindestens zwei Ladesäulen Download PDF

Info

Publication number
DE102018204057A1
DE102018204057A1 DE102018204057.5A DE102018204057A DE102018204057A1 DE 102018204057 A1 DE102018204057 A1 DE 102018204057A1 DE 102018204057 A DE102018204057 A DE 102018204057A DE 102018204057 A1 DE102018204057 A1 DE 102018204057A1
Authority
DE
Germany
Prior art keywords
charging station
power
charging
memory
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102018204057.5A
Other languages
English (en)
Inventor
Hansjürgen Schäfer
Hansjörg Streicher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaefer Elektronik GmbH
SCHAFER ELEKTRONIK GmbH
Original Assignee
Schaefer Elektronik GmbH
SCHAFER ELEKTRONIK GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaefer Elektronik GmbH, SCHAFER ELEKTRONIK GmbH filed Critical Schaefer Elektronik GmbH
Priority to DE102018204057.5A priority Critical patent/DE102018204057A1/de
Publication of DE102018204057A1 publication Critical patent/DE102018204057A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die Erfindung betrifft eine Ladestation (10) für Elektrofahrzeuge mit mindestens zwei Ladesäulen (12), an welchen jeweils ein Elektrofahrzeug gleichzeitig geladen werden kann, und mit einem elektrischen Energiespeicher (14).Um Störungen währende der Wartung zu verringern, wird vorgeschlagen, dass der elektrische Energiespeicher (14) mindestens zwei elektrisch getrennte Speichereinheiten (16) aufweist, dass die Ladestation (10) für jede Speichereinheit (16) einen separaten bidirektionalen Laderegler (18) aufweist, dass jeder Speichereinheit (16) mindestens eine Ladesäule (12) zugeordnet ist, welche über die Speichereinheit (16) mit elektrischer Energie versorgt werden kann, und dass jeweils eine Speichereinheit (16) der zugehörige bidirektionale Laderegler (18) und die mindestens eine zugeordnete Ladesäule (12) einen Speicherstrang (30) bilden.

Description

  • Die Erfindung betrifft eine Ladestation für Elektrofahrzeuge mit mindestens zwei Ladesäulen, an welchen jeweils ein Elektrofahrzeug gleichzeitig geladen werden kann, und mit einem elektrischen Energiespeicher.
  • Um den Komfort für Fahrer von Elektrofahrzeugen zu erhöhen, wird allgemein angestrebt, eine hohe Reichweite bei den Elektrofahrzeugen zu erzielen. Gleichzeitig soll ein Schnellladen möglich sein, bei welchem der Energiespeicher in möglichst kurzer Zeit wieder aufgefüllt werden kann. Dies führt allerdings dazu, dass sehr hohe Ladeleistungen notwendig sind, die unter Umständen vom Stromnetzbetreiber nicht bereitgestellt werden können. Netzanschlüsse mit ca. 450 kW Leistung sind meistens problemlos bereitzustellen. Allerdings benötigt bereits ein einzelnes Fahrzeug im Schnelllademodus bis zu 350 kW. Daraus ist leicht das Problem erkennbar, dass wenn mehr als zwei Fahrzeuge geladen werden sollen, die Leistung des Stromnetzanschlusses nicht ausreicht. Daher kann vorgesehen sein, einen elektrischen Energiespeicher an der Ladestation bereitzustellen, welcher im Bedarfsfall die fehlende Leistung ausgleichen kann und in Zeiten, in welchen wenige Autos geladen werden, beispielsweise Nachts, die wieder aufgefüllt wird.
  • Ein solcher Energiespeicher muss im Betrieb erwartungsgemäß sehr viele Ladezyklen durchleben, so dass die Lebensdauer des Energiespeichers nicht besonders hoch ist, und die Wartungsintervalle kurz sind. Ein Austausch des Energiespeichers führt allerdings dazu, dass die Ladestation in dieser Zeit nicht zur Verfügung steht. Gerade bei Elektrofahrzeugen, die prinzipbedingt eine geringere Reichweite aufweisen als Fahrzeuge, die durch Brennkraftmaschinen angetrieben sind, kann es zu Problemen führen, wenn eine Ladestation unerwartet nicht in Betrieb ist.
  • Der Erfindung liegt die Aufgabe zugrunde, eine verbesserte oder zumindest andere Ausführungsform einer Ladestation für Elektrofahrzeuge bereitzustellen, die sich insbesondere durch eine verbesserte Austauschbarkeit des Energiespeichers auszeichnet.
  • Diese Aufgabe wird erfindungsgemäß durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Ansprüche.
  • Die Erfindung beruht auf der Grundidee, für die Ladestation mehr als einen Energiespeicher vorzusehen, so dass bei Wartungsarbeiten, die Energiespeicher nacheinander getauscht werden können, so dass die übrigen jeweils nicht im Austausch befindlichen Energiespeicher den Betrieb der Ladestation weiter bewerkstelligen können. Erfindungsgemäß ist dazu vorgesehen, dass der elektrische Energiespeicher mindestens zwei elektrisch getrennte Speichereinheiten aufweist, dass die Ladestation für jede Speichereinheit einen separaten bidirektionalen Laderegler aufweist, dass jeder Speichereinheit mindestens eine Ladesäule zugeordnet ist, welche über die Speichereinheit mit elektrischer Energie versorgt werden kann, und dass jeweils eine Speichereinheit der zugehörige bidirektionale Laderegler und die mindestens eine zugeordnete Ladesäule einen Speicherstrang bilden. Durch die Separierung des Energiespeichers in mehrere separate elektrisch getrennte Speichereinheiten, können die Speichereinheiten nacheinander ausgetauscht werden, so dass die jeweils nicht getauschten Speichereinheiten den weiteren Betrieb der Ladestation ermöglichen. Die Verwendung der bidirektionalen Laderegler erlaubt es, dass eine Speichereinheit eines Speicherstrangs einer Speichereinheit eines anderen Speicherstrangs Energie zur Verfügung stellt oder sogar einen Speicherstrang, in welchem die Speichereinheit getauscht wird, mit der notwendigen elektrischen Energie zu versorgen.
  • In der Beschreibung und den beigefügten Ansprüchen werden unter Elektrofahrzeugen Fahrzeuge verstanden, die zumindest teilweise durch einen Elektromotor angetrieben werden und einen elektrischen Energiespeicher, beispielsweise eine wiederaufladbare Batterie aufweisen.
  • In der Beschreibung und den beigefügten Ansprüchen wird unter einem bidirektionalem Laderegler ein Laderegler verstanden, der sowohl aus einer Spannungsquelle Leistung entnehmen kann, um einen Energiespeicher aufzuladen, als auch Energie dem Energiespeicher zu entnehmen und wieder der Leistungsquelle zurückzuführen.
  • In der Beschreibung und den beigefügten Ansprüchen wird unter einer Speichereinheit insbesondere eine Energiespeichereinheit für elektrische Energie verstanden.
  • Eine günstige Möglichkeit sieht vor, dass die Speicherstränge einen Ladebetriebsmodus aufweisen, bei dem die Speichereinheit des Speicherstrangs geladen wird. Ein solcher Ladebetriebsmodus wird beispielsweise dann aktiviert, wenn die an den Ladesäulen von Elektrofahrzeugen angeforderte elektrische Leistung kleiner ist als die vom elektrischen Netzanschluss zur Verfügung gestellte elektrische Leistung und die entsprechende Speichereinheit des Speicherstrangs nicht voll ist. Dadurch kann die zwar geringe Leistung des Netzanschlusses, die dafür konstant abgreifbar ist, ausgenutzt werden, um in Spitzenzeiten, in welchen eine hohe Ladeleistung angefordert wird, ausreichend Leistung bereitstellen zu können.
