DE102018118355A1 - Optoelektronischer Halbleiterchip und optoelektronisches Halbleiterbauteil - Google Patents

Optoelektronischer Halbleiterchip und optoelektronisches Halbleiterbauteil Download PDF

Info

Publication number
DE102018118355A1
DE102018118355A1 DE102018118355.0A DE102018118355A DE102018118355A1 DE 102018118355 A1 DE102018118355 A1 DE 102018118355A1 DE 102018118355 A DE102018118355 A DE 102018118355A DE 102018118355 A1 DE102018118355 A1 DE 102018118355A1
Authority
DE
Germany
Prior art keywords
contact
layer
semiconductor chip
region
optoelectronic semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102018118355.0A
Other languages
English (en)
Inventor
Michael Völkl
Siegfried Herrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to DE102018118355.0A priority Critical patent/DE102018118355A1/de
Priority to PCT/EP2019/070099 priority patent/WO2020025457A1/de
Priority to US17/264,318 priority patent/US20210296549A1/en
Publication of DE102018118355A1 publication Critical patent/DE102018118355A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

In einer Ausführungsform umfasst der optoelektronische Halbleiterchip (1) eine Halbleiterschichtenfolge (2), welche eine aktive Zone (23) zur Strahlungserzeugung zwischen einem ersten Bereich (21) und einem zweiten Bereich (22) aufweist. Der zweite Bereich (22) ist über elektrische Durchkontaktierungen (32) elektrisch kontaktiert. Die Durchkontaktierungen (32) sind über metallische Kontaktleisten (42) elektrisch angeschlossen. Der erste Bereich (21) ist über eine metallische Kontaktschicht (31) elektrisch kontaktiert. Eine elektrische Isolationsschicht (61) befindet sich zwischen den Kontaktleisten (42) und der Kontaktschicht (31). Die Kontaktschicht (31) und die Kontaktleisten (42) befinden sich an einer Rückseite (20) des ersten Bereichs (21). Die Durchkontaktierungen (32) erstrecken sich von den Kontaktleisten (42) ausgehend durch den ersten Bereich (21) und durch die aktive Zone (23) in den zweiten Bereich (22). Die Kontaktleisten (42) liegen zumindest überwiegend zwischen der Rückseite (20) und der Kontaktschicht (31).

Description

  • Es wird ein optoelektronischer Halbleiterchip angegeben. Darüber hinaus wird ein optoelektronisches Halbleiterbauteil angegeben.
  • Eine zu lösende Aufgabe besteht darin, einen optoelektronischen Halbleiterchip anzugeben, der mit hohen Strömen betreibbar ist.
  • Diese Aufgabe wird unter anderem durch einen optoelektronischen Halbleiterchip und durch ein optoelektronisches Halbleiterbauteil mit den Merkmalen der unabhängigen Patentansprüche gelöst. Bevorzugte Weiterbildungen sind Gegenstand der übrigen Ansprüche.
  • Der optoelektronische Halbleiterchip umfasst in einer bevorzugten Ausführungsform an einer Halbleiterschichtenfolge Kontaktleisten, die über Durchkontaktierungen durch eine aktive Zone hindurch insbesondere einen n-dotierten Bereich kontaktieren. An einer der Halbleiterschichtenfolge abgewandten Seite der Kontaktleisten befindet sich eine flächige Kontaktschicht als p-Kontakt. Die Kontaktschicht erstreckt sich im Wesentlichen unterhalb der gesamten Halbleiterschichtenfolge hinweg, sodass über die Kontaktschicht der Halbleiterchip flächig an eine Wärmesenke angebunden werden kann. Hierdurch kann die Halbleiterschichtenfolge mit hohen Stromdichten zur Strahlungserzeugung betrieben werden.
  • Gemäß zumindest einer Ausführungsform umfasst der Halbleiterchip eine Halbleiterschichtenfolge. Die Halbleiterschichtenfolge beinhaltet eine aktive Zone zur Strahlungserzeugung. Die aktive Zone befindet sich zwischen einem ersten Bereich und einem zweiten Bereich der Halbleiterschichtenfolge. Der erste und/oder der zweite Bereich können durch eine oder durch mehrere Halbleiterschichten gebildet sein. Bevorzugt ist der erste Bereich p-dotiert und der zweite Bereich n-dotiert. Alternativ können die beiden Bereiche genau anders herum dotiert sein.
  • Die Halbleiterschichtenfolge basiert bevorzugt auf einem III-V-Verbindungshalbleitermaterial. Bei dem Halbleitermaterial handelt es sich zum Beispiel um ein Nitrid-Verbindungshalbleitermaterial wie AlnIn1-n-mGamN oder um ein Phosphid-Verbindungshalbleitermaterial wie AlnIn1-n-mGamP oder auch um ein Arsenid-Verbindungshalbleitermaterial wie AlnIn1-n-mGamAs oder wie AlnGamIn1-n-mAskP1-k, wobei jeweils 0 ≤ n ≤ 1, 0 ≤ m ≤ 1 und n + m ≤ 1 sowie 0 ≤ k < 1 ist. Bevorzugt gilt dabei für zumindest eine Schicht oder für alle Schichten der Halbleiterschichtenfolge 0 < n ≤ 0,8, 0,4 ≤ m < 1 und n + m ≤ 0,95 sowie 0 < k ≤ 0,5. Dabei kann die Halbleiterschichtenfolge Dotierstoffe sowie zusätzliche Bestandteile aufweisen. Der Einfachheit halber sind jedoch nur die wesentlichen Bestandteile des Kristallgitters der Halbleiterschichtenfolge, also Al, As, Ga, In, N oder P, angegeben, auch wenn diese teilweise durch geringe Mengen weiterer Stoffe ersetzt und/oder ergänzt sein können.
  • Bevorzugt basiert die Halbleiterschichtenfolge auf dem Materialsystem AlInGaN und ist zur Erzeugung von blauem Licht eingerichtet.
  • Gemäß zumindest einer Ausführungsform umfasst der Halbleiterchip mehrere elektrische Durchkontaktierungen. Über die elektrischen Durchkontaktierungen ist der zweite Bereich elektrisch kontaktiert. Die Durchkontaktierungen sind bevorzug metallisch.
  • Gemäß zumindest einer Ausführungsform umfasst der Halbleiterchip mehrere metallische Kontaktleisten. Die Durchkontaktierungen sind über die Kontaktleisten elektrisch angeschlossen. Bevorzugt sind jeder der Kontaktleiste mehrere der Durchkontaktierungen zugeordnet.
  • Gemäß zumindest einer Ausführungsform umfasst der Halbleiterchip eine metallische Kontaktschicht. Über die Kontaktschicht ist der erste Bereich elektrisch kontaktiert. Die Kontaktschicht ist bevorzugt aus mehreren Teilschichten zusammengesetzt.
  • Gemäß zumindest einer Ausführungsform umfasst der Halbleiterchip eine elektrische Isolationsschicht. Die Isolationsschicht befindet sich zwischen den Kontaktleisten und der Kontaktschicht. Aufgrund der Isolationsschicht sind Kurschlüsse zwischen den Kontaktleisten und der Kontaktschicht unterbunden.
  • Gemäß zumindest einer Ausführungsform weist die Halbleiterschichtenfolge eine Rückseite auf. Die Rückseite ist durch den ersten Bereich gebildet. Der Rückseite liegt eine Lichtaustrittsseite gegenüber. Die Lichtaustrittsseite ist durch den zweiten Bereich, durch einen strahlungsdurchlässigen Ersatzträger oder durch ein Aufwachssubstrat der Halbleiterschichtenfolge gebildet.
  • Gemäß zumindest einer Ausführungsform befinden sich die Kontaktschicht und die Kontaktleisten an der Rückseite. Insbesondere ist die Lichtaustrittsseite frei von elektrischen Kontaktstrukturen. Insbesondere ist der zweite Bereich an einer der Rückseite abgewandten Seite, insbesondere an der Lichtaustrittsseite, eine durchgehende Schicht.
  • Gemäß zumindest einer Ausführungsform erstrecken sich die Durchkontaktierungen ausgehend von den Kontaktleisten durch den ersten Bereich und durch die aktive Zone bis in den zweiten Bereich. Die Kontaktleisten durchdringen bevorzugt die Kontaktschicht nicht. Das heißt, die Kontaktschicht kann sich durchgehend über die Kontaktleisten hinweg erstrecken.
  • Gemäß zumindest einer Ausführungsform liegen die Kontaktleisten überwiegend oder vollständig zwischen der Rückseite und der Kontaktschicht. Überwiegend bedeutet hinsichtlich einer Länge der Kontaktleisten insbesondere zu mindestens 50% oder 70% oder 85% oder 95%.
  • In mindestens einer Ausführungsform umfasst der optoelektronische Halbleiterchip eine Halbleiterschichtenfolge, welche eine aktive Zone zur Strahlungserzeugung zwischen einem ersten Bereich und einem zweiten Bereich aufweist. Der zweite Bereich ist über mehrere elektrische Durchkontaktierungen elektrisch kontaktiert. Die Durchkontaktierungen sind über mehrere metallische Kontaktleisten elektrisch angeschlossen. Der erste Bereich der Halbleiterschichtenfolge ist über eine metallische Kontaktschicht elektrisch kontaktiert. Eine elektrische Isolationsschicht befindet sich zwischen den Kontaktleisten und der Kontaktschicht. Die Halbleiterschichtenfolge weist eine Rückseite auf, die durch den ersten Bereich gebildet ist. Die Kontaktschicht und die Kontaktleisten befinden sich an der Rückseite. Die Durchkontaktierungen erstrecken sich von den Kontaktleisten ausgehend durch den ersten Bereich und durch die aktive Zone bis in den zweiten Bereich. Die Kontaktleisten liegen zumindest überwiegend zwischen der Rückseite und der Kontaktschicht.
  • Insbesondere in Scheinwerferanwendungen und in Projektionsanwendungen sind hohe Leuchtdichten erforderlich. Herkömmliche LED-Chips, die eine interne Umverdrahtungsstruktur aufweisen, sind jedoch hinsichtlich ihrem thermischen Widerstand und möglichen Stromdichten limitiert, da in solchen LED-Chips elektrische Isolationsschichten in der Regel ganzflächig ausgeführt sind und eine Wärmebarriere bilden. Derartige LED-Chips finden sich zum Beispiel in der Druckschrift US 2015/0372203 A1 .
  • Dagegen kann der hier beschriebene Halbleiterchip mit hohen Stromdichten betrieben werden, da eine effiziente Entwärmung bei einer gleichzeitig homogenen Bestromung möglich ist.
  • Insbesondere handelt es sich bei dem hier beschriebenen Halbleiterchip um einen Saphir-Flip-Chip, kurz SFC, bei dem sich die Halbleiterschichtenfolge an einem Aufwachssubstrat aus Saphir befindet. Gegenüber bisherigen SFC's wurde der vorliegende Halbleiterchip modifiziert. Insbesondere werden n-Kontaktstege, also die Kontaktleisten, außen unterhalb des Chips kontaktiert. Ein p-Kontakt, also die Kontaktschicht, wird nahezu ganzflächig nach unten geführt. Eine Stromverteilung erfolgt im Halbleiterbauteil sowohl extern über einen n-Kontaktrahmen eines Trägers als auch intern mittels der Kontaktleisten und Durchkontaktierungen.
  • Die n-Kontaktstege sind in eine Isolierung eingebettet, sodass diese dann vollständig mit einem p-Metall, zum Beispiel einem Silberspiegel, einer Zwischenschicht, einer Haftvermittlungsschicht und/oder einer Galvanik-Schicht, etwa aus Kupfer, ummantelt werden können. Die Galvanik-Schicht kann planarisiert werden. Zur Verbesserung der Effizienz ist bevorzugt oberhalb der p-Kontaktstege ein Distributed Bragg Reflector, kurz DBR, bevorzugt stegförmig angeordnet. An einer p-Fläche des Halbleiterkörpers, also an der Rückseite, liegen wechselseitig und zeilenförmig ein Metallspiegel und zeilenförmig ein DBR an. Der DBR kann mit einer Schicht aus einem transparenten leitfähigen Material wie ITO unterlegt sein.
  • Somit lässt sich mit dem hier beschriebenen Halbleiterchip eine hohe Leuchtdichte bei einer effizienten Entwärmung erreichen. Die Abwärme wird bevorzugt komplett oder nahezu komplett über dem metallischen Chipsockel abgeführt. Dies ist insbesondere möglich, da nur partielle zeilenförmige Isolationsschichten vorhanden sind, im Gegensatz zu Halbleiterchips, welche eine interne Umverdrahtungsebene mit einer ganzflächigen Isolationsschicht aufweisen, wie in der Druckschrift US 2015/0372203 A1 .
  • Da bei dem hier angegebenen Halbleiterbauteil eine Stromverteilung durch n-Stege an einem Träger außerhalb des Halbleiterchips erfolgen kann, kann der Strom deutlich homogener in den Halbleiterchip eingeprägt werden. Bei herkömmlichen Halbleiterchips mit einer Umverdrahtungsebene ist die Stromverteilung limitiert durch die ganzflächige Metallschichtdicke in derjenigen Ebene des Chips, in der die Durchkontaktierungen im Chip elektrisch angeschlossen sind.
  • Des Weiteren können bestimmte Chipbereiche optional stärker bestromt werden. Dadurch ist es möglich, bei einem Volumenemitter, der insbesondere über ein lichtdurchlässiges Aufwachssubstrat verfügt, auszunutzen, dass eine Strahlungsauskoppeleffizienz an einem Chiprand höher als in einer Chipmitte ist. Daher kann die Stromdichte am Chiprand gegenüber der Mitte erhöht werden, um diesen Effekt auszunutzen und zu einer höheren Auskoppeleffizienz zu gelangen. Außerdem ist es möglich, etwa unterhalb einer Emissionsöffnung stärker bestromte Bereiche einzurichten als an einem Rand. Damit lässt sich unterhalb einer Emissionsöffnung eine größere Leuchtdichte erreichen und ein Anteil unmittelbar ausgekoppelter Strahlung kann erhöht werden.
  • Der hier beschriebene Halbleiterchip ist bevorzugt ein Flip-Chip und kann als Flip-Chip verbaut werden. Herkömmliche Flip-Chips können durch den hier beschriebenen Halbleiterchip ersetzt werden.
  • Der hier beschriebene Halbleiterchip und das hier beschriebene Halbleiterbauteil sind beispielsweise in Scheinwerfern und Projektionsanwendungen anwendbar. Weiterhin ist ein Einbau in Gehäusebauformen etwa mit einem weißen Rahmen, insbesondere gebildet durch einen Verguss mit reflektierenden Partikeln, möglich. Es können verschiedene Konversionstechnologien zur Wellenlängenumwandlung mit dem hier beschriebenen Halbleiterchip und dem hier beschriebenen Halbleiterbauteil kombiniert werden. Das Halbleiterbauteil kann auf einem Gehäuse basieren, dass auf einer Keramik oder auf einem Leiterrahmenaufbau fußt. Eine Montage auf Metallkernplatinen oder gedruckten Leiterplatten ist möglich. Es können Reflektoren verwendet werden, in die der Halbleiterchip und/oder das Halbleiterbauteil eingebaut werden.
  • Gemäß zumindest einer Ausführungsform umfasst der Halbleiterchip einen oder mehrere Leistenspiegel. Der mindestens eine Leistenspiegel befindet sich zwischen dem ersten Bereich und den Kontaktleisten. Es ist möglich, dass der Leistenspiegel im Wesentlichen auf die Kontaktleisten beschränkt ist oder deckungsgleich mit den Kontaktleisten verläuft. Im Wesentlichen auf die Kontaktleisten beschränkt kann bedeuten, dass der Leistenspiegel die Kontaktleisten seitlich zu höchstens 10 % oder 20 % oder 40 % eine Bereite der Kontaktleisten und/oder zu höchstens 5 µm oder 10 µm oder 30 µm überragt.
  • Gemäß zumindest einer Ausführungsform ist der Leistenspiegel elektrisch isolierend. Insbesondere ist der Leistenspiegel durch einen Bragg-Spiegel, kurz DBR, gebildet. Der Bragg-Spiegel weist Schichten mit abwechselnd hohen und niedrigen Brechungsindizes auf. Um eine hohe thermische Leitfähigkeit durch den Leistenspiegel hindurch zu erzielen, weist der Leistenspiegel bevorzugt höchstens 20 oder zehn oder fünf oder vier Schichtpaare auf. Die Schichtpaare sind beispielsweise aus Siliziumdioxid und Titandioxid gebildet. Alternativ oder zusätzlich sind mindestens drei oder fünf oder acht Schichtpaare mit einer hochbrechenden und einer niedrigbrechenden Schicht vorhanden. Der Bragg-Spiegel kann an einer Rückseite mit einer reflektierenden Metallschicht, zum Beispiel aus Silber oder Aluminium, versehen sein. Eine solche Metallschicht kann elektrisch von weiteren Komponenten des Halbleiterchips isoliert sein oder auch elektrisch mit der Kontaktschicht verbunden sein. Für die Durchkontaktierungen weist der Bragg-Spiegel bevorzugt Ausnehmungen oder Durchbrüche auf. Ein elektrisch leitendes Material der Durchkontaktierungen kann unmittelbar an die Materialien der Schichtpaare grenzen, ist jedoch von der optionalen Metallschicht an dem Bragg-Spiegel bevorzugt elektrisch getrennt.
  • Gemäß zumindest einer Ausführungsform erstreckt sich die Kontaktschicht in einen Zentralbereich des Halbleiterchips lückenlos und durchgehend über alle Kontaktleisten hinweg. Der Zentralbereich macht bevorzugt mindestens 60 % oder 80 % oder 90 % oder die gesamte Grundfläche der Halbleiterschichtenfolge aus. Der Zentralbereich ist in Draufsicht gesehen bevorzugt ringsum oder zumindest streifenförmig an einer oder mehreren Seiten von einem Randbereich umgeben.
  • Gemäß zumindest einer Ausführungsform bildet die Kontaktschicht im Zentralbereich eine erste elektrische Kontaktfläche. Die erste Kontaktfläche bildet einen externen elektrischen Anschluss des Halbleiterchips für den ersten Bereich der Halbleiterschichtenfolge. Im Bereich der Kontaktfläche ist es möglich, dass die Kontaktschicht eine Kontaktmetallisierung aufweist oder mit einer Kontaktmetallisierung versehen ist. Über eine solche Kontaktmetallisierung kann die Kontaktfläche beispielsweise mittels Löten kontaktiert werden.
  • Gemäß zumindest einer Ausführungsform sind die Kontaktleisten im Querschnitt gesehen in Gebieten zwischen benachbarten Durchkontaktierungen vollständig von dem Leistenspiegel zusammen mit der Isolationsschicht eingeschlossen. Das heißt, die Kontaktleisten grenzen zwischen benachbarten Durchkontaktierungen in diesem Fall nur an den Leistenspiegel und an die Isolationsschicht. Der Leistenspiegel trennt die Kontaktleisten von dem ersten Bereich der Halbleiterschichtenfolge und die Isolationsschicht bildet eine Separation gegenüber der Kontaktschicht.
  • Gemäß zumindest einer Ausführungsform sind die Kontaktleisten in Draufsicht gesehen nur in einem Randbereich des Halbleiterchips frei von der Kontaktschicht. Damit kann im Randbereich an den Kontaktleisten mindestens eine zweite elektrische Kontaktfläche gebildet sein. Die mindestens eine zweite Kontaktfläche ist zur externen elektrischen Kontaktierung des Halbleiterchips für den zweiten Bereich der Halbleiterschichtenfolge eingerichtet. Bevorzugt sind die zweiten Kontaktflächen mittels Löten elektrisch und mechanisch anschließbar.
  • Gemäß zumindest einer Ausführungsform sind die Kontaktleisten einzeln oder in Gruppen elektrisch unabhängig voneinander ansteuerbar. Damit ist bevorzugt für jede Kontaktleiste oder für jede Gruppe zumindest eine eigene zweite Kontaktfläche vorhanden. Beispielsweise liegt pro Kontaktleiste oder pro Gruppe genau eine oder genau zwei zweite Kontaktflächen vor.
  • Gemäß zumindest einer Ausführungsform sind die Kontaktleisten untereinander elektrisch kurzgeschlossen. Insbesondere ist dann für alle Kontaktleisten zusammengenommen nur eine zweite Kontaktfläche oder sind nur zwei zweite Kontaktflächen vorhanden.
  • Gemäß zumindest einer Ausführungsform sind die zweiten Kontaktflächen vollständig vom zweiten Bereich der Halbleiterschichtenfolge überdeckt. Das heißt, die zweiten Kontaktflächen überragen die Halbleiterschichtenfolge seitlich nicht.
  • Alternativ stehen die zweiten Kontaktflächen teilweise oder vollständig seitlich über die Halbleiterschichtenfolge über. Das heißt, in Draufsicht gesehen können sich die zweiten Kontaktflächen vollständig oder teilweise neben der Halbleiterschichtenfolge befinden.
  • Gemäß zumindest einer Ausführungsform umfasst die Kontaktschicht eine Haftvermittlungsschicht, eine metallische Spiegelschicht, eine Diffusionsbarriereschicht und/oder eine metallische Tragschicht. Diese Schichten folgen in der angegebenen Reihenfolge in Richtung weg von der Halbleiterschichtenfolge aufeinander, insbesondere direkt aufeinander. Die Haftvermittlungsschicht ist beispielsweise eine Titanschicht mit einer Dicke von höchstens 1 nm. Bei der Spiegelschicht handelt es sich insbesondere um eine Silberschicht, eine Aluminiumschicht oder eine Goldschicht. Eine Dicke der Spiegelschicht liegt bevorzugt bei mindestens 30 nm und/oder bei höchstens 300 nm. Die Diffusionsbarriereschicht ist zum Beispiel aus Ti, Pt, TiW und/oder TiWN mit einer Dicke von mindestens 5 nm und/oder höchstens 200 nm. Die metallische Tragschicht ist bevorzugt aus Kupfer und kann galvanisch erzeugt sein. Eine Dicke der Tragschicht liegt bevorzugt bei mindestens 3 µm und/oder bei höchstens 30 µm.
  • Gemäß zumindest einer Ausführungsform befindet sich die Haftvermittlungsschicht, die Diffusionsbarriereschicht und/oder die Spiegelschicht direkt an der Isolationsschicht. Das heißt, die Haftvermittlungsschicht, die Diffusionsbarriereschicht und/oder die Spiegelschicht können die Kontaktleisten, und damit die Isolationsschicht, formtreu nachformen.
  • Gemäß zumindest einer Ausführungsform sind die Kontaktleisten dick. Beispielsweise weisen die Kontaktleisten eine Dicke von mindestens 2 µm oder 5 µm und/oder von höchstens 30 µm oder 15 µm auf. Demgegenüber ist die Isolationsschicht bevorzugt dünn, beispielsweise mit einer Dicke von mindestens 10 nm und/oder von höchstens 250 nm. Die Kontaktleisten können aus mehreren Metallen zusammengesetzt sein, beispielsweise aus einer dünnen Silberschicht, einer dünnen Diffusionsbarriereschicht und einer dicken Kupferschicht, analog zur Kontaktschicht. Die Isolationsschicht ist bevorzugt aus einem Oxid wie Siliziumdioxid.
  • Gemäß zumindest einer Ausführungsform verringert sich eine Querschnittsfläche der Kontaktleisten und/oder eine Flächendichte der Durchkontaktierungen in Richtung hin zu einer Chipmitte. Dadurch lassen sich in der Chipmitte geringere Stromdichten erzielen. Alternativ kann für eine höhere Stromdichte in der Chipmitte eine Flächendichte der Durchkontaktierungen hin zur Chipmitte zunehmen. Anstelle der Flächendichte der Durchkontaktierungen kann auch deren stromleitender Querschnitt eingestellt werden.
  • Gemäß zumindest einer Ausführungsform liegt ein Flächenanteil der Kontaktleisten und bevorzugt auch des Leistenspiegels bei mindestens 5 % oder 10 % und/oder bei höchstens 25 % oder 20 % einer Grundfläche der Halbleiterschichtenfolge. Alternativ oder zusätzlich gilt, dass ein Flächenanteil der Durchkontaktierungen an der Rückseite der Halbleiterschichtenfolge bei mindestens 0,5 % oder 1 % und/oder bei höchstens 8 % oder 5 % oder 3 % liegt. Das heißt, die Kontaktleisten machen an der Rückseite bevorzugt einen signifikant größeren Flächenanteil aus als die Durchkontaktierungen.
  • Gemäß zumindest einer Ausführungsform umfasst der Halbleiterchip ein Aufwachssubstrat für die Halbleiterschichtenfolge, insbesondere aus Saphir. Das Aufwachssubstrat befindet sich am zweiten Bereich. Bevorzugt handelt es sich bei dem Aufwachssubstrat um diejenige Komponente des Halbleiterchips, die diesen mechanisch trägt und stützt.
  • Darüber hinaus wird ein optoelektronisches Halbleiterbauteil angegeben. Das Halbleiterbauteil umfasst mindestens einen Halbleiterchip, wie in Verbindung mit einer oder mehrerer der oben genannten Ausführungsformen angegeben. Merkmale des Halbleiterbauteils sind daher auch für den Halbleiterchip offenbart und umgekehrt.
  • In mindestens einer Ausführungsform umfasst das Halbleiterbauteil einen oder mehrere Halbleiterchips an einer Vorderseite. Weiterhin umfasst das Halbleiterbauteil einen Träger. Der Träger weist einen ersten elektrischen Anschluss für den ersten Bereich und einen oder mehrere zweite elektrische Anschlüsse für den zweiten Bereich auf. Der erste Anschluss erstreckt sich durch den Träger hindurch, wie dies auch für den zweiten Anschluss gelten kann. Eine Grundfläche des ersten Anschlusses beträgt durchgehend mindestens 70 % oder 90 % einer Grundfläche der ersten Kontaktfläche des Halbleiterchips. Bevorzugt ist die Grundfläche des ersten Anschlusses mindestens so groß wie die Grundfläche der Kontaktfläche, um eine effiziente Entwärmung des Halbleiterchips durch den Träger hindurch zu gewährleisten.
  • Gemäß zumindest einer Ausführungsform ist der zweite Anschluss an der Vorderseite in mehrere Stege streifenförmig oder gitternetzförmig strukturiert. Damit ist es möglich, dass der zweite Anschluss nur einen vergleichsweise geringen Flächenanteil der Vorderseite einnimmt.
  • Gemäß zumindest einer Ausführungsform sind der erste und der zweite Anschluss an einer der Vorderseite gegenüberliegenden Montageseite je durch eine durchgehende Fläche gebildet. Beispielsweise sind die Anschlüsse an der Montageseite rechteckig oder näherungsweise rechteckig, beispielsweise mit abgerundeten Ecken, geformt.
  • Gemäß zumindest einer Ausführungsform sind Gebiete zwischen den Stegen mit einer reflektierenden Beschichtung aufgefüllt. Eine solche Beschichtung ist beispielsweise durch ein Silikon oder durch einen anderen Kunststoff gebildet, in welchen reflektierende Partikel beispielsweise aus Titandioxid eingebettet sind. Hierdurch lassen sich Reflexionsverluste an metallischen Strukturen reduzieren.
  • Gemäß zumindest einer Ausführungsform steht der Träger ringsum seitlich über den Halbleiterchip über. Alternativ ist es möglich, dass der Träger und der Halbleiterchip bündig miteinander abschließen und/oder deckungsgleich gestaltet sind.
  • Gemäß zumindest einer Ausführungsform umrahmt der zweite Anschluss den Halbleiterchip an der Vorderseite in Draufsicht gesehen überwiegend oder vollständig. Überwiegend bedeutet insbesondere zu mindestens 70 % oder 85 % oder 95 %.
  • Gemäß zumindest einer Ausführungsform ist das Halbleiterbauteil für einen Betrieb der aktiven Zone mit einer Stromdichte von mindestens 2 A/mm2 oder 4 A/mm2 oder 6 A/mm2 eingerichtet. Das heißt, die elektrischen Zuführungen, insbesondere die Leiterquerschnitte der Durchkontaktierungen und der Kontaktleisten, sind entsprechend gestaltet.
  • Gemäß zumindest einer Ausführungsform weist die aktive Zone und/oder die Halbleiterschichtenfolge eine Grundfläche von mindestens 0,5 mm2 oder 0,9 mm2 auf. Alternativ oder zusätzlich liegt die Größe der Grundfläche bei höchstens 10 mm2 oder 5 mm2 oder 2 mm2.
  • Nachfolgend werden ein hier beschriebener optoelektronischer Halbleiterchip und ein hier beschriebenes optoelektronisches Halbleiterbauteil unter Bezugnahme auf die Zeichnung anhand von Ausführungsbeispielen näher erläutert. Gleiche Bezugszeichen geben dabei gleiche Elemente in den einzelnen Figuren an. Es sind dabei jedoch keine maßstäblichen Bezüge dargestellt, vielmehr können einzelne Elemente zum besseren Verständnis übertrieben groß dargestellt sein.
  • Es zeigen:
    • 1 bis 5 schematische Schnittdarstellungen von Ausführungsbeispielen von hier beschriebenen optoelektronischen Halbleiterchips,
    • 6 eine perspektivische Draufsicht auf ein Ausführungsbeispiel eines hier beschriebenen optoelektronischen Halbleiterchips,
    • 7 eine perspektivische Unteransicht eines Ausführungsbeispiels eines hier beschriebenen optoelektronischen Halbleiterchips,
    • 8 eine schematische Unteransicht eines Ausführungsbeispiels eines hier beschriebenen optoelektronischen Halbleiterchips,
    • 9 eine schematische Seitenansicht eines Ausführungsbeispiels eines hier beschriebenen optoelektronischen Halbleiterchips,
    • 10 bis 13 schematische Unteransichten von Ausführungsbeispielen von hier beschriebenen optoelektronischen Halbleiterchips,
    • 14 und 15 schematische perspektivische Darstellungen der elektrischen Kontaktierung von Ausführungsbeispielen von hier beschriebenen optoelektronischen Halbleiterchips,
    • 16 bis 18 schematische Unteransichten auf Kontaktleisten für Ausführungsbeispiele von hier beschriebenen optoelektronischen Halbleiterchips,
    • 19 eine schematische Schnittdarstellung eines Ausführungsbeispiels eines hier beschriebenen optoelektronischen Halbleiterbauteils,
    • 20 und 21 schematische perspektivische Darstellungen von Ausführungsbeispielen von hier beschriebenen optoelektronischen Halbleiterbauteilen,
    • 22 eine schematische perspektivische Darstellung einer elektrischen Kontaktstruktur eines Ausführungsbeispiels eines hier beschriebenen optoelektronischen Halbleiterbauteils,
    • 23 eine schematische perspektivische Darstellung eines Ausführungsbeispiels eines hier beschriebenen optoelektronischen Halbleiterchips,
    • 24 bis 27 schematische Schnittdarstellungen von Ausführungsbeispielen von hier beschriebenen optoelektronischen Halbleiterbauteilen, und
    • 28 bis 33 schematische perspektivische Darstellungen von Ausführungsbeispielen von hier beschriebenen optoelektronischen Halbleiterbauteilen.
  • In 1 ist ein Ausführungsbeispiel eines optoelektronischen Halbleiterchips 1 dargestellt. An einem Aufwachssubstrat 25 etwa aus Saphir befindet sich eine Halbleiterschichtenfolge 2. Das Aufwachssubstrat 25 stellt eine Lichtaustrittsseite 8 des Halbleiterchips 1 dar. Die Halbleiterschichtenfolge 2 umfasst einen ersten Bereich 21 sowie einen zweiten Bereich 22, zwischen denen sich eine aktive Zone 23 befindet. Der erste Bereich 21 ist bevorzugt p-dotiert und der zweite Bereich 22 bevorzugt n-dotiert. Die Halbleiterschichtenfolge 2 basiert insbesondere auf dem Materialsystem AlInGaN.
  • Zur elektrischen Kontaktierung des zweiten Bereichs 22 sind mehrere elektrische Durchkontaktierungen 32 vorhanden. Von einer Rückseite 20 der Halbleiterschichtenfolge 2 her, die durch den ersten Bereich 21 gebildet ist, erstrecken sich die Durchkontaktierungen 32 durch die aktive Zone 23 hindurch und enden innerhalb des zweiten Bereichs 22. Die einzelnen Durchkontaktierungen 32 sind durch elektrische Kontaktleisten 42 miteinander verbunden. Die Kontaktleisten 42 laufen in 1 senkrecht zur Zeichenebene, siehe auch 6.
  • In 1 sind nur zwei der Durchkontaktierungen 32 gezeichnet. Bevorzugt sind in Draufsicht gesehen mindestens 4 x 4 oder 6 x 6 und/oder höchstens 50 x 50 oder 12 x 12 der Durchkontaktierungen 32 vorhanden. Die Durchkontaktierungen 32 können in Draufsicht gesehen in einem regelmäßigen Muster angeordnet sein, insbesondere in Form einer Matrix.
  • Um elektrische Kurzschlüsse zu vermeiden, befindet sich zwischen den Kontaktleisten 42 und dem ersten Bereich 21 jeweils ein Leistenspiegel 52. Bei dem Leistenspiegel 52 handelt es sich bevorzugt um einen Bragg-Spiegel, kurz DBR. An einer der Rückseite 20 abgewandten Seite sind die Kontaktleisten 42 vollständig von einer elektrischen Isolationsschicht 62 abgedeckt, die bis an den Leistenspiegel 52 heranreicht.
  • Ein mittlerer Durchmesser der Durchkontaktierungen 32 liegt beispielsweise bei mindestens 3 µm und/oder bei höchstens 50 µm. Die Kontaktleisten 42 sind im Querschnitt senkrecht zur Rückseite 20 und zu den Kontaktleisten 42 gesehen breiter als die Durchkontaktierungen 32. Beispielsweise ist eine Breite der Kontaktleisten 42 um mindestens 10 µm oder 20 µm größer als der mittlere Durchmesser der Durchkontaktierungen 32.
  • Ferner umfasst der Halbleiterchip 1 eine Kontaktschicht 31. Die Kontaktschicht 31 schließt den ersten Bereich 21 elektrisch an. Die Kontaktschicht 31 ist bevorzugt aus mehreren Teilschichten 61, 63 zusammengesetzt.
  • Eine metallische Spiegelschicht 61 der Kontaktschicht 31 ist vergleichsweise dünn und erstreckt sich flächig über die Rückseite 20 und damit über die Kontaktleisten 42 samt zugehörigen Komponenten hinweg. Die Spiegelschicht 61 ist bevorzugt aus Silber mit einer Dicke um 100 nm. Die Spiegelschicht 61 formt die Kontaktleisten 42 formtreu nach.
  • Die Spiegelschicht 61 ist vollständig von einer Tragschicht 63 abgedeckt. Die Tragschicht 63 ist vergleichsweise dick und beispielsweise aus Kupfer. Abweichend von der Darstellung der 1 ist es wie auch in allen anderen Ausführungsbeispielen möglich, dass sich zwischen den Schichten 61, 63 eine nicht gezeichnete Diffusionsbarriereschicht befindet, beispielsweise aus Titan oder Titanwolframnitrid.
  • Eine der Rückseite 20 abgewandte Seite der Kontaktschicht 31 kann plan geformt sein und bildet bevorzugt eine erste elektrische Kontaktfläche 71. Damit erstreckt sich die Tragschicht 63 und die erste Kontaktfläche 71 im Wesentlichen über die gesamte Halbleiterschichtenfolge 2. Somit ist ein effizientes Entwärmen der Halbleiterschichtenfolge 2 möglich.
  • Dies liegt insbesondere auch daran, dass der Leistenspiegel 52 sowie die Isolationsschicht 62 die Rückseite 20 nur zu einem vergleichsweise kleinen Flächenanteil bedecken. Damit ist hin zu der ersten Kontaktfläche 71 nur ein vergleichsweise geringer thermischer Widerstand realisierbar.
  • Im Ausführungsbeispiel der 2 ist gezeigt, dass die Durchkontaktierungen 32 seitlich von einer elektrischen Isolierung 66 umgeben sind, um Kurzschlüsse im Bereich der Durchkontaktierungen 32 zu unterbinden. Weiterhin ist illustriert, dass das Aufwachssubstrat entfernt sein kann. Damit kann die Lichtaustrittsseite 8 durch den zweiten Bereich 22 gebildet sein. Die Lichtaustrittsseite 8 ist optional mit einer Aufrauung versehen.
  • Weiterhin ist in 2 dargestellt, dass eine transparente leitfähige Schicht 65 vorhanden ist. Die Schicht 65 ist bevorzugt aus einem transparenten leitfähigen Oxid, kurz TCO, wie ITO. Die Schicht 65 kann bis an die Isolierung 66 reichen und sich damit unter den Leistenspiegel 52 erstrecken. Damit ist der erste Bereich 21 im Wesentlichen ganzflächig bestrombar. Eine Dicke der Schicht 65 liegt zum Beispiel bei mindestens 30 nm und/oder bei höchstens 200 nm.
  • Außerdem ist der 2 zu entnehmen, dass die Kontaktleisten 42 mehrschichtig aufgebaut sein können. Eine Teilschicht, die der Rückseite 20 am nächsten liegt, ist beispielsweise als Spiegel wie ein Silberspiegel gestaltet. Die weiter von der Rückseite 20 liegende Teilschicht der Kontaktleisten 42 ist bevorzugt thermisch leitfähig und beispielsweise aus Kupfer. Wiederum kann eine nicht gezeichnete, dünne und mittig liegende Diffusionsbarriereschicht vorhanden sein.
  • Im Übrigen gelten die Ausführungen zur 1 entsprechend für 2.
  • Gemäß 3 ist das Aufwachssubstrat 25 ein Saphirsubstrat. Das Aufwachssubstrat 25 kann Strukturierungen enthalten und somit ein strukturiertes Saphirsubstrat sein, englisch Pattern Sapphire Substrate oder kurz PSS.
  • Hinsichtlich der Kontaktschicht 31 ist gezeigt, dass hin zur Halbleiterschichtenfolge 2 eine Haftvermittlungsschicht 64 etwa aus Platin oder Titan vorhanden sein kann. Die Haftvermittlungsschicht 64 ist bevorzugt sehr dünn und optisch nicht oder nicht signifikant wirksam. Insbesondere falls die Haftvermittlungsschicht 64 vorhanden ist, kann die transparente leitfähige Schicht 65 auch entfallen. Ist die Schicht 65 vorhanden, so kann die Schicht 65 selbst als Haftvermittlungsschicht dienen, sodass die Schicht 64 weggelassen werden kann.
  • Weiterhin ist in 3 illustriert, dass die Isolierung 66 im Querschnitt gesehen beiderseits der Durchkontaktierungen 32 L-förmig gestaltet ist. Damit kann sich die Isolationsschicht 62 auch auf die Isolierung 66 erstrecken und teilweise parallel zu dieser verlaufen. Somit ist es möglich, dass die Kontaktleisten 42 im Querschnitt gesehen durch die Isolierung 66 und durch die Isolationsschicht 62 eingeschlossen sind, jedenfalls in Bereichen zwischen benachbarten Durchkontaktierungen 32.
  • In 4 ist gezeigt, dass der Leistenspiegel 52 und die Kontaktleiste 42 seitlich bündig miteinander abschließen. Die Isolationsschicht 62 kann bis auf die transparente leitfähige Schicht 65 heruntergezogen sein. Die Isolierung 66 kann bündig mit der Rückseite 20 abschließen.
  • Wie auch in allen anderen Ausführungsbeispielen ist es möglich, dass eine Spitze der Durchkontaktierungen 32 jeweils nicht planar, sondern kegelstumpfförmig oder pyramidenstumpfförmig oder zylindrisch mit einem kleineren Durchmesser geformt ist. Hierdurch kann eine elektrische Kontaktfläche hin zum zweiten Bereich 22 vergrößert werden.
  • Gemäß 5 erstreckt sich die Isolierung 66 auf den Leistenspiegel 52. Die Isolationsschicht 62 reicht bis zur Isolierung 66 oder, abweichend von der Darstellung in 5, auch bis zum Leistenspiegel 52. Damit kann die metallische Spiegelschicht 61 im Bereich der Kontaktleisten 42 mehrfach gestuft verlaufen und abschnittsweise direkt an die Isolierung 66 grenzen.
  • Optional befindet sich an der Kontaktschicht 31 eine Kontaktmetallisierung 67, die aus einer oder aus mehreren Metallschichten gebildet ist, beispielsweise aus Gold, Zinn und/oder Nickel. Die Kontaktmetallisierung 67 ermöglicht bevorzugt ein Anlöten des Halbleiterchips 1. Eine solche Kontaktmetallisierung 67 kann auch in allen anderen Ausführungsbeispielen für elektrische Kontaktflächen vorhanden sein.
  • In 6 ist gezeigt, dass an einem Randbereich des Halbleiterchips 1 mehrere quadratisch oder rechteckig geformte zweite Kontaktflächen 72 zum elektrischen Anschließen der Kontaktleisten 42 vorhanden sind. Im Übrigen gelten die Ausführungen zu den 1 bis 5 entsprechend.
  • In 7 sind die zweiten elektrischen Kontaktflächen 72 in Unteransicht dargestellt. Die zweiten Kontaktflächen 72 erstrecken sich beiderseits und symmetrisch längs der ersten Kontaktfläche 71, siehe auch 8. Eine zugehörige Seitenansicht ist in 9 zu sehen.
  • In den 10 bis 13 sind weitere Unteransichten dargestellt. Die zweiten Kontaktflächen 72 können streifenförmig verlaufen, siehe 10. Es ist möglich, dass nur ein Streifen für die zweite Kontaktfläche 72 vorhanden ist, siehe 11. Gemäß 12 umgibt die zweite Kontaktfläche 72 die erste Kontaktfläche 71 ringsum rahmenförmig. In 13 befindet sich die zweite Kontaktfläche 72 nur in einem Eckbereich des Halbleiterchips 1. Übrige Bereiche sind von der Kontaktfläche 71 bedeckt, die einen Ausschnitt für die zweite Kontaktfläche 72 aufweist.
  • In den 14 und 15 ist die Kontaktstruktur des Halbleiterchips 1 näher illustriert. Zur besseren Sichtbarkeit sind dabei die Halbleiterschichtenfolge und das Aufwachssubstrat nicht gezeichnet.
  • Zu erkennen ist, dass sich die Leisten 42 am Rand des Halbleiterchips über die Kontaktschicht 31 hinaus erstrecken. In Richtung weg von der nicht gezeichneten Halbleiterschichtenfolge sind die zweiten Kontaktflächen 72 vorhanden. Die zweiten Kontaktflächen 72 können genauso aufgebaut sein wie die ersten Kontaktflächen 71 und entsprechend über mehrere Schichten verfügen. Von den zweiten Kontaktflächen 72 hin zu den ersten Kontaktflächen 71 ist bevorzugt eine Isolierung 66 vorhanden. Alternativ zu einer Isolierung 66 kann auch ein Luftspalt gebildet sein.
  • Die Kontaktleisten 42 sind innerhalb des Halbleiterchips 2 elektrisch nicht unmittelbar miteinander verbunden. Somit können die Kontaktleisten 42 elektrisch einzeln angesteuert werden.
  • Die 16 bis 18 betreffen Gestaltungsmöglichkeiten der Kontaktleisten 42, die jeweils in den Ausführungsbeispielen der 1 bis 15 vorliegen können.
  • Gemäß 16 verschmälern sich die Kontaktleisten 42 in Richtung hin zu einer Mitte des Halbleiterchips 1. Dadurch nimmt ein elektrischer Widerstand der Kontaktleisten 42 in Richtung hin zur Mitte des Halbleiterchips 1 zu. Hierdurch ist erreichbar, dass der Halbleiterchip in einer Mitte weniger stark bestromt wird. Da eine Lichtauskopplung vornehmlich über die Seitenflächen erfolgt, ist somit eine höhere Lichtauskoppeleffizienz erzielbar.
  • In 17 weisen die Kontaktleisten 42 eine konstante Breite auf. Jedoch nimmt ein Durchmesser der Durchkontaktierungen 32 in Richtung hin zu einer Mitte des Halbleiterchips 1 zu. Damit kann der gleiche Effekt wie in 16 erreicht werden. Alternativ ist abweichend von den Darstellungen der 16 und 17 auch eine Flächendichte der Durchkontaktierungen 32 variierbar, um die Bestromungsstärke lokal einzustellen.
  • In 18 ist illustriert, dass die Kontaktleisten 42 gitternetzförmig verlaufen können, beispielsweise in Form eines hexagonalen Gitters oder, abweichend von der Darstellung in 18, auch in Form eines quadratischen oder rechteckigen Gitters. Die Kontaktleisten 42 sind damit innerhalb des Halbleiterchips 2 elektrisch kurzgeschlossen.
  • Beim Halbleiterchip 1 der 19 befinden sich die zweiten Kontaktflächen 72 seitlich neben der Halbleiterschichtenfolge 2. Eine mechanische Stabilisierung der Kontaktflächen 72 erfolgt beispielsweise über einen Verguss 9, der reflektierend gestaltet sein kann. Ein solcher Verguss 9 kann auch in allen anderen Ausführungsbeispielen vorhanden sein.
  • In 20 ist ein Ausführungsbeispiel eines optoelektronischen Halbleiterbauteils 10 illustriert. Mittig auf einem Träger 13 befindet sich der Halbleiterchip 1. Die Kontaktflächen des Halbleiterchips 1 sind auf elektrischen Anschlüssen 11, 12 angebracht. Dabei weist ein zweiter Anschluss 12 für den zweiten Bereich der Halbleiterschichtenfolge mehrere Stege 16 auf, die jeweils zu den zweiten Kontaktflächen geführt sind.
  • Zu einer gleichmäßigen Stromverteilung an einer Vorderseite 15 des Trägers 13 umgibt der zweite Anschluss 12 den Halbleiterchip 1 in Draufsicht gesehen ringsum. Eine Montageseite 14, die der Vorderseite 15 gegenüberliegt, ist bevorzugt zu einer Lötmontage des Halbleiterbauteils 10 eingerichtet.
  • Es können für die einzelnen Kontaktleisten 42 auch je mehrere zweite Anschlüsse 12 vorhanden sein, um die Kontaktleisten 42 elektrisch unabhängig voneinander anzusteuern. Bevorzugt jedoch weist das Halbleiterbauteil 10 an der Montageseite 14 nur eine erste und nur eine zweite Anschlussstelle 11, 12 auf.
  • Optional befindet sich zwischen den Stegen 16 eine reflektierende Beschichtung 17. Über die reflektierende Beschichtung 17 sind Absorptionsverluste an dem Träger 13 reduzierbar, insbesondere da ein geringerer Flächenanteil der Vorderseite 15 mit den Stegen 16 bedeckt ist. Weiterhin ist es durch die Ausführung des zweiten Anschlusses 12 an der Vorderseite 15 mit den Stegen 16 möglich, thermische Verspannungen abzufangen, sodass der Halbleiterchip 1 geringeren mechanischen Belastungen ausgesetzt ist.
  • In 21 ist der Träger 13 zur besseren Veranschaulichung transparent dargestellt. Zu erkennen ist, dass die Anschlüsse 11, 12 von der Montageseite 14 zur Vorderseite 15 durch den Träger hindurch verlaufen. Der erste Anschluss 11 weist dabei durchgehend von der Montageseite 14 zur Vorderseite 15 eine Querschnittsfläche auf, die mindestens einer Fläche der ersten Kontaktfläche des Halbleiterchips 1 entspricht. Damit ist eine effiziente Entwärmung des Halbleiterchips 1 durch den Träger 13 hindurch möglich. In Draufsicht gesehen können die erste Kontaktfläche des Halbleiterchips 1 und ein im Träger 13 verlaufender Bereich des ersten Anschlusses 11 deckungsgleich verlaufen. Im Übrigen gelten die Ausführungen zur 20 entsprechend.
  • Die Kontaktstruktur des Halbleiterbauteils 10 der 21 ist in 22 nochmals illustriert. Insbesondere ist zu erkennen, dass der erste Anschluss 11 an der Vorderseite 15 deckungsgleich mit der ersten Kontaktfläche 71 verläuft. Der Träger 13 ist zur Vereinfachung der Darstellung nicht illustriert.
  • Beim Ausführungsbeispiel der 23 ist die zumindest eine zweite Kontaktfläche 72 der Lichtaustrittsfläche 8 zugewandt. Die zweite Kontaktfläche 72 ist zum Beispiel auf einen Eckbereich beschränkt. Die zweite Kontaktfläche 72 ist beispielsweise für eine Bonddrahtkontaktierung eingerichtet. Damit kann die erste Kontaktfläche 71 die gesamte oder im Wesentlichen die gesamte Rückseite 20 des Halbleiterchips 1 bilden. Abweichend von der Darstellung in 23 können auch mehrere zweite Kontaktflächen 72 vorhanden sein. Die Kontaktleisten 42 sind beispielsweise an einem Rand des Halbleiterchips 1 elektrisch zu der mindestens einen zugehörigen zweiten Kontaktfläche 72 geführt.
  • Die 24 bis 27 betreffen jeweils weitere Ausführungsbeispiele der Halbleiterbauteile 10. Die elektrische Kontaktierung ist dabei jeweils nur angedeutet und ist bevorzugt gestaltet, wie in Verbindung mit den 1 bis 23 erläutert.
  • Die Halbleiterbauteile 10 umfassen jeweils den Verguss 9, der bevorzugt weiß erscheint und diffus reflektiert. An einer der Lichtaustrittsseite 8 zugewandten Seite ist das Aufwachssubstrat 25 oder optional die Halbleiterschichtenfolge 2 selbst mit einem Zusatzspiegel 81 versehen, zum Beispiel einem Bragg-Spiegel oder einem Metallspiegel. Der Zusatzspiegel 81 weist eine streifenförmige Öffnung auf, die mit einem Leuchtstoff 83 versehen sein kann. Durch diesen Schlitz oder Streifen in dem Zusatzspiegel 81 kann eine Leuchtdichte gesteigert werden, da das erzeugte Licht nur in einem relativ kleinen Bereich aus dem Halbleiterchip 1 heraustritt. Der Streifen bedeckt zum Beispiel mindestens 10 % oder 20 % und/oder höchstens 40 % oder 25 % der Halbleiterschichtenfolge 2.
  • Auf dem Verguss 9 und/oder auf dem Zusatzspiegel 81 befindet sich optional eine optische Blende 82, die lichtundurchlässig ist. Die Blende 82 ist zum Beispiel eine Metallschicht oder ein insbesondere weißer Vergusskörper. Seitenflächen des Leuchtstoffs 83 können vollständig von der Blende 82 bedeckt sein. Eine Dicke der Blende 82 liegt zum Beispiel bei mindestens 10 µm und/oder bei höchstens 50 µm. Anders als in 24 dargestellt kann der Leuchtstoff 83 die Blende 82 auch überragen.
  • Gemäß 25 erstreckt sich die Blende 82 auch auf Seitenflächen des Vergusses 9 und kann bis zur Rückseite 20 reichen. Der Zusatzspiegel 81 und die Blende 82 können bündig miteinander abschließen, anders als in 24, wonach die Blende 82 gegenüber dem Zusatzspiegel 81 zurückversetzt ist.
  • In 26 ist gezeigt, dass die Blende 82 den Verguss 9 auch nur zum Teil bedecken kann.
  • Die Schnittdarstellung in 27 ist gegenüber den 24 bis 26 um 90° verdreht, bezogen auf eine Draufsicht. Das heißt, der Schnitt verläuft gemäß 27 längs zu dem Streifen, der von dem Leuchtstoff 83 gebildet wird. Optional befindet sich an Enden des Streifens des Leuchtstoffs 83 ein Klarverguss 84 an dem Halbleiterchip 1. Der Klarverguss 84 kann sich keilförmig in Richtung hin zu dem Leuchtstoff 83 verbreitern. Damit kann der nicht gezeichnete Verguss 9, der sich bevorzugt an Außenseiten des Klarvergusses 84 befindet, als Reflexionsfläche hin zu dem Leuchtstoff 83 wirken.
  • Das Halbleiterbauteil 10 der 27 ist in 28 nochmals perspektivisch dargestellt, jedoch ohne den Verguss 9, den Leuchtstoff 83 und die optionale Blende 82.
  • In 29 ist das Halbleiterbauteil 10 der 24 nochmals gezeigt, wobei der Verguss 9 und die Blende 82 auch einstückig gestaltet sein können.
  • In 30 ist illustriert, dass mehrere der in den 24 bis 29 gezeigten Einheiten in Reihe belassen und zu einem einzigen Halbleiterbauteil 10 zusammengefasst werden können.
  • Beim Halbleiterbauteil 10 der 31 befindet sich der Streifen mit dem Leuchtstoff 83 nicht mittig über dem Halbleiterchip 1, sondern ausmittig, beispielsweise an einem Rand. Dadurch lässt sich eine asymmetrische Abstrahlcharakteristik erzielen, auch als Batwing-Charakteristik bezeichnet. Im Übrigen entspricht das Halbleiterbauteil 10 der 31 dem der 24 bis 27, die Ausführungen zu diesen Figuren gelten entsprechend für 31.
  • Analog zu 30 sind in 32 mehrere der Einheiten aus 31 zu dem Halbleiterbauteil 10 zusammengefasst.
  • In 33 ist veranschaulicht, dass zwei der Halbleiterbauteile der 10 um 180° gegeneinander verdreht zu einem einzigen Halbleiterbauteil 10 zusammengefasst werden können. Damit lässt sich eine symmetrische Batwing-Charakteristik erzielen, mit Intensitätsmaxima zum Beispiel bei Abstrahlwinkeln von mindestens 30° und/oder höchstens 60°, bezogen auf ein Lot zur Lichtaustrittsseite 8. Optional sind die beiden Leuchtstoffstreifen 83 in Draufsicht auf die Lichtaustrittsseite 8 gesehen durch den Verguss 9 voneinander separiert. Alternativ können die Leuchtstoffstreifen 83 auch einstückig gestaltet sein.
  • Die in den Figuren gezeigten Komponenten folgen, sofern nicht anders kenntlich gemacht, bevorzugt in der angegebenen Reihenfolge jeweils unmittelbar aufeinander. Sich in den Figuren nicht berührende Schichten sind bevorzugt voneinander beabstandet. Soweit Linien parallel zueinander gezeichnet sind, sind die entsprechenden Flächen bevorzugt ebenso parallel zueinander ausgerichtet. Ebenfalls, soweit nicht anders kenntlich gemacht, sind die relativen Positionen der gezeichneten Komponenten zueinander in den Figuren korrekt wiedergegeben.
  • Die hier beschriebene Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist.
  • Bezugszeichenliste
  • 1
    optoelektronischer Halbleiterchip
    2
    Halbleiterschichtenfolge
    20
    Rückseite
    21
    erster Bereich
    22
    zweiter Bereich
    23
    aktive Zone
    25
    Aufwachssubstrat
    31
    Kontaktschicht
    32
    Durchkontaktierung
    42
    Kontaktleiste
    52
    Leistenspiegel
    61
    metallische Spiegelschicht
    62
    elektrische Isolationsschicht
    63
    Tragschicht
    64
    Haftvermittlungsschicht
    65
    transparente leitfähige Schicht
    66
    elektrische Isolierung
    67
    Kontaktmetallisierung
    71
    erste elektrische Kontaktfläche
    72
    zweite elektrische Kontaktfläche
    8
    Lichtaustrittsseite
    81
    Zusatzspiegel
    82
    Blende
    83
    Leuchtstoff
    84
    Klarverguss
    9
    Verguss
    10
    optoelektronisches Halbleiterbauteil
    11
    erster elektrischer Anschluss
    12
    zweiter elektrischer Anschluss
    13
    Träger
    14
    Montageseite
    15
    Vorderseite
    16
    Steg
    17
    reflektierende Beschichtung
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 2015/0372203 A1 [0017, 0021]

Claims (17)

  1. Optoelektronischer Halbleiterchip (1) mit - einer Halbleiterschichtenfolge (2), die eine aktive Zone (23) zur Strahlungserzeugung zwischen einem ersten Bereich (21) und einem zweiten Bereich (22) aufweist, - mehreren elektrischen Durchkontaktierungen (32), über die der zweite Bereich (22) elektrisch kontaktiert ist, - mehreren metallischen Kontaktleisten (42), über die die Durchkontaktierungen (32) elektrisch angeschlossen sind, und - einer metallischen Kontaktschicht (31), über die der erste Bereich (21) elektrisch kontaktiert ist, und - einer elektrischen Isolationsschicht (62) zwischen den Kontaktleisten (42) und der Kontaktschicht (32), wobei - die Halbleiterschichtenfolge (2) eine Rückseite (20) aufweist, die durch den ersten Bereich (21) gebildet ist, - sich die Kontaktschicht (31) und die Kontaktleisten (32) an der Rückseite (20) befinden, - sich die Durchkontaktierungen (31) von den Kontaktleisten (42) ausgehend durch den ersten Bereich (21) und durch die aktive Zone (23) in den zweiten Bereich (22) erstrecken, und - die Kontaktleisten (42) zumindest überwiegend zwischen der Rückseite (20) und der Kontaktschicht (31) liegen.
  2. Optoelektronischer Halbleiterchip (1) nach dem vorhergehenden Anspruch, ferner umfassend zumindest einen Leistenspiegel (52) zwischen dem ersten Bereich (21) und den Kontaktleisten (42), wobei der Leistenspiegel (52) elektrisch isolierend ist, und wobei sich die Kontaktschicht (32) in einem Zentralbereich lückenlos und durchgehend über alle Kontaktleisten (42) erstreckt und die Kontaktschicht (31) im Zentralbereich eine erste elektrische Kontaktfläche (71) bildet.
  3. Optoelektronischer Halbleiterchip (1) nach dem vorhergehenden Anspruch, wobei die Kontaktleisten (42) im Querschnitt gesehen in Gebieten zwischen benachbarten Durchkontaktierungen (32) vollständig von dem Leistenspiegel (52) zusammen mit der Isolationsschicht (62) eingeschlossen sind, und wobei der Leistenspiegel (52) ein Bragg-Spiegel ist.
  4. Optoelektronischer Halbleiterchip (1) nach einem der vorhergehenden Ansprüche, wobei die Kontaktleisten (42) in Draufsicht gesehen nur in einem Randbereich des Halbleiterchips (1) frei von der Kontaktschicht (31) sind, sodass im Randbereich der Kontaktleisten (42) mindestens eine zweite elektrische Kontaktfläche (72) gebildet ist.
  5. Optoelektronischer Halbleiterchip (1) nach dem vorhergehenden Anspruch, wobei die Kontaktleisten (42) einzeln oder in Gruppen elektrisch unabhängig voneinander ansteuerbar sind, sodass für jede Kontaktleiste (42) oder für jede Gruppe zumindest eine eigene zweite Kontaktfläche (72) vorhanden ist.
  6. Optoelektronischer Halbleiterchip (1) nach Anspruch 4, wobei die Kontaktleisten (42) untereinander elektrisch kurzgeschlossen sind, und wobei für alle Kontaktleisten (42) zusammengenommen nur eine oder nur zwei zweite Kontaktflächen (72) vorhanden sind.
  7. Optoelektronischer Halbleiterchip (1) nach einem der Ansprüche 4 bis 6, wobei die zweiten Kontaktflächen (72) vollständig vom zweiten Bereich (22) der Halbleiterschichtenfolge (2) überdeckt sind.
  8. Optoelektronischer Halbleiterchip (1) nach einem der vorhergehenden Ansprüche, wobei die Kontaktschicht (31) eine Haftvermittlungsschicht (64), eine metallische Spiegelschicht (61) und eine metallische Tragschicht (63) umfasst, die in der angegebenen Reihenfolge in Richtung weg von der Halbleiterschichtenfolge (2) direkt aufeinander folgen, wobei sich die Haftvermittlungsschicht (64) und/oder die Spiegelschicht (61) direkt an der Isolationsschicht (62) befindet.
  9. Optoelektronischer Halbleiterchip (1) nach einem der vorhergehenden Ansprüche, wobei sich eine Querschnittsfläche der Kontaktleisten (42) und/oder eine Flächendichte der Durchkontaktierungen (32) in Richtung hin zu einer Chipmitte verringert, sodass die aktive Zone (23) dazu eingerichtet ist, in der Chipmitte schwächer bestromt zu werden.
  10. Optoelektronischer Halbleiterchip (1) nach einem der vorhergehenden Ansprüche, wobei ein Flächenanteil der Kontaktleisten (42) an der Rückseite (20) zwischen einschließlich 10 % und 25 % liegt und ein Flächenanteil der Durchkontaktierungen (32) an der Rückseite (20) zwischen einschließlich 1 % und 5 % liegt.
  11. Optoelektronischer Halbleiterchip (1) nach einem der vorhergehenden Ansprüche, ferner umfassend ein Aufwachssubstrat (25) für die Halbeiterschichtenfolge (2), wobei sich das Aufwachssubstrat (25) am zweiten Bereich (22) befindet und die den Halbleiterchip (1) mechanisch tragende Komponente bildet.
  12. Optoelektronisches Halbleiterbauteil (10) mit - mindestens einem Halbleiterchip (1) nach einem der vorherigen Ansprüche an einer Vorderseite (15), und - einem Träger (13), wobei - der Träger (13) einen ersten elektrischen Anschluss (11) für den ersten Bereich (21) und mindestens einen zweiten elektrischen Anschluss (12) für den zweiten Bereich (22) aufweist, - sich der erste Anschluss (11) durch den Träger (13) hindurch erstreckt, und - eine Grundfläche des ersten elektrischen Anschlusses (11) durchgehend mindestens 90 % einer Grundfläche der ersten Kontaktfläche (71) beträgt.
  13. Optoelektronisches Halbleiterbauteil (10) nach dem vorhergehenden Anspruch, wobei der zweite Anschluss (12) an der Vorderseite (15) mehrere Stege (16) aufweist und streifenförmig oder gitternetzförmig strukturiert ist, und wobei der erste und der zweite Anschluss (11, 12) an einer der Vorderseite (15) gegenüberliegenden Montageseite (14) je durch eine durchgehende Fläche gebildet sind.
  14. Optoelektronisches Halbleiterbauteil (10) nach dem vorhergehenden Anspruch, wobei Gebiete zwischen den Stegen (16) mit einer reflektierenden Beschichtung (17) aufgefüllt sind.
  15. Optoelektronisches Halbleiterbauteil (10) nach einem der Ansprüche 12 bis 14, wobei der Träger (13) ringsum seitlich über den Halbleiterchip (1) übersteht, und wobei der zweite Anschluss (12) den Halbleiterchip (1) an der Vorderseite (15) in Draufsicht gesehen vollständig umrahmt.
  16. Optoelektronisches Halbleiterbauteil (10) nach einem der Ansprüche 12 bis 15, das für einen Betrieb der aktiven Zone (23) mit einer Stromdichte von mindestens 4 A/mm2 eingerichtet ist, wobei die aktive Zone (23) eine Grundfläche von mindestens 0,5 mm2 und von höchstens 5 mm2 aufweist.
  17. Optoelektronisches Halbleiterbauteil (10) nach einem der Ansprüche 12 bis 16, ferner umfassend einen Leuchtstoff (83) zumindest in einem Streifen über dem Halbleiterchip (1), wobei der Halbleiterchip (1) überwiegend von einer Blende (82) überdeckt ist, sodass nur in dem Streifen Licht aus dem Halbleiterchip (1) heraustreten kann.
DE102018118355.0A 2018-07-30 2018-07-30 Optoelektronischer Halbleiterchip und optoelektronisches Halbleiterbauteil Withdrawn DE102018118355A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102018118355.0A DE102018118355A1 (de) 2018-07-30 2018-07-30 Optoelektronischer Halbleiterchip und optoelektronisches Halbleiterbauteil
PCT/EP2019/070099 WO2020025457A1 (de) 2018-07-30 2019-07-25 Optoelektronischer halbleiterchip und optoelektronisches halbleiterbauteil
US17/264,318 US20210296549A1 (en) 2018-07-30 2019-07-25 Optoelectronic semiconductor chip and optoelectronic semiconductor component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018118355.0A DE102018118355A1 (de) 2018-07-30 2018-07-30 Optoelektronischer Halbleiterchip und optoelektronisches Halbleiterbauteil

Publications (1)

Publication Number Publication Date
DE102018118355A1 true DE102018118355A1 (de) 2020-01-30

Family

ID=67544186

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018118355.0A Withdrawn DE102018118355A1 (de) 2018-07-30 2018-07-30 Optoelektronischer Halbleiterchip und optoelektronisches Halbleiterbauteil

Country Status (3)

Country Link
US (1) US20210296549A1 (de)
DE (1) DE102018118355A1 (de)
WO (1) WO2020025457A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10147886A1 (de) * 2001-09-28 2003-04-24 Osram Opto Semiconductors Gmbh Lumineszenzdiode und Herstellungsverfahren
DE102007022947A1 (de) * 2007-04-26 2008-10-30 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
DE102012112302A1 (de) * 2012-12-14 2014-06-18 Osram Opto Semiconductors Gmbh Anzeigevorrichtung und Verfahren zur Herstellung einer Anzeigevorrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070851B2 (en) * 2010-09-24 2015-06-30 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
KR101669641B1 (ko) * 2012-06-28 2016-10-26 서울바이오시스 주식회사 표면 실장용 발광 다이오드, 그 형성방법 및 발광 다이오드 모듈의 제조방법
DE102013100818B4 (de) 2013-01-28 2023-07-27 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
DE102013102667A1 (de) * 2013-03-15 2014-10-02 Osram Opto Semiconductors Gmbh Anzeigevorrichtung
DE102014100773A1 (de) * 2014-01-23 2015-07-23 Osram Opto Semiconductors Gmbh Halbleiterbauelement und Verfahren zur Herstellung eines Halbleiterbauelements
TW201605073A (zh) * 2014-05-14 2016-02-01 新世紀光電股份有限公司 發光元件封裝結構及其製作方法
KR102417181B1 (ko) * 2015-11-09 2022-07-05 삼성전자주식회사 발광 패키지, 반도체 발광 소자, 발광 모듈 및 발광 패키지의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10147886A1 (de) * 2001-09-28 2003-04-24 Osram Opto Semiconductors Gmbh Lumineszenzdiode und Herstellungsverfahren
DE102007022947A1 (de) * 2007-04-26 2008-10-30 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
DE102012112302A1 (de) * 2012-12-14 2014-06-18 Osram Opto Semiconductors Gmbh Anzeigevorrichtung und Verfahren zur Herstellung einer Anzeigevorrichtung

Also Published As

Publication number Publication date
US20210296549A1 (en) 2021-09-23
WO2020025457A1 (de) 2020-02-06

Similar Documents

Publication Publication Date Title
DE10325951B4 (de) Licht emittierende Diode mit zugehörigem Kontaktschema
EP1352432B9 (de) Lumineszenzdiode und verfahren zu deren herstellung
DE102009018603B9 (de) Leuchtvorrichtung und Herstellungsverfahren derselben
DE10213701B4 (de) Hoch reflektierende ohmsche Kontakte für AlGaln-Flip-Chip-LEDs
DE112011106156B4 (de) Lichtemittierende Diodeneinheit auf Waferebene
DE112016004262T5 (de) Selbstausrichtender freischwebender Spiegel für Durchkontaktierungen
DE112016000731T5 (de) Lichtaussendeelement und leuchtdiode
DE102009006177A1 (de) Strahlungsemittierender Halbleiterchip
DE10221504A1 (de) Mehrchip-LED-Halbleiteranordnung
EP2596534A1 (de) Strahlungsemittierendes bauelement und verfahren zur herstellung von strahlungsemittierenden bauelementen
EP2340568A1 (de) Optoelektronischer halbleiterkörper
DE102006046037B4 (de) LED-Halbleiterkörper und Verwendung eines LED-Halbleiterkörpers
DE102011011378A1 (de) Trägersubstrat und Verfahren zur Herstellung von Halbleiterchips
EP2415077A1 (de) Optoelektronisches bauelement
EP2342765A2 (de) Lumineszenzdiodenchip
DE102015107593A1 (de) Optoelektronischer Halbleiterchip und Leuchtmittel
WO2020074351A1 (de) Optoelektronisches halbleiterbauteil
DE102017117504A1 (de) Lichtemittierender Halbleiterchip und optoelektronisches Bauteil
WO2010012256A1 (de) Optoelektronischer halbleiterchip
DE102017100705B4 (de) Beleuchtungsvorrichtung und Betriebsverfahren für eine solche Beleuchtungsvorrichtung
DE102018118355A1 (de) Optoelektronischer Halbleiterchip und optoelektronisches Halbleiterbauteil
WO2014173623A1 (de) Optoelektronischer halbleiterchip und optoelektronisches halbleiterbauteil
DE102008014094A1 (de) Strahlungsemittierende Vorrichtung und Verfahren zur Herstellung einer strahlungsemittierenden Vorrichtung
DE102017129623B4 (de) Licht emittierendes Halbleiterbauelement
DE102017130757A1 (de) Optoelektronisches halbleiterbauteil

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee