DE102017008661A1 - Faserverbundstruktur, Verzweigungsknoten zum Gebäudebau sowie Verfahren zur Herstellung eines Geflechts, der Faserverbundstruktur und des Verzweigungsknotens zum Gebäudebau - Google Patents

Faserverbundstruktur, Verzweigungsknoten zum Gebäudebau sowie Verfahren zur Herstellung eines Geflechts, der Faserverbundstruktur und des Verzweigungsknotens zum Gebäudebau Download PDF

Info

Publication number
DE102017008661A1
DE102017008661A1 DE102017008661.3A DE102017008661A DE102017008661A1 DE 102017008661 A1 DE102017008661 A1 DE 102017008661A1 DE 102017008661 A DE102017008661 A DE 102017008661A DE 102017008661 A1 DE102017008661 A1 DE 102017008661A1
Authority
DE
Germany
Prior art keywords
braid
braiding
composite structure
arms
fiber composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102017008661.3A
Other languages
English (en)
Inventor
Florian Jonas
Jan Knippers
Götz Theodor Gresser
Larissa Born
Markus Milwich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Institute fuer Textil und Faserforschung Stuttgart
Universitaet Stuttgart
Deutsche Institute fuer Textil und Faserforschung Denkendorf DITF
Original Assignee
Deutsche Institute fuer Textil und Faserforschung Stuttgart
Universitaet Stuttgart
Deutsche Institute fuer Textil und Faserforschung Denkendorf DITF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Institute fuer Textil und Faserforschung Stuttgart, Universitaet Stuttgart, Deutsche Institute fuer Textil und Faserforschung Denkendorf DITF filed Critical Deutsche Institute fuer Textil und Faserforschung Stuttgart
Priority to DE102017008661.3A priority Critical patent/DE102017008661A1/de
Priority to EP18191052.2A priority patent/EP3460114B1/de
Publication of DE102017008661A1 publication Critical patent/DE102017008661A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/02Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof made from particular materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/06Braid or lace serving particular purposes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/34Columns; Pillars; Struts of concrete other stone-like material, with or without permanent form elements, with or without internal or external reinforcement, e.g. metal coverings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/024Fabric incorporating additional compounds
    • D10B2403/0241Fabric incorporating additional compounds enhancing mechanical properties
    • D10B2403/02411Fabric incorporating additional compounds enhancing mechanical properties with a single array of unbent yarn, e.g. unidirectional reinforcement fabrics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • E04B1/165Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material with elongated load-supporting parts, cast in situ

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Faserverbundstruktur, einen Verzweigungsknoten zum Gebäudebau sowie Verfahren zur Herstellung eines Geflechts, der Faserverbundstruktur und des Verzweigungsknotens zum Gebäudebau.

Description

  • Die vorliegende Erfindung betrifft eine Faserverbundstruktur, einen Verzweigungsknoten zum Gebäudebau sowie Verfahren zur Herstellung eines Geflechts, der Faserverbundstruktur und des Verzweigungsknotens zum Gebäudebau.
  • Tragfähige Bauelemente, die als Verzweigungsknoten für den Gebäudebau geeignet sind, müssen hohen Anforderungen genügen. Die aus dem Stand der Technik bekannten Verzweigungsknoten sind jedoch lediglich unter hohem Aufwand herstellbar bzw. sind sie hinsichtlich ihres Einsatzgebietes eingeschränkt.
  • Im Stand der Technik bekannte Verzweigungsknoten sind beispielsweise geschweißte Anschlüsse mit Schlitzblechen oder Anschlussstäben (siehe 1A). Derartige Verzweigungsknoten weisen einen Versatz der äußeren Kontur auf. Sie sind überwiegend für normalkraftbeanspruchte Anschlüsse einsetzbar. Sie sind jedoch planmäßig für keine oder geringe Momente ausgelegt. Zudem sind vorstehende Anschlüsse optisch nicht ansprechend.
  • Bekannt sind weiterhin geschweißte, stumpf gestoßene Stahlrohre (siehe 1B). Grundsätzlich wäre die Kombination einer derartigen Struktur mit Beton für einen tragfähigen Verzweigungsknoten denkbar. Eine derartige Konstruktion ist zum Abtrag aller Arten von Schnittkräften geeignet. Durch das schiefe Verschneiden der Rohrquerschnitte entstehen komplexe Geometrien mit elliptischen Querschnitten im Verschneidungsbereich. Die Schnittkurven sind unterschiedlich gekrümmt. Dies erfordert die werksmäßige Vorfertigung der Metallteile. Zudem müssen die Schweißnähte hohen Anforderungen genügen. Dementsprechend können derartige Strukturen nur von erfahrenen und maschinentechnisch gut ausgestatteten Metallbaufirmen hergestellt werden. Das heißt, die Herstellung derartiger Strukturen ist mit einem hohen Aufwand verbunden. Darüber hinaus ist bei diesen Strukturen die Form des Knotens nicht dem Kräfteverlauf angepasst, da es keine Ausrundungen zwischen den geraden Elementen gibt. Hinzu kommt, dass die Gestaltungsmöglichkeiten herstellungsbedingt stark eingeschränkt sind.
  • Als weitere Knotenstrukturen sind Stahlgussknoten bekannt, wie beispielsweise in 1C dargestellt. Derartige Stahlgussknoten erfüllen hohe ästhetische Ansprüche. Zudem kann die Geometrie dem Kraftfluss angepasst werden. Die Herstellung erfordert jedoch hohe Investitionen in Formen und Gusswerkzeuge. Wirtschaftlich sinnvoll ist dies nur, wenn eine Mehrzahl baugleicher Knotenverbindungen identischer Geometrie hergestellt werden soll. Bauwerke mit unterschiedlichen Knotenstrukturen aus Stahlgussknoten sind daher nur unter hohem Aufwand realisierbar.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Verzweigungsknoten zum Gebäudebau, der mit einem hohen Maß an Gestaltungsfreiheit hergestellt werden können soll, ein Geflecht und eine Faserverbundstruktur zur Herstellung der Faserverbundstruktur bzw. des Verzweigungsknotens, sowie ein Herstellungsverfahren für das Geflecht, ein Herstellungsverfahren für die Faserverbundstruktur und ein Herstellungsverfahren für den Verzweigungsknoten bereitzustellen.
  • Die vorliegende Erfindung wird durch die in den Ansprüchen gekennzeichneten Ausführungsformen gelöst.
  • Die vorliegende Erfindung betrifft in einem ersten Aspekt ein Verfahren zur Herstellung eines Geflechts, umfassend die Schritte
    1. (A) Bereitstellen eines Flechtkerns, welcher mindestens drei Arme aufweist und eine Verzweigung bildet;
    2. (B) Bilden des Geflechts durch Umflechten des Flechtkerns mit einem Flechtmaterial,
    wobei das Geflecht im Bereich der Arme mindestens zwei Flechtlagen aufweist.
  • Ein Geflecht entsteht durch das regelmäßige Verkreuzen mehrerer Stränge eines Flechtmaterials mit entsprechenden Ondulationspunkten im Flechtprozess. Der Unterschied zum Weben bzw. zum Nähwirken liegt darin, dass beim Flechten die Stränge des Flechtmaterials nicht rechtwinklig zugeführt werden. Eine Faserorientierung (Orientierung der Stränge, Flechtwinkel) von 0/90 ist folglich nicht möglich. Im Gegensatz zum Gewebe können im Geflecht die Stränge bspw. +/-45° verkreuzt sein. Ein zusätzlicher Unterschied zum Nähwirken besteht darin, dass beim Flechten eine Verbindung zwischen den Strängen durch Verkreuzen und Ondulation erzielt wird, wohingegen beim Näh-wirken aufeinanderliegende Kett- und Schussfäden durch Umschlingen mit Maschenfäden miteinander verbunden werden. Ein Geflecht ist ein durch Flechten hergestelltes Erzeugnis.
  • In Schritt (A) des erfindungsgemäßen Verfahrens wird ein Flechtkern bereitgestellt. Nach dem das Geflecht erfindungsgemäß durch Umflechten des Flechtkerns hergestellt wird, wird die räumliche Gestalt des Geflechts sowie der erfindungsgemäßen Faserverbundstruktur und des erfindungsgemäßen Verzweigungsknotens im Wesentlichen von der räumlichen Gestalt des Flechtkerns vorgegeben.
  • Das Material, aus dem der Flechtkern aufgebaut ist (Flechtkernmaterial), unterliegt keiner besonderen Einschränkung, sodass grundsätzlich jedes formstabile Material verwendet werden kann. Somit können preiswerte und einfach zu bearbeitende Materialien eingesetzt werden, wodurch die erfindungsgemäßen Verfahren und die daraus gewonnenen Erzeugnisse besonders kostengünstig sind. Hinzu kommt, dass größtmögliche Flexibilität hinsichtlich der räumlichen Gestalt des Geflechts gegeben ist.
  • Abhängig von dem Flechtmaterial kann der Flechtkern grundsätzlich auf beliebige Weise hergestellt werden. Vorzugsweise besteht der Flechtkern aus einem kostengünstigen und leicht zu bearbeitenden Material. Beispiele hierfür sind organische Polymere sowie mineralhaltiger Sand (Spezialsand), welche beispielsweise durch Fräsen leicht bearbeitet werden können. Der Flechtkern kann auch additiv hergestellt werden, beispielsweise durch 3D Drucken.
  • Es ist von Vorteil, wenn der Flechtkern aus einem Material aufgebaut ist, welches nach Fertigstellung des Geflechts leicht entfernt werden kann. Der Flechtkern kann beispielsweise aus einem fräsbaren Material aufgebaut sein. Zu geeigneten fräsbaren Materialien zählen Metall, Holz, Kunststoff (vorzugsweise ein oder mehrere organische Polymere), Spezialsand und Kombinationen daraus.
  • Vorzugsweise umfasst der Flechtkern ein Material, welches in einem Fluid, vorzugsweise in einer Flüssigkeit, besonders bevorzugt in einem organischen Lösungsmittel (beispielsweise Methanol, Ethanol, Aceton, Dichlormethan, Isopropanol, Methylethylketon, n-Hexan, Toluol, Diethylether, wobei Aceton bevorzugt ist), Wasser und/oder einem Gemisch daraus, löslich ist. Dadurch kann Schritt (E) des erfindungsgemäßen Verfahrens zur Herstellung einer Faserverbundstruktur bzw. des erfindungsgemäßen Verfahrens zur Herstellung eines Verzweigungsknotens wesentlich erleichtert werden.
  • Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung ist der Flechtkern aus einem organischen Polymer aufgebaut. Das organische Polymer ist vorzugsweise geschäumt, wobei das geschäumte organische Polymer vorzugsweise geschlossenporig ist.
  • Ein bevorzugtes organisches Polymer ist Polystyrol. Es ist besonders bevorzugt, dass der Kern aus extrudiertem Polystyrol (XPS, Styrodur®) oder expandiertem Polystyrol (EPS, Styropor®) aufgebaut ist bzw. daraus besteht, wobei XPS besonders bevorzugt ist. Polystyrol ist in mehreren organischen Lösungsmitteln (beispielsweise Aceton, Dichlormethan) sehr gut löslich, was eine einfache Durchführung von Schritt (E) durch Auflösen des Flechtkerns in dem organischen Lösungsmittel ermöglicht.
  • Gemäß einer weiteren bevorzugten Ausführungsform ist der Flechtkern aus einem gehärteten Gemisch, umfassend Sand, Bindemittel und Lösungsmittel, hergestellt. Vorzugsweise besteht das Gemisch aus Sand, Bindemittel und Lösungsmittel. Zu geeigneten Bindemitteln zählen insbesondere wasserlösliche Salze. Dadurch, dass wasserlösliche Bindemittel verwendet werden, kann Schritt (E) des erfindungsgemäßen Verfahrens zur Herstellung einer Faserverbundstruktur bzw. des erfindungsgemäßen Verfahrens zur Herstellung eines Verzweigungsknotens wesentlich erleichtert werden. Ein