  • Eine weitere günstige Möglichkeit sieht vor, dass die Speicherstränge einen Leistungsbetriebsmodus aufweisen, bei dem einer oder mehreren der zugeordneten Ladesäulen zusätzlich elektrische Energie zugeführt wird. Wenn mehrere Elektrofahrzeuge gleichzeitig an den Ladesäulen geladen werden, kann es vorkommen, dass die von den Elektrofahrzeugen angeforderte gesamte elektrische Leistung größer ist als die elektrische Leistung, die vom Netzanschluss bereitgestellt werden kann. In diesem Fall wird die fehlende elektrische Leistung aus den Speichereinheiten entnommen, so dass für alle an der Ladestation angeschlossenen Elektrofahrzeuge die gewünschte Ladeleistung zur Verfügung steht.
  • Eine weitere besonders günstige Möglichkeit sieht vor, dass die Speicherstränge einen Unterstützungsmodus aufweisen, bei dem über den bidirektionalen Laderegler elektrische Energie bereitgestellt wird, um zumindest einem anderen Speicherstrang elektrische Energie zuzuführen. Dies kann beispielsweise erforderlich sein, wenn in einem Speicherstrang die Speichereinheit leer ist oder der Ladestand unter einen Grenzwert fällt, bei welchem die Lebensdauer der Speichereinheit beeinträchtigt wird und gleichzeitig ein Elektrofahrzeug an der zugeordneten Ladesäule hängt und Leistung anfordert und zusätzlich die Gesamtladeleistung größer ist als die vom Netzanschluss bereitgestellte elektrische Leistung. In diesem Fall kann ein weiterer Speicherstrang, der über eine gefüllte Speichereinheit verfügt, oder zumindest über eine Speichereinheit, die einen Ladezustand aufweist, der größer als ein zweiter Grenzwert ist, Energie bereitstellen und diese dem Speicherstrang zuführen, der seiner Speichereinheit keine Energie mehr nehmen kann.
  • Eine vorteilhafte Lösung sieht vor, dass die Ladestation eine Steuereinrichtung aufweist, die ein Energiemanagement durchführt, und dass die Steuereinrichtung die Speicherstränge derart ansteuert, dass Ladehübe der Speichereinheiten reduziert werden. Durch die unterschiedlichen Modi der Speicherstränge kann erreicht werden, dass die Speichereinheiten der Speicherstränge meistens ungefähr den gleichen Ladezustand aufweisen. Dadurch wird insgesamt der maximale Ladehub, der an einzelnen Speichereinheiten auftreten kann, reduziert, so dass die Lebensdauer der Speichereinheiten erhöht werden kann.
  • Eine alternative Zielsetzung des Energiemanagements kann sein, dem Netzanschluss eine möglichst konstante Leistung zu entnehmen.
  • Üblicherweise werden manche Ladesäulen von Kraftfahrzeugfahrern bevorzugt, die beispielsweise einen kürzeren Weg zu einem Shop aufweisen oder einfacher anzufahren sind. Daher würden die Speichereinheiten, die diesen Ladesäulen zugeordnet sind, stärker belastet werden, als andere Speichereinheiten. Durch das Energiemanagement kann diese Ungleichheitsbelastung wieder ausgeglichen werden.
  • Eine weitere vorteilhafte Lösung sieht vor, dass gemäß dem Energiemanagement, wenn die aus dem Netzanschluss verfügbare Leistung größer als die gesamte an den Ladesäulen angeforderte Leistung ist, die überschüssige Leistung zum Laden der Speichereinheiten genutzt wird, wobei die Speichereinheiten mit dem geringsten Ladestand bevorzugt geladen werden. Die aus dem Netzanschluss verfügbare Leistung kann individuell auf die einzelnen Speicherstränge aufgeteilt werden, so dass die Speicherstränge, die über eine bereits vollständig geladene Speichereinheit verfügen, keine Leistung zugeführt wird, während der Speicherstrang, der die Speichereinheit hat, mit dem geringsten Ladestand die meiste elektrische Leistung zum Laden zugeführt wird.
  • In der Beschreibung und den beigefügten Ansprüchen wird unter einer angeforderten Leistung an den Ladesäulen die Leistung verstanden, mit der die Elektrofahrzeuge geladen werden sollen.
  • Eine weitere besonders vorteilhafte Lösung sieht vor, dass gemäß dem Energiemanagement, wenn die aus dem Netzanschluss verfügbare Leistung kleiner ist als die gesamte an den Ladesäulen angeforderte Leistung, elektrische Leistung aus den Speichereinheiten bereitgestellt wird, wobei die zusätzliche Leistung bevorzugt von den Speichereinheiten bereitgestellt wird, deren Ladesäulen aktiv sind. In diesen Fällen muss die elektrische Energie, die den Speichereinheiten entnommen wird, nicht über den bidirektionalen Laderegler zurück transformiert werden. Dadurch können die auftretenden Wandlungsverluste reduziert werden.
  • In der Beschreibung und den beigefügten Ansprüchen wird unter einer aktiven Ladesäule eine Ladesäule verstanden, an welcher ein Elektrofahrzeug angeschlossen ist und dieses geladen wird.
  • Eine zweckmäßige Variante sieht vor, dass gemäß dem Energiemanagement, wenn die aus dem Netzanschluss verfügbare Leistung kleiner als die gesamte an den Ladesäulen angeforderte Leistung ist, und wenn der Ladestand einer der Speichereinheiten, der mindestens einen Ladesäule aktiv ist, unterhalb eines ersten Grenzwertes liegt, mindestens eine Speichereinheit eines der anderen Speicherstränge die fehlende elektrische Leistung bereitstellt. Dadurch kann vermieden werden, dass die betreffende Speichereinheit in einen Ladezustand fällt, welcher die Lebensdauer der Speichereinheit beeinträchtigt. Des Weiteren kann vermieden werden, dass die Speichereinheit sich vollständig leert. Dadurch kann in den meisten Fällen vermieden werden, dass die Ladeleistung an der betreffenden Ladesäule reduziert werden muss.
  • Das Bereitstellen der zusätzlichen elektrischen Leistung aus einem der Speicherstränge kann beispielsweise durch Verwendung des Unterstützungsmodus eines der Speicherstränge erreicht werden.
  • Eine weitere besonders zweckmäßige Variante sieht vor, dass gemäß dem Energiemanagement, wenn sich die Ladestände zweier Speichereinheiten um mehr als einen vorgegebenen Grenzwert voneinander unterscheiden, aus der Speichereinheit, die den höheren Ladestand aufweist, elektrische Energie bereitgestellt wird, um die Speichereinheit mit dem geringeren Ladestand zu laden. Dadurch kann eine Angleichung der Ladestände der einzelnen Speichereinheiten erreicht werden. Insgesamt kann somit der Ladehub der einzelnen Speichereinheiten reduziert werden, wodurch die Lebensdauer der Speichereinheiten und damit des Energiespeichers erhöht werden kann.
  • Eine weitere besonders zweckmäßige Variante sieht vor, dass bei einem Austausch einer der Speichereinheiten, wenn die aus dem Netzanschluss verfügbare Leistung kleiner ist als die gesamte an den Ladesäulen angeforderte Leistung, zumindest ein Speicherstrang Energie bereitstellt, um die fehlende Leistung bereitzustellen.
  • Eine vorteilhafte Möglichkeit sieht vor, dass die Ladestation für jede Ladesäule einen Kfz-Regler aufweist, dass jeder solcher Kfz-Regler eine galvanische Trennung aufweist. Durch diese galvanische Trennung kann die Sicherheit für den Fahrer, der sein Elektrofahrzeug an der Ladesäule auflädt, erhöht werden. Aufgrund der hohen Leistungen könnten sich ansonsten ungewollte Potentiale aufbauen, die die Fahrer der Elektrofahrzeuge gefährden könnten.
  • Eine weitere vorteilhafte Möglichkeit sieht vor, dass die Ladestation eine Netzanschlussschaltung mit galvanischer Trennung aufweist. Durch die galvanische Trennung zum Netzanschluss können die Erdpotentiale an den Speichereinheiten gesichert werden, so dass die Sicherheit der gesamten Ladestation erhöht wird. In Verbindung mit Kfz-Ladereglern mit einer galvanischen Trennung, ist somit eine doppelte galvanische Trennung zwischen Elektrofahrzeug und dem Netzanschluss bzw. dem Stromnetz gegeben, so dass eine besonders hohe Betriebssicherheit möglich ist.
  • Eine weitere vorteilhafte Möglichkeit sieht vor, dass die Netzanschlussschaltung einen Gleichrichter mit Leistungsfaktorkorrektur aufweist. Üblicherweise wird von den Netzbetreibern der Netzanschluss als Wechselstromnetzanschluss bereitgestellt. Daher ist es günstig, wenn die Ladestation einen Gleichrichter aufweist. Durch die Leistungsfaktorkorrektur können Blindleistungen vermieden werden, welche unnötige Kosten verursachen würden.
  • Eine günstige Lösung sieht vor, dass die Ladestation je Ladesäule mindestens eine solche Speichereinheit aufweist.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen.
  • Es zeigen, jeweils schematisch
    • 1 ein Blockschaltbild einer erfindungsgemäßen Ladestation,
    • 2 ein Blockschaltbild der Ladestation aus 1, wobei Leistungsflüsse durch Pfeile symbolisiert sind, bei einer ersten möglichen Situation,
    • 3 ein Blockschaltbild der Ladestation aus 1, wobei Leistungsflüsse durch Pfeile symbolisiert sind, bei einer zweiten möglichen Situation,
    • 4 ein Blockschaltbild der Ladestation aus 1, wobei Leistungsflüsse durch Pfeile symbolisiert sind, bei einer dritten möglichen Situation, und
    • 5 ein Blockschaltbild der Ladestation aus 1, wobei Leistungsflüsse durch Pfeile symbolisiert sind, bei einer vierten möglichen Situation.
  • Eine in den 1 bis 5 dargestellte Ladestation 10 weist mehrere, beispielsweise drei Ladesäulen 12, an welchen jeweils ein Elektrofahrzeug geladen werden kann, und einen Energiespeicher 14 auf. Der Energiespeicher 14 weist mehrere, beispielsweise drei Speichereinheiten 16 auf, wobei jeder Speichereinheit 16 mindestens eine Ladesäule 12 zugeordnet ist, welche die Speichereinheit 16 direkt mit Energie, insbesondere elektrischer Energie versorgen kann.
  • Jeder Speichereinheit 16 ist ein bidirektionaler Laderegler 18 zugeordnet, über welchen die Speichereinheit 16 geladen werden kann und über welchen Energie aus der Speichereinheit entnommen werden kann. Darüber hinaus ist je Speichereinheit ein separater Kfz-Laderegler 20 vorgesehen, welcher über die Ladesäulen mit Elektrofahrzeugen verbunden werden kann, um diese aufzuladen.
  • Schließlich ist noch eine Netzanschlussschaltung 22 vorgesehen, über welche ein Netzanschluss 24 mit der Ladestation 10 verbunden werden kann.
  • Die Netzanschlussschaltung 22 weist vorzugsweise drei Gleichrichter mit galvanischer Trennung und Leistungsfaktorkorrektur auf. Die drei Gleichrichter 26 geben elektrische Leistung an eine Primärspannungsebene 28 ab. Mit dieser Primärspannungsebene 28 sind die bidirektionalen Laderegler 18 der Speichereinheiten 16 verbunden, so dass über die bidirektionalen Laderegler Energie von der Primärspannungsebene 28 zu den Speichereinheiten 16 geführt und von den Speichereinheiten 16 zu der Primärspannungsebene 28 übertragen werden kann.
  • Die bidirektionalen Laderegler 18 sind derart ausgebildet, dass über diese sowohl die Speichereinheiten 16 geladen werden können als auch Energie von den Speichereinheiten 16 entnommen werden kann.
  • Die Speichereinheiten 16 sind vorzugsweise elektrische Batteriespeicher, beispielsweise basierend auf einer Lithium-Ionen-Technologie.
  • Die Kfz-Laderegler 20 weisen vorzugsweise ebenfalls eine galvanische Trennung auf. Dadurch ist sowohl an der Netzanschlussschaltung 22 als auch an den Kfz-Ladereglern 20 eine galvanische Trennung vorgesehen. Durch diese doppelte galvanische Trennung kann eine sehr hohe Betriebssicherheit erreicht werden. Jeweils einander zugeordnete bidirektionale Laderegler 18, Speichereinheiten 16, Kfz-Laderegler 20 und Ladesäulen 12 bilden zusammen einen sogenannten Speicherstrang 30. Die Ladestation 10 weist demnach mehrere, vorzugsweise drei Speicherstränge 30 auf. Es versteht sich, dass jeder Speicherstrang 30 auch mehr als eine Ladesäule 12 aufweisen kann. Ferner versteht sich, dass die Ladestation 10 mehr als drei Speicherstränge 30 aufweisen kann. Die Ladestation 10 ist somit skalierbar.
  • Jeder Speicherstrang 30 weist mehrere Betriebsmodi auf. Beispielsweise einen Ladebetriebsmodus, bei dem die jeweilige Speichereinheit 16 des Speicherstrangs 30 geladen wird. Dieser Ladebetriebsmodus wird beispielsweise verwendet, wenn an keiner der Ladesäulen 12 ein Elektrofahrzeug angeschlossen ist und somit die aus dem Netzanschluss 24 verfügbare elektrische Leistung nicht zum Laden von Elektrofahrzeugen benötigt wird. Eine solche Situation ist beispielhaft in 2 dargestellt. Die gesamte elektrische Leistung, die dem Netzanschluss 24 entnommen werden kann, wird auf die drei Speichereinheiten 16 aufgeteilt, um diese aufzuladen. Der auftretende Leistungsfluss ist durch die Pfeile 32 symbolisiert, wobei ein dickerer Pfeil einen höheren Leistungsfluss bedeutet.
  • Des Weiteren weisen die Speicherstränge 30 einen Leistungsbetriebsmodus auf. Bei dem Leistungsbetriebsmodus wird den zugeordneten Speichereinheiten 16 elektrische Energie entnommen und den Kfz-Ladereglern 20 der Ladesäulen 12 zugeführt. Der Leistungsbetriebsmodus der Speicherstränge wird dann eingesetzt, wenn die gesamte an den Ladesäulen 12 angeforderte elektrische Leistung größer ist als die aus dem elektrischen Netzanschluss 24 verfügbare elektrische Leistung. Die Leistungslücke wird dann durch die Speichereinheiten 16 aufgefüllt. Eine solche Situation ist beispielsweise in 3 dargestellt. Die vom Netzanschluss 24 zur Verfügung gestellte Leistung wird zunächst gleichmäßig auf die drei Speicherstränge 30 aufgeteilt. Jede Speichereinheit 16 der drei Speicherstränge 30 erhöht nun diese Leistung, die den Kfz-Ladereglern 20 zugeführt wird, um die für das Aufladen der Elektrofahrzeuge benötigte Leistung zur Verfügung zu stellen.
  • Dadurch kann eine Schnellladung der Elektrofahrzeuge erreicht werden, auch wenn die Gesamtladeleistung größer ist als die vom Netzanschluss 24 verfügbare elektrische Leistung.
  • Ein weiterer Betriebsmodus der Speicherstränge ist der sogenannte Unterstützungsmodus. Dabei wird Energie aus der Speichereinheit 16 über den bidirektionalen Laderegler 18 der Primärspannungsebene 28 zurückgeführt, so dass diese in einem anderen Speicherstrang 30 genutzt werden kann. Dieser Unterstützungsmodus wird beispielsweise dann verwendet, wenn eine Speichereinheit 16 in einem der Speicherstränge 30 leer ist oder der Ladestand unterhalb eines festgelegten Grenzwertes liegt. Erforderlich ist dieser Unterstützungsmodus dann, wenn die an den Ladesäulen 12 angeforderte gesamte elektrische Leistung größer ist als die vom elektrischen Netzanschluss 24 verfügbare elektrische Leistung und an dem Speicherstrang 30, an welchem die Speichereinheit 16 leer ist oder einen Ladezustand hat, der unter einem festgelegten Grenzwert liegt, ein Elektrofahrzeug an der Ladesäule 12 hängt. In diesem Fall kann diese Speichereinheit 16 die fehlende elektrische Leistung nicht bereitstellen. Dies kann dann durch den Speicherstrang 30, der im Unterstützungsmodus betrieben wird, ausgeglichen werden. Eine solche Situation ist beispielsweise in 4 dargestellt. Der obere Speicherstrang 30 weist eine Speichereinheit 16 auf, die leer ist oder deren Ladestand unterhalb eines Grenzwertes liegt. Da in allen drei Ladesäulen 12 ein Ladevorgang stattfindet, muss bei den mittleren und dem unteren Speicherstrang die Speichereinheiten 16 die Ladeleistung vollständig aufbringen. Zusätzlich wird auch noch etwas Leistung in die Primärspannungsebene 28 geführt, so dass am oberen Speicherstrang 30 sowohl über die Ladesäule 12 ein Elektrofahrzeug geladen werden kann, als auch die Speichereinheit 16 wieder aufgefüllt werden kann.
  • Bei einer in 5 dargestellten Situation ist nur an zwei Ladesäulen ein Elektrofahrzeug angeschlossen. Der untere Speicherstrang 30, an welchem kein Elektrofahrzeug angeschlossen ist, kann die gesamte aus der Speichereinheit 16 entnommene Energie der Primärspannungsebene 28 zur Verfügung stellen, so dass die Speichereinheit des oberen Speicherstrangs 30 noch schneller aufgeladen werden kann.
  • Insgesamt ist eine Steuereinrichtung 34 vorgesehen, welche die Ladestation 10 überwacht und steuert. Die Steuereinrichtung 34 verfolgt dabei ein Energiemanagement, durch welches die Ladehübe der Speichereinheiten 16 reduziert werden können. Dadurch, dass mittels der Unterstützungsmodi der Speicherstränge 30 elektrische Energie zwischen den Speichersträngen 30 ausgetauscht werden kann, können die maximal auftretenden Ladehübe in den Speichereinheiten 16 reduziert werden.
  • In dem Fall, dass aufgrund der Betriebsdauer eine der Speichereinheiten 16 ausgetauscht werden muss, kann der Betrieb der Ladestation mit allen Ladesäulen 12 weiter erfolgen, da die Speichereinheiten 16 der übrigen Speicherstränge 30 die fehlende Kapazität der auszutauschenden Speichereinheit 16 überbrücken können.

Claims (11)

  1. Ladestation (10) für Elektrofahrzeuge mit mindestens zwei Ladesäulen (12), an welchen jeweils ein Elektrofahrzeug gleichzeitig geladen werden kann, und mit einem elektrischen Energiespeicher (14), dadurch gekennzeichnet, dass der elektrische Energiespeicher (14) mindestens zwei elektrisch getrennte Speichereinheiten (16) aufweist, dass die Ladestation (10) für jede Speichereinheit (16) einen separaten bidirektionalen Laderegler (18) aufweist, dass jeder Speichereinheit (16) mindestens eine Ladesäule (12) zugeordnet ist, welche über die Speichereinheit (16) mit elektrischer Energie versorgt werden kann, und dass jeweils eine Speichereinheit (16) der zugehörige bidirektionale Laderegler (18) und die mindestens eine zugeordnete Ladesäule (12) einen Speicherstrang (30) bilden.
  2. Ladestation nach Anspruch 1, dadurch gekennzeichnet, - dass die Speicherstränge (30) einen Ladebetriebsmodus aufweisen, bei dem die Speichereinheit (16) des Speicherstrangs (30) geladen wird, und/oder - dass die Speicherstränge (30) einen Leistungsbetriebsmodus aufweisen, bei dem einer oder mehreren der zugeordneten Ladesäulen (12) zusätzlich elektrische Energie zugeführt wird, und/oder - dass die Speicherstränge (30) einen Unterstützungsmodus aufweisen, bei dem über den bidirektionalen Laderegler (18) elektrische Energie bereitgestellt wird, um zumindest einem anderen Speicherstrang (30) elektrische Energie zuzuführen.
  3. Ladestation nach Anspruch 1 oder 2, dadurch gekennzeichnet, - dass die Ladestation (10) eine Steuereinrichtung (34) aufweist, die ein Energiemanagement durchführt, und - dass die Steuereinrichtung (34) die Speicherstränge (30) derart ansteuert, dass Ladehübe der Speichereinheiten (16) reduziert werden.
  4. Ladestation nach Anspruch 3, dadurch gekennzeichnet, dass gemäß dem Energiemanagement, wenn eine aus einem Netzanschluss (24) verfügbare Leistung größer als eine gesamte an den Ladesäulen (12) angeforderte Leistung ist, die überschüssige Leistung zum Laden der Speichereinheiten (16) genutzt wird, wobei die Speichereinheit (16) mit dem geringsten Ladestand bevorzugt geladen wird.
  5. Ladestation nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass gemäß dem Energiemanagement, wenn eine aus dem Netzanschluss (24) verfügbare Leistung kleiner ist als eine gesamte an den Ladesäulen (12) angeforderte Leistung, elektrische Leistung aus den Speichereinheiten (16) bereitgestellt wird, wobei die zusätzliche Leistung bevorzugt von den Speichereinheiten (16) bereitgestellt wird, deren Ladesäulen aktiv sind.
  6. Ladestation nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass gemäß dem Energiemanagement, wenn eine aus dem Netzanschluss (24) verfügbare Leistung kleiner ist als eine gesamte an den Ladesäulen angeforderte Leistung, und wenn ein Ladestand einer der Speichereinheiten (16), deren mindestens einen Ladesäule (12) aktiv ist, unterhalb eines ersten Grenzwertes liegt, mindestens eine Speichereinheit (16) eines der anderer Speicherstränge (30) die fehlende elektrische Leistung bereitstellt.
  7. Ladestation nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass gemäß dem Energiemanagement, wenn sich Ladestände zweier Speichereinheiten (16) um mehr als einen vorgegebener Grenzwert voneinander unterscheiden, aus der Speichereinheit (16), die den höheren Ladestand aufweist, elektrische Energie bereitgestellt wird, um die Speichereinheit (16) mit dem geringeren Ladestand zu laden.
  8. Ladestation nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass bei einem Austausch einer der Speichereinheiten (16), wenn die aus dem Netzanschluss (24) verfügbare Leistung kleiner ist als die gesamte an den Ladesäulen (12) angeforderte Leistung, zumindest ein Speicherstrang (16) Energie bereitstellt, um die fehlende Leistung bereitzustellen.
  9. Ladestation nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Ladestation (10) für jede Ladesäule (12) einen KFZ-Laderegler (20) aufweist, dass jeder solche KFZ-Laderegler (20) eine galvanische Trennung aufweist.
  10. Ladestation nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Ladestation (10) eine Netzanschlussschaltung (22) mit galvanischer Trennung aufweist.
  11. Ladestation nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Ladestation (10) je Ladesäule (12) mindestens eine solche Speichereinheit (16) aufweist.
DE102018204057.5A 2018-03-16 2018-03-16 Ladestation für Elektrofahrzeuge mit mindestens zwei Ladesäulen Withdrawn DE102018204057A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102018204057.5A DE102018204057A1 (de) 2018-03-16 2018-03-16 Ladestation für Elektrofahrzeuge mit mindestens zwei Ladesäulen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018204057.5A DE102018204057A1 (de) 2018-03-16 2018-03-16 Ladestation für Elektrofahrzeuge mit mindestens zwei Ladesäulen

Publications (1)

Publication Number Publication Date
DE102018204057A1 true DE102018204057A1 (de) 2019-09-19

Family

ID=67774416

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018204057.5A Withdrawn DE102018204057A1 (de) 2018-03-16 2018-03-16 Ladestation für Elektrofahrzeuge mit mindestens zwei Ladesäulen

Country Status (1)

Country Link
DE (1) DE102018204057A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3831645A1 (de) * 2019-12-06 2021-06-09 Gogoro Inc. Ladestation und methode zum verwalten der batterien
DE102020113907A1 (de) 2020-05-25 2021-11-25 Phoenix Contact Gmbh & Co. Kg Modulare Ladesäule zum elektrischen Gleichstromladen einer Batterie eines Elektrofahrzeugs
LU101820B1 (de) 2020-05-25 2021-11-25 Phoenix Contact Gmbh & Co Modulare Ladesäule zum elektrischen Gleichstromladen einer Batterie eines Elektrofahrzeugs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080067974A1 (en) * 2006-09-18 2008-03-20 Byd Company Limited Electric Car Charging Systems
JP2013192310A (ja) * 2012-03-13 2013-09-26 Trynet:Kk 電気自動車の充電装置及び充電システム
EP2722962A1 (de) * 2011-06-15 2014-04-23 Mitsubishi Heavy Industries, Ltd. Ladesystem, ladeverwaltungsvorrichtung, steuerverfahren und programm dafür
DE102013200949A1 (de) * 2013-01-22 2014-07-24 Siemens Aktiengesellschaft Ladeeinrichtung zum Laden einer Anzahl N von Elektrofahrzeugen und Ladestation
US20160118830A1 (en) * 2014-10-23 2016-04-28 Samsung Electronics Co., Ltd. Apparatus for charging and discharging battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080067974A1 (en) * 2006-09-18 2008-03-20 Byd Company Limited Electric Car Charging Systems
EP2722962A1 (de) * 2011-06-15 2014-04-23 Mitsubishi Heavy Industries, Ltd. Ladesystem, ladeverwaltungsvorrichtung, steuerverfahren und programm dafür
JP2013192310A (ja) * 2012-03-13 2013-09-26 Trynet:Kk 電気自動車の充電装置及び充電システム
DE102013200949A1 (de) * 2013-01-22 2014-07-24 Siemens Aktiengesellschaft Ladeeinrichtung zum Laden einer Anzahl N von Elektrofahrzeugen und Ladestation
US20160118830A1 (en) * 2014-10-23 2016-04-28 Samsung Electronics Co., Ltd. Apparatus for charging and discharging battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Übersetzung von JP 2013- 192 310 A *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3831645A1 (de) * 2019-12-06 2021-06-09 Gogoro Inc. Ladestation und methode zum verwalten der batterien
DE102020113907A1 (de) 2020-05-25 2021-11-25 Phoenix Contact Gmbh & Co. Kg Modulare Ladesäule zum elektrischen Gleichstromladen einer Batterie eines Elektrofahrzeugs
LU101820B1 (de) 2020-05-25 2021-11-25 Phoenix Contact Gmbh & Co Modulare Ladesäule zum elektrischen Gleichstromladen einer Batterie eines Elektrofahrzeugs
EP3915825A1 (de) 2020-05-25 2021-12-01 Phoenix Contact GmbH & Co. KG Modulare ladesäule zum elektrischen gleichstromladen einer batterie eines elektrofahrzeugs

Similar Documents

Publication Publication Date Title
EP3137335B1 (de) Batteriesteuerung für elektrisch angetriebenes fahrzeug ohne niedervoltbatterie, elektrisch getriebenes fahrzeug mit dieser steuerung und verfahren
DE102019201712A1 (de) Ladestation für Elektrofahrzeuge mit mindestens zwei Ladesäulen
EP2276100A2 (de) Solargestützte Batterieladevorrichtung
EP3092150A1 (de) Elektrochemischer energiespeicher und verfahren zum balancing
EP3634803B1 (de) Energieversorgungseinrichtung für ein schienenfahrzeug
DE102018204057A1 (de) Ladestation für Elektrofahrzeuge mit mindestens zwei Ladesäulen
DE102019129415B3 (de) Verfahren zum Aufladen und/ oder Entladen eines wiederaufladbaren Energiespeichers
EP3720733B1 (de) Verfahren zum steuern einer elektrischen anlage eines elektrisch antreibbaren kraftfahrzeugs mit mehreren batterien sowie elektrische anlage eines elektrisch antreibbaren kraftfahrzeugs
DE102012015921A1 (de) Energieversorgungseinheit, insbesondere für ein Kraftfahrzeug
DE102017002113A1 (de) Unterseeboot und Verfahren zum Betreiben eines Antriebssystems eines Unterseebootes
DE112017007193T5 (de) Fahrzeugstromversorgungsvorrichtung
DE102013204885A1 (de) Verfahren zur Reduzierung des Gesamtladungsverlusts von Batterien
DE102015215430A1 (de) Luftfahrzeug und Verfahren zum Betrieb eines Luftfahrzeuges
DE102016202798B4 (de) Elektrofahrzeug und Verfahren zur zeitweisen Nutzung eines Elektrofahrzeuges als Netzpuffer für ein elektrischen Versorgungsnetz
EP3173280B1 (de) Batterie, fahrzeug mit einer solchen batterie und verwendung einer solchen batterie
DE102012003023A1 (de) Energieversorgungseinheit zur Energieversorgung eines Fahrzeugs
DE102015006280A1 (de) Fahrzeug und elektrische Antriebsvorrichtung für ein Fahrzeug
DE102011077664A1 (de) Energiespeichersystem mit einer Vergleichmäßigungseinrichtung zum Vergleichmäßigen von Ladezuständen von Energiespeichereinheiten
DE102010017439A1 (de) Schaltungsanordnung und Verfahren zum Ausgleich von unterschiedlichen Ladezuständen von Zellen eines Energiespeichers
WO2022194433A1 (de) Vorrichtung und verfahren zur elektrischen versorgung eines niedervolt-bordnetzes eines kraftfahrzeugs, insbesondere elektrokraftfahrzeugs
DE102014008848A1 (de) Antriebsvorrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug
DE102017218282A1 (de) Lithium-Ionen-Zelle für einen elektrischen Energiespeicher, Energiespeicher
DE10317986B4 (de) Kraftfahrzeugbatterie
DE102018218316A1 (de) Batteriesystem für ein Elektrofahrzeug, Verfahren zum Betreiben eines Batteriesystems und Elektrofahrzeug
DE102014218134A1 (de) Energieversorgung eines Bordnetzes eines Hybrid-Kraftfahrzeugs

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee