DE102017216161B4 - Verfahren zum überwachen der funktionsfähigkeit des kühlsystems eines hochvoltspeichers - Google Patents

Verfahren zum überwachen der funktionsfähigkeit des kühlsystems eines hochvoltspeichers Download PDF

Info

Publication number
DE102017216161B4
DE102017216161B4 DE102017216161.2A DE102017216161A DE102017216161B4 DE 102017216161 B4 DE102017216161 B4 DE 102017216161B4 DE 102017216161 A DE102017216161 A DE 102017216161A DE 102017216161 B4 DE102017216161 B4 DE 102017216161B4
Authority
DE
Germany
Prior art keywords
temperature
voltage storage
cooling
cooling system
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102017216161.2A
Other languages
English (en)
Other versions
DE102017216161A1 (de
Inventor
Othmar Winterling
Stefan Römersperger
Benno Schweiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Priority to DE102017216161.2A priority Critical patent/DE102017216161B4/de
Priority to PCT/EP2018/071671 priority patent/WO2019052750A1/de
Priority to CN201880046828.7A priority patent/CN110915059B/zh
Publication of DE102017216161A1 publication Critical patent/DE102017216161A1/de
Priority to US16/786,404 priority patent/US11631910B2/en
Application granted granted Critical
Publication of DE102017216161B4 publication Critical patent/DE102017216161B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Verfahren zum Überwachen der Funktionsfähigkeit des Kühlsystems (30) eines in Betrieb befindlichen Hochvoltspeichers (20), insbesondere eines Hochvoltspeichers (20) für eine elektrische Antriebseinheit eines Kraftfahrzeugs, umfassend folgende Schritte:- Wiederholtes Messen der Temperatur des Hochvoltspeichers (20) mittels eines am Hochvoltspeicher (20) angeordneten Temperatursensors (14),- Überprüfen, ob der jeweils gemessene Temperaturwert oberhalb einer Kühlschwellentemperatur liegt,- Ermitteln des Verlaufs der Temperatur des Hochvoltspeichers (20) aus der zeitlichen Abfolge derjenigen gemessenen Temperaturwerte des Hochvoltspeichers (20), die sich oberhalb der Kühlschwellentemperatur befinden, und- Diagnostizieren, dass das Kühlsystem (30) korrekt arbeitet, falls der Temperaturverlauf einen vorbestimmten Grenzwert nicht übersteigt, wobei der Temperaturgradient als Maß für den Verlauf der Temperatur dient und der vorbestimmte Grenzwert ein maximaler Temperaturgradient ist, dadurch gekennzeichnet, dass ermittelt wird, welche Verlustleistung durch den Betrieb des Hochvoltspeichers (20) erzeugt wird, und ein umso höherer maximaler Temperaturgradient verwendet wird, desto höher die Verlustleistung ist.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Überwachen der Funktionsfähigkeit des Kühlsystems eines in Betrieb befindlichen Hochvoltspeichers, ein dementsprechendes Computerprogrammprodukt, eine hierfür geeignete Überwachungseinrichtung und ein damit ausgerüstetes Kraftfahrzeug.
  • Hochvoltspeicher, wie sie beispielsweise bei Elektro- und Hybrid-Fahrzeugen eingesetzt werden, müssen meistens aufgrund der hohen Energie- und Leistungsdichte aktiv gekühlt werden, um die Betriebssicherheit und die Leistungsfähigkeit sicherzustellen. Dabei können unterschiedliche Kühlungstechniken zum Einsatz kommen, wie beispielsweise Luftkühlung, Flüssigkeitskühlung oder Direktkältemittelkühlung. Jedes dieser Kühlverfahren weist andere thermodynamische Eigenschaften auf.
  • In einigen Märkten gibt es durch entsprechende Zulassungsbestimmungen die Anforderung, die Leistung der Hochvoltspeicherkühlung zu überwachen und gegebenenfalls bei einer unzureichenden Kühlleistung einen Fehler anzuzeigen. Ferner wird beispielsweise vorgesehen, automatisch die Häufigkeit der Durchführung einer entsprechenden Diagnose zu ermitteln und anzuzeigen.
  • Es ist üblich, die Überwachung eines Kühlsystems über eine an die jeweilige Kühlungstechnik angepasste Diagnose auszuführen, die wiederum eine entsprechende Sensorik erfordert, wozu beispielsweise Kühlflüssigkeitstemperatur- und Durchflusssensoren bei einer Flüssigkeitskühlung gehören.
  • Die Notwendigkeit, für jede Kühlungstechnik eine eigens angepasste Diagnose-Technik einzusetzen, widerspricht jedoch dem Baukasten-Gedanken bzw. der Modularität, da für jedes Kühlsystem eine entsprechende Diagnose-Funktion entwickelt und eine entsprechende Messausstattung vorgesehen werden muss. Darüber hinaus sind zur Überwachung erforderlichenfalls eigene Sensoren nötig, welche die Herstellungskosten in die Höhe treiben.
  • Ein Verfahren zum Überwachen der Funktionsfähigkeit des Kühlsystems eines in Betrieb befindlichen Hochvoltspeichers mit den Merkmalen des Oberbegriffs des Patentanspruchs 1 ist aus der US 2016 0 104 920 A1 bekannt. Weiterer Stand der Technik wird durch die DE 10 2013 226 145 A1 gebildet.
  • Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zum Überwachen der Funktionsfähigkeit des Kühlsystems eines im Betrieb befindlichen Hochvoltspeichers sowie eine hierfür geeignete Überwachungsvorrichtung anzugeben, womit die Diagnose unabhängig von der Kühlungstechnik vorgenommen werden kann.
  • Diese Aufgabe wird gelöst mit einem Verfahren gemäß Anspruch 1, mit einem dieses Verfahren implementierenden Computerprogrammprodukt gemäß Anspruch 6 sowie mit einer entsprechenden Überwachungsvorrichtung gemäß Anspruch 7. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche. Aspekte der Erfindung werden nachfolgend angegeben.
  • Gemäß einem Aspekt umfasst ein Verfahren zum Überwachen der Funktionsfähigkeit des Kühlsystems eines in Betrieb befindlichen Hochvoltspeichers, insbesondere eines Hochvoltspeichers für eine elektrische Antriebseinheit eines Kraftfahrzeugs, folgende Schritte: Die Temperatur des Hochvoltspeichers wird mittels eines am Hochvoltspeicher angeordneten Temperatursensors gemessen, wobei in der Regel mehrere solcher Messungen vorgenommen werden. Im Gegensatz zur eingangs geschilderten Vorgehensweise wird daher nicht die Temperatur eines
  • Kühlmittels oder Ähnliches gemessen, sondern die Temperatur wird direkt am Hochvoltspeicher selbst gemessen. Ferner wird überprüft, ob der jeweils gemessene Temperaturwert oberhalb einer Kühlschwellentemperatur liegt. Üblicherweise läuft die Kühlung eines Hochvoltspeichers nicht ständig, sondern das Kühlsystem wird nur eingeschaltet, wenn es benötigt wird, wobei in diesem Fall keine Diagnose erforderlich ist. Das Kühlsystem ist bzw. wird aber dann eingeschaltet, wenn die Temperatur des Hochvoltspeichers einen bestimmten Schwellenwert - die Kühlschwellentemperatur - übersteigt. Dann wird der Verlauf der Temperatur des Hochvoltspeichers aus der zeitlichen Abfolge derjenigen gemessenen Temperaturwerte des Hochvoltspeichers ermittelt, die sich oberhalb der Kühlschwellentemperatur befinden, und falls der Temperaturverlauf einen vorbestimmten Grenzwert nicht übersteigt, kann diagnostiziert werden, dass das Kühlsystem korrekt arbeitet. Als vorbestimmter Grenzwert des Temperaturverlaufs können verschiedene Grö-ßen verwendet werden, wie beispielsweise ein bestimmter Temperaturgradient über die Messzeit, eine zulässige Höchsttemperatur des Hochvoltspeichers, oder ein unterhalb dieser Höchsttemperatur liegender Temperaturwert, der somit einen gewissen Sicherheitspuffer aufweist.
  • Das vorgenannte Diagnoseergebnis kann dann beispielsweise an einem Display angezeigt werden, um einem Benutzer (bei einem Kraftfahrzeug ist das der Fahrer) zu signalisieren, dass der Hochvoltspeicher ordnungsgemäß betrieben wird. Außerdem kann dieses Diagnoseergebnis an eine Motorsteuerung übermittelt werden, damit diese das Fahrzeug weiterhin steuern bzw. überwachen kann. Falls das Diagnoseergebnis negativ gewesen wäre, hätte so die Motorsteuerung die Möglichkeit, die Leistungsabgabe des Hochvoltspeichers zu drosseln oder sogar ganz zu unterbinden, um eine Beschädigung zu vermeiden.
  • Da erfindungsgemäß die Temperatur direkt am Hochvoltspeicher selbst gemessen wird und nicht auf eine „indirekte“ Messung der Temperatur eines Kühlmittels oder ähnlichem zurückgegriffen werden muss, ermöglicht somit das erfindungsgemäße Verfahren eine von der Kühlungstechnik unabhängige Diagnose der Funktionsfähigkeit des Kühlmittels, die überdies in einfacher und kostengünstiger Weise ausgeführt werden kann, da zur Temperaturmessung des Hochvoltspeichers auf den ohnehin dort verbauten Temperatursensor zurückgegriffen werden kann.
  • Gemäß einer vorteilhaften Ausführungsform des Verfahrens gemäß dem Aspekt wird der Temperaturgradient als Maß für den Verlauf der Temperatur verwendet, und in diesem Fall ist der vorbestimmte Grenzwert ein maximaler Temperaturgradient. In anderen Worten bedeutet dies, dass bei gegebenen Umgebungsbedingungen, wie beispielsweise einer bestimmten Außentemperatur und einer aktuellen Strombelastung des Hochvoltspeichers, von einer voll funktionsfähigen Kühlung ausgegangen werden kann, wenn der maximale Temperaturgradient nicht überschritten wird.
  • Gemäß einer weiteren vorteilhaften Ausführungsform des Verfahrens gemäß dem Aspekt wird ermittelt, welche Verlustleistung durch den Betrieb des Hochvoltspeichers erzeugt wird, und je höher die Verlustleistung ist, desto höher kann der maximale Temperaturgradient gewählt werden. Dies bedeutet in anderen Worten, dass bei entsprechend leistungsfähigem Kühlsystem auch höhere Temperaturgradienten zulässig sind, da ein solches Kühlsystem auch demgemäß anfallende Wärmemengen abführen kann.
  • Es kann von Vorteil sein, nachdem im Zuge eines Diagnosevorgangs erstmals ein gemessener Temperaturwert die Kühlschwellentemperatur überschritten hat, eine vorbestimmte erste Zeitspanne tact bis zur nächsten Temperaturmessung abzuwarten und dann für eine vorbestimmte zweite Zeitspanne tobs den Temperaturgradienten zu ermitteln. Das Verhältnis von Erwärmung zu Sensorgenauigkeit ist i.d.R. sehr gering, und aufgrund der großen thermischen Trägheit des Hochvoltspeichersystems hat das Abwarten den Vorteil, dass die Diagnoseaussage robuster wird.
  • Eine weitere vorteilhafte Ausführungsform des Verfahrens gemäß dem Aspekt kann darin bestehen, die aus der Verlustleistung resultierende Verlustenergie, die über eine vorbestimmte dritte Zeitspanne angefallen ist, zu aggregieren (aufzusummieren bzw. aufzuintegrieren) und dann den maximalen Temperaturgradienten aus einer vorher ermittelten oder festgelegten Kennlinie des Temperaturgradienten über der Verlustenergie zu ermitteln. Dies bietet den Vorteil, dass der maximale Temperaturgradient nicht fest vorgegeben zu sein braucht, sondern über einen bestimmten Wertebereich variabel ist und somit eine Anpassung an verschiedene Betriebssituationen oder verschiedene Arten von Hochvoltspeichern ermöglicht. Die genannte dritte Zeitspanne kann dabei gleich groß sein wie die erwähnte zweite Zeitspanne.
  • Bei dem Verfahren gemäß dem Aspekt ist es von Vorteil, wenn der maximale Temperaturgradient zwischen 0,1 K/min und 1,5 K/min, vorzugsweise zwischen 0,25 K/min und 1,0 K/min, und insbesondere zwischen 0,5 K/min und 0,75 K/min, liegt.
  • Außerdem ist es bei dem Verfahren gemäß dem Aspekt vorteilhaft, wenn die Kühlschwellentemperatur zwischen 25 °C und 35 °C, vorzugsweise zwischen 27 °C und 32 °C, und insbesondere zwischen 29 °C und 31 °C, liegt.
  • Gemäß einer weiteren vorteilhaften Ausführungsform des Verfahrens gemäß dem Aspekt wird das Diagnoseergebnis zusätzlich zunächst an die elektronische Steuerung des jeweiligen Kühlsystems weitergeleitet. Dort erfolgt eine Plausibilisierung des Diagnoseergebnisses auf Basis der aktuellen Betriebs- und Umweltbedingungen des Kühlsystems. Wird das Diagnoseergebnis aufgrund plausibler Randbedingungen verworfen, erfolgt keine Fehlermeldung (z.B. wenn das Kühlsystem über den Auslegungsgrenzen betrieben wird oder selbst in seiner Leistung verringert ist, z.B. sehr hohe Außentemperaturen, sehr hohe Last, entladene Batterie,...). Das Diagnoseergebnis aus dem Hochvoltspeicher kann weiterhin ständig ausgewertet und plausibilisiert werden. Erfolgt definiert mehrmals hintereinander ein Diagnoseergebnis für unzureichende Kühlung, wird die Diagnose von der elektronischen Steuerung des Kühlsystems trotzdem bestätigt, da dann trotz extremer Randbedingungen von einem Fehler ausgegangen wird. Wird das Diagnoseergebnis von der elektronischen Steuerung des Kühlsystems bestätigt, kann beispielsweise in oben beschriebener Weise die Information an das Display weitergeleitet werden. Dieses mehrstufige Diagnosemodell von Hochvoltspeichersystem und Kühlsystem hat den Vorteil, dass alle zur Verfügung stehenden Informationen in die Diagnose einfließen und die Diagnose damit insgesamt robuster und aussagefähiger machen.
  • Gemäß anderen Aspekten werden ein Computerprogrammprodukt (ggf. auch funktionspartitioniert auf mehrere elektronische Steuergeräte), das bei der Ausführung auf einer CPU das Verfahren gemäß der vorstehenden Beschreibung ausführt, und eine entsprechend ausgestaltete Überwachungsvorrichtung zum Überwachen der Funktionsfähigkeit des Kühlsystems eines in Betrieb befindlichen Hochvoltspeichers, insbesondere eines Hochvoltspeichers für eine elektrische Antriebseinheit eines Kraftfahrzeugs bereitgestellt, wobei die Überwachungsvorrichtung so ausgestaltet und ausgelegt ist, dass sie das Verfahren gemäß der vorstehenden Beschreibung ausführt.
  • Gemäß einem weiteren Aspekt wird ein Kraftfahrzeug mit einer elektrischen Antriebseinheit und einem hierfür vorgesehenen Hochvoltspeicher bereitgestellt, wobei das Kraftfahrzeug die vorgenannte Überwachungsvorrichtung umfasst.
  • Dementsprechend ergeben sich auch gleiche oder ähnliche Vorteile wie die in Verbindung mit dem vorstehend Beschriebenen, weshalb zur Vermeidung von Wiederholungen auf die vorstehenden Ausführungen im Zusammenhang mit dem erfindungsgemäßen Verfahren verwiesen wird.
  • Einige vorteilhafte Ausführungsformen der Erfindung werden nachfolgend anhand der Figuren beispielhaft erläutert.
  • Es zeigen:
    • 1 eine schematische Darstellung eines erfindungsgemäßen Kraftfahrzeugs mit einem Hochvoltspeicher und einer erfindungsgemä-ßen Überwachungsvorrichtung;
    • 2 eine schematische Darstellung von Beispielen verschiedener Betriebsabläufe;
    • 3 eine schematische Darstellung eines Beispiels der Ermittlung des Temperaturgradienten;
    • 4 ein Ablaufdiagramm des Diagnosevorgangs; und
    • 5 eine beispielhafte Kennlinie des Verlauf des erlaubten Temperaturgradienten in Abhängigkeit von der Verlustenergie des Hochvoltspeichers.
  • In 1 ist schematisch ein erfindungsgemäßes Kraftfahrzeug 8 dargestellt, in dem ein Hochvoltspeicher 20 mit einer erfindungsgemä-ßen Überwachungsvorrichtung 10 vorgesehen ist. Der Hochvoltspeicher 20 ist dabei beispielsweise im Mittelbereich des Kraftfahrzeugs 8 zwischen den beiden Fahrzeugachsen vorgesehen. Ein Kühlsystem 30 mit einer Pumpe 32 und einer Kühlleitung 34 ist zur Kühlung des Hochvoltspeichers 20 vorgesehen. Direkt am oder sogar im Hochvoltspeicher 20 ist ein Temperatursensor 14 zur Messung der Temperatur des Hochvoltspeichers 20 vorgesehen, der seine Messinformationen an eine z. B. im Motorraum des Kraftfahrzeugs 8 vorgesehene Überwachungsvorrichtung 10 liefert. Die Überwachungsvorrichtung 10 ist mit einem Display 18 verbunden, das bei diesem Beispiel im Sichtbereich des Fahrers des Kraftfahrzeugs 8 angeordnet ist und auf dem beispielsweise das Diagnoseergebnis der Überwachungsvorrichtung 10 angezeigt werden kann. Mit der Bezugszahl 11 ist schematisch ein das erfindungsgemäße Verfahren implementierendes Computerprogramm bzw. ein Computerprogrammprodukt bezeichnet, das beispielsweise auf einem Datenträger 12 (hier als CD-ROM dargestellt) gespeichert sein kann.
  • In 2 ist in einem Diagramm die direkt am bzw. im Hochvoltspeicher 20 gemessene Temperatur über der Zeit aufgetragen, und es sind mehrere verschiedene mögliche Temperaturverläufe dargestellt. Mit einer gestrichelten horizontalen Linie ist die Kühlschwellentemperatur angegeben, die beispielsweise 30 °C beträgt, wobei sowohl Kühlung als auch Diagnose oberhalb dieser Kühlschwellentemperatur aktiv bzw. eingeschaltet sind, während Kühlung und Diagnose unterhalb der Kühlschwellentemperatur inaktiv bzw. ausgeschaltet sind.
  • Wenn zum Beispiel der Hochvoltspeicher 20 zum Zeitpunkt t=0 eingeschaltet wird und sich - ausgehend von einer Temperatur unterhalb der Kühlschwellentemperatur - langsam mit einem bestimmten Temperaturgradienten (der bekanntlich der Steigung der Kurve in diesem Diagramm entspricht) erwärmt, bleiben die Kühlung und die Diagnose bis zum Erreichen der Kühlschwellentemperatur ausgeschaltet. Unterhalb der Kühlschwelle vom Hochvoltspeicher ist somit nur die eigene Diagnose des Kühlsystems aktiv. Nach Überschreiten der Kühlschwellentemperatur zum Zeitpunkt t1 werden sowohl die Kühlung durch das Kühlsystem 30 als auch die Diagnose durch die Überwachungsvorrichtung 10 eingeschaltet, und bei dem gegebenen Temperaturgradienten (strichpunktiert dargestellt) ist zunächst während eines bestimmten Zeitraums fraglich, ob die Kühlung ordnungsgemäß arbeitet.
  • Falls der Temperaturgradient ab dem Zeitpunkt t2 (entsprechend der gepunkteten Linie) noch weiter ansteigt, diagnostiziert die Überwachungsvorrichtung 10, dass die Kühlung nicht ordnungsgemäß arbeitet und gibt eine entsprechende Meldung zunächst an die Überwachungsvorrichtung des Kühlsystems und dann eine entsprechende Meldung an das Display 18 aus.
  • Sofern allerdings der Temperaturgradient stark abnimmt und gemäß diesem Beispiel ab dem Zeitpunkt t2 sogar in eine horizontale Linie (entsprechend der gestrichelten Linie) übergeht, was dem Beibehalten der erreichten Temperatur entspricht, diagnostiziert die Überwachungsvorrichtung 20, dass die Kühlung richtig arbeitet. Falls zum Zeitpunkt t3 der Temperaturgradient sogar negativ wird und somit die Temperatur abnimmt, ändert sich nichts an der Diagnose, dass die Kühlung korrekt arbeitet. Sofern die Temperatur dann zum Zeitpunkt t5 sogar unter die Kühlschwellentemperatur absinkt, werden sowohl die Kühlung als auch die Diagnose wieder abgeschaltet, da sie nicht (mehr) benötigt werden.
  • Es kann aber auch beispielsweise vorkommen, dass der Temperaturgradient ab einem Zeitpunkt t3 wieder zunimmt (daher wieder eine strichpunktierte Linie) und ab einem Zeitpunkt t4 zwar abnimmt, aber immer noch positiv ist. In diesem Fall überwacht die Überwachungsvorrichtung 10 den Temperaturgradienten weiterhin und diagnostiziert, dass die Kühlung fraglich ist. Sollte der Temperaturgradient zu einem Zeitpunkt t6 und gegebenenfalls nochmals zu einem Zeitpunkt t7 wieder zunehmen (daher ist der Temperaturgradient ab dem Zeitpunkt t6 wieder gepunktet dargestellt), kann dies die Überwachungsvorrichtung 10 bei diesem Beispiel sogar noch tolerieren, weil sie davon ausgehen kann, dass die Kühlung zwar unzureichend oder zumindest nicht vollständig ausreichend ist, jedoch noch kein kritischer Temperaturwert erreicht worden ist, der die Betriebssicherheit oder sogar die Unversehrtheit des Hochvoltspeichers 20 gefährden würde. Dieses Diagnoseergebnis kann aber beispielsweise auf dem Display 18 angezeigt werden, um den Fahrer entsprechend zu informieren. Sollte trotz aller präventiver Maßnahmen zu einem Zeitpunkt t8 nicht nur ein bestimmter Temperaturgradient gegeben sein, sondern auch ein zulässiger Maximalwert der Temperatur erreicht worden sein, diagnostiziert die Überwachungsvorrichtung 10 ein Versagen der Kühlung (und schaltet beispielsweise den Antrieb auf ein Minimum herunter oder schaltet ihn sogar komplett ab, um eine Beschädigung des Hochvoltspeichers 20 zu verhindern).
  • Falls jedoch der Temperaturgradient zum Zeitpunkt t6 wieder negativ wird (weshalb der Temperaturverlauf dann wieder gestrichelt dargestellt ist), folgert die Überwachungsvorrichtung 10, dass das Kühlsystem 30 ordnungsgemäß bzw. ausreichend arbeitet und zeigt dies gegebenenfalls auf dem Display 18 an.
  • In 3 ist in beispielhafter Weise dargestellt, wie die Überwachungsvorrichtung 10 vorgeht, um den Temperaturgradienten zu ermitteln. Wenn die Temperatur die Kühlschwellentemperatur erreicht bzw. überschritten hat, wird nicht sofort mit der Ermittlung des Temperaturgradienten begonnen, sondern zunächst zur Stabilisierung des Kühlsystems eine Zeitspanne tact abgewartet (und erst danach für eine Zeitspanne tobs der Temperaturgradient ermittelt, indem die Temperaturdifferenz deltaTemp zwischen der Temperatur TEnd am Ende und der Temperatur TStart am Anfang der Zeitspanne tobs durch die verstrichene Zeit tobs dividiert wird.
  • 4 zeigt einen beispielhaften Verlauf des erfindungsgemäßen Überwachungsverfahrens. Nach dem Start des Überwachungsverfahrens wird in einem Schritt S100 abgefragt, ob die Kühlung aktiv ist. Falls dies der Fall ist, wird in einem Schritt S102 geprüft, ob die Zeitspanne tact verstrichen ist. Falls dies nicht der Fall ist, geht der Ablauf zu Schritt S100 zurück. Falls jedoch die Zeitspanne tact bereits verstrichen ist, wird in einem Schritt S104 die zu diesem Zeitpunkt tStart aktuelle Temperatur als Starttemperatur TStart gewählt. Dann wird in einem Schritt S106 begonnen, die angefallene Verlustenergie zu aggregieren. In einem nachfolgenden Schritt S108 wird überprüft, ob die Zeitspanne tobs verstrichen ist. Falls dies nicht der Fall ist, wird abgewartet, anderenfalls wird in einem Schritt S110 die dann zu diesem Zeitpunkt tEnd aktuelle Temperatur TEnd als Endtemperatur gewählt. Anschließend wird in einem Schritt S112 die Aggregierung der Verlustenergie beendet, wonach in einem Schritt S114 der Temperaturgradient berechnet wird. Schließlich wird in einem Schritt S116 aus der Kennlinie des Temperaturgradienten über der aggregierten Verlustenergie ein Schwellwert Ts für den entsprechenden Temperaturbereich und den hierzu gehörigen maximalen Temperaturgradienten ermittelt. In 5 ist eine derartige Kennlinie des Schwellwert Ts des Temperaturgradienten über der aggregierten Verlustenergie dargestellt. Wenn sich der Temperaturgradient oberhalb der Linie des Schwellwerts Ts befindet (also im schraffierten Bereich), wird die Kühlung als nicht ausreichend angesehen, während die Kühlung als ausreichend angenommen wird, wenn sich der Temperaturgradient unter der Linie des Schwellwerts Ts befindet. (In dem darauf folgenden Schritt S118 wird dieser Temperaturgradient mit dem Schwellwert Ts verglichen, und falls der Temperaturgradient größer als der Schwellenwert Ts ist, wird in Schritt S120 als Diagnoseergebnis festgestellt, dass die Kühlung nicht ordnungsgemäß arbeitet, was dort als „Diagnoseergebnis n.i.O.“ bezeichnet ist. Danach wird das Diagnoseergebnis n.i.O. in einem Schritt S122 in der Überwachungseinrichtung des Kühlsystems plausibilisiert. Bei plausiblen Randbedingungen wird in einem Schritt S124 das Diagnoseergebnis n.i.O. als gültig erklärt. Wenn dagegen der Temperaturgradient kleiner als der Schwellenwert Ts ist, wird in Schritt S126 als Diagnoseergebnis festgestellt, dass die Kühlung ordnungsgemäß funktioniert, was dort als „Diagnoseergebnis i.O.“ bezeichnet ist
  • Die vorstehende Beschreibung hinsichtlich der Diagnose bezieht sich vorwiegend auf den maximalen Temperaturgradienten und nicht so sehr darauf, in welchem Temperaturbereich des Hochvoltspeichers 20 dieser maximale Temperaturgradient auftritt. Die Berücksichtigung des jeweiligen Temperaturbereichs kann in folgender Weise vorgenommen werden: Bei höheren Temperaturen des Hochvoltspeichers wird gegebenenfalls die Leistung des Hochvoltspeichers begrenzt, was zu einem geringeren Eintrag an thermischer Energie und dementsprechender Erwärmung führt. Daher kann es sinnvoll sein, bei höheren Temperaturen des Hochvoltspeichers einen geringeren maximalen Temperaturgradienten zuzulassen, als dies bei niedrigeren Temperaturen des Hochvoltspeichers der Fall ist.
  • Es versteht sich, dass bei der vorliegenden Erfindung ein Zusammenhang zwischen einerseits Merkmalen besteht, die im Zusammenhang mit Verfahrensschritten beschrieben wurden, sowie andererseits Merkmalen, die im Zusammenhang mit entsprechenden Vorrichtungen beschrieben wurden. Somit sind beschriebene Verfahrensmerkmale auch als zur Erfindung gehörige Vorrichtungsmerkmale - und umgekehrt - anzusehen, selbst wenn dies nicht explizit erwähnt wurde.
  • Es ist festzuhalten, dass die unter Bezug auf einzelne Ausführungsformen bzw. Varianten beschriebenen Merkmale der Erfindung, wie beispielsweise Art und Ausgestaltung der einzelnen Verfahrensschritte sowie deren zeitliche Abfolge, auch bei anderen Ausführungsformen vorhanden sein können, außer wenn es anders angegeben ist oder sich aus technischen Gründen von selbst verbietet. Von derartigen, in Kombination beschriebenen, Merkmalen einzelner Ausführungsformen müssen außerdem nicht notwendigerweise immer alle Merkmale in einer betreffenden Ausführungsform realisiert sein.

Claims (8)

  1. Verfahren zum Überwachen der Funktionsfähigkeit des Kühlsystems (30) eines in Betrieb befindlichen Hochvoltspeichers (20), insbesondere eines Hochvoltspeichers (20) für eine elektrische Antriebseinheit eines Kraftfahrzeugs, umfassend folgende Schritte: - Wiederholtes Messen der Temperatur des Hochvoltspeichers (20) mittels eines am Hochvoltspeicher (20) angeordneten Temperatursensors (14), - Überprüfen, ob der jeweils gemessene Temperaturwert oberhalb einer Kühlschwellentemperatur liegt, - Ermitteln des Verlaufs der Temperatur des Hochvoltspeichers (20) aus der zeitlichen Abfolge derjenigen gemessenen Temperaturwerte des Hochvoltspeichers (20), die sich oberhalb der Kühlschwellentemperatur befinden, und - Diagnostizieren, dass das Kühlsystem (30) korrekt arbeitet, falls der Temperaturverlauf einen vorbestimmten Grenzwert nicht übersteigt, wobei der Temperaturgradient als Maß für den Verlauf der Temperatur dient und der vorbestimmte Grenzwert ein maximaler Temperaturgradient ist, dadurch gekennzeichnet, dass ermittelt wird, welche Verlustleistung durch den Betrieb des Hochvoltspeichers (20) erzeugt wird, und ein umso höherer maximaler Temperaturgradient verwendet wird, desto höher die Verlustleistung ist.
  2. Verfahren nach Anspruch 1, bei dem, sobald ein erster gemessener Temperaturwert die Kühlschwellentemperatur überschritten hat, eine vorbestimmte erste Zeitspanne tact bis zur nächsten Temperaturmessung abgewartet und dann für eine vorbestimmte zweite Zeitspanne tobs der Temperaturgradient ermittelt wird.
  3. Verfahren nach Anspruch 2, bei dem die aus der Verlustleistung resultierende Verlustenergie, die über eine vorbestimmte dritte Zeitspanne angefallen ist, aggregiert wird und der maximale Temperaturgradient aus einer Kennlinie des Temperaturgradienten über der Verlustenergie ermittelt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der maximale Temperaturgradient zwischen 0,1 K/min und 1,5 K/min, vorzugsweise zwischen 0,25 K/min und 1,0 K/min, und insbesondere zwischen 0,5 K/min und 0,75 K/min, liegt und/oder bei dem die Kühlschwellentemperatur zwischen 25 °C und 35 °C, vorzugsweise zwischen 27 °C und 32 °C, und insbesondere zwischen 29 °C und 31 °C, liegt.
  5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem, falls das Ergebnis der Diagnose der Funktionsfähigkeit des Kühlsystems (30) ist, dass das Kühlsystem (30) nicht korrekt arbeitet, dieses Ergebnis der Diagnose in einer Überwachungseinrichtung des Kühlsystems (30) plausibilisiert wird.
  6. Computerprogrammprodukt (11), das bei der Ausführung auf einer CPU das Verfahren gemäß einem der Ansprüche 1 bis 5 ausführt.
  7. Überwachungsvorrichtung (10) zum Überwachen der Funktionsfähigkeit des Kühlsystems (30) eines in Betrieb befindlichen Hochvoltspeichers (20), insbesondere eines Hochvoltspeichers (20) für eine elektrische Antriebseinheit eines Kraftfahrzeugs (8), wobei die Überwachungsvorrichtung (10) so ausgestaltet und ausgelegt ist, dass sie das Verfahren gemäß einem der Ansprüche 1 bis 5 ausführt.
  8. Kraftfahrzeug (8) mit einer elektrischen Antriebseinheit und einem hierfür vorgesehenen Hochvoltspeicher (20), wobei das Kraftfahrzeug (8) eine Überwachungsvorrichtung (10) gemäß Anspruch 7 umfasst.
DE102017216161.2A 2017-09-13 2017-09-13 Verfahren zum überwachen der funktionsfähigkeit des kühlsystems eines hochvoltspeichers Active DE102017216161B4 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102017216161.2A DE102017216161B4 (de) 2017-09-13 2017-09-13 Verfahren zum überwachen der funktionsfähigkeit des kühlsystems eines hochvoltspeichers
PCT/EP2018/071671 WO2019052750A1 (de) 2017-09-13 2018-08-09 Verfahren zum überwachen der funktionsfähigkeit des kühlsystems eines hochvoltspeichers
CN201880046828.7A CN110915059B (zh) 2017-09-13 2018-08-09 用于监测高压蓄存器的冷却***工作能力的方法
US16/786,404 US11631910B2 (en) 2017-09-13 2020-02-10 Method for monitoring the functional capability of the cooling system of a high-voltage accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017216161.2A DE102017216161B4 (de) 2017-09-13 2017-09-13 Verfahren zum überwachen der funktionsfähigkeit des kühlsystems eines hochvoltspeichers

Publications (2)

Publication Number Publication Date
DE102017216161A1 DE102017216161A1 (de) 2019-03-14
DE102017216161B4 true DE102017216161B4 (de) 2024-02-22

Family

ID=63490391

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017216161.2A Active DE102017216161B4 (de) 2017-09-13 2017-09-13 Verfahren zum überwachen der funktionsfähigkeit des kühlsystems eines hochvoltspeichers

Country Status (4)

Country Link
US (1) US11631910B2 (de)
CN (1) CN110915059B (de)
DE (1) DE102017216161B4 (de)
WO (1) WO2019052750A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021208943B4 (de) * 2021-08-16 2024-01-11 Zf Friedrichshafen Ag Verfahren und Steuereinrichtung zum Steuern einer Fahrzeugeinrichtung
CN114335792B (zh) * 2021-11-29 2024-02-23 三一重型装备有限公司 电池温度控制方法、装置、存储介质及计算机设备
DE102021214873A1 (de) 2021-12-22 2023-06-22 Robert Bosch Gesellschaft mit beschränkter Haftung Plausibilisierung einer Kühlmitteltemperatur bei parallelen Kühlkreisläufen einer Traktionsbaugruppe
DE102022102765A1 (de) 2022-02-07 2023-08-10 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Ermittlung des Zustands der thermischen Anbindung einer elektrischen Komponente

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013226145A1 (de) 2013-12-17 2015-06-18 Robert Bosch Gmbh Vorrichtung und Verfahren zur Überwachung eines Energiespeichers sowie Energiespeicher mit der Vorrichtung
US20160104920A1 (en) 2014-10-09 2016-04-14 Ford Global Technologies, Llc Method for monitoring the state of a battery in a motor vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2323509C1 (ru) * 2004-08-25 2008-04-27 Тойота Дзидося Кабусики Кайся Устройство электропитания
JP5008863B2 (ja) * 2005-11-30 2012-08-22 プライムアースEvエナジー株式会社 二次電池用の制御装置、二次電池の温度推定方法を用いた二次電池の劣化判定方法
JP5033385B2 (ja) * 2006-09-27 2012-09-26 日立ビークルエナジー株式会社 蓄電装置
DE102008011225A1 (de) * 2008-02-26 2009-08-27 Robert Bosch Gmbh Diagnoseverfahren und Antriebssteuerung
JP5572442B2 (ja) * 2010-04-27 2014-08-13 日立ビークルエナジー株式会社 液冷式蓄電システム
FR2963167B1 (fr) * 2010-07-20 2013-03-08 Peugeot Citroen Automobiles Sa Dispositif et procede pour le refroidissement d'un moyen de stockage d'energie electrique
DE102010063376A1 (de) 2010-12-17 2012-06-21 Bayerische Motoren Werke Aktiengesellschaft Temperaturregelverfahren für einen elektrochemischen Energiespeicher in einem Fahrzeug
CN105518929B (zh) * 2013-09-06 2018-04-20 日产自动车株式会社 电池组冷却***
US9735452B2 (en) * 2013-12-05 2017-08-15 Hyundai Motor Company Apparatus and method for monitoring component breakdown of battery system
DE102014221468A1 (de) * 2014-10-22 2016-04-28 Ford Global Technologies, Llc Verfahren zur Überwachung des Zustands einer Batterie in einem Kraftfahrzeug

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013226145A1 (de) 2013-12-17 2015-06-18 Robert Bosch Gmbh Vorrichtung und Verfahren zur Überwachung eines Energiespeichers sowie Energiespeicher mit der Vorrichtung
US20160104920A1 (en) 2014-10-09 2016-04-14 Ford Global Technologies, Llc Method for monitoring the state of a battery in a motor vehicle

Also Published As

Publication number Publication date
CN110915059B (zh) 2023-04-04
US11631910B2 (en) 2023-04-18
WO2019052750A1 (de) 2019-03-21
US20200176832A1 (en) 2020-06-04
DE102017216161A1 (de) 2019-03-14
CN110915059A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
DE102017216161B4 (de) Verfahren zum überwachen der funktionsfähigkeit des kühlsystems eines hochvoltspeichers
DE102005037717B3 (de) Verfahren und Vorrichtung zur Diagnose eines Außentemperatursensors
DE102017119433B4 (de) Verfahren zur diagnose eines startfehler-zustands in einemantriebsstrang sowie entsprechend ausgebildeteranstriebsstrang
EP3454071B1 (de) Verfahren zur überwachung der funktion eines kühlsystems einer magnetresonanzeinrichtung, magnetresonanzeinrichtung, computerprogramm und elektronisch lesbarer datenträger
DE102006057801B4 (de) Verfahren und Vorrichtung zum Diagostizieren der Funktionsfähigkeit einer Kühlmittelpumpe
DE102020213357A1 (de) Verfahren zum Überprüfen des Verhaltens mindestens einer Gruppe von Verbrauchern in einem Kraftfahrzeug
EP3769095A1 (de) Verfahren zur überwachung eines versorgungssystems eines kraftfahrzeugs
WO2015165687A1 (de) Verfahren zur ermittlung schleichender ruhestromfehler
DE102017213472A1 (de) Verfahren zum Detektieren eines Fehlzustands einer Batterie, Batterie und Kraftfahrzeug
DE102014221471B4 (de) Verfahren zur Überwachung des Zustands einer Batterie in einem Kraftfahrzeug
DE102014226079A1 (de) Verfahren und Vorrichtung zur Diagnose einer Zusatzheizfunktion eines Luftmassensensors
EP3433627B1 (de) Verfahren zum bestimmen eines fehlerzustands, batteriesensor und fahrzeugbordnetz
EP4370941A1 (de) Verfahren zum überwachen von kurzschluss-schaltvorgängen einer schaltung eines steuergeräts
EP3132322B1 (de) Verfahren zur diagnose eines kraftfahrzeugsystems, diagnosegerät für ein kraftfahrzeugsystem, steuergerät für ein kraftfahrzeugsystem und kraftfahrzeug
DE102013016554A1 (de) Diagnoseverfahren für einen Kraftwagen
DE102021104535A1 (de) Verfahren zum Überwachen der Energieversorgung eines Kraftfahrzeugs
DE102020122582A1 (de) Energiebordnetz eines Fahrzeugs
WO2021058302A1 (de) Verfahren und einrichtung zum ermitteln einer eine temperatur eines widerstandstemperaturfühlers beschreibenden temperaturinformation, wechselrichter, fahrzeug und computerprogramm
DE102004053952A1 (de) Intelligente Batteriesensorik mit Nachlaufhistogramm
DE102018203669A1 (de) Verfahren zum Überwachen einer Klimaanlage, Überwachungsvorrichtung und Klimaanlage
DE102009058331A1 (de) Steuergerät mit belastungsabhängiger Betriebslebensdauer und Verfahren zur Aktualisierung einer maximalen Betriebslebensdauer
DE102019210688A1 (de) Verfahren zur Überwachung einer Bordnetzgüte bei wenigstens zwei Bordnetzen eines Fahrzeuges
DE102013223794A1 (de) Energieübertragungssystem und Verfahren zur Diagnose eines Energieübertragungssystems
DE102016225691A1 (de) Hochvolt-Batterie für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
DE19741864C1 (de) Einrichtung zur Überwachung eines einen Lüfter aufweisenden Kühlsystems

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R163 Identified publications notified
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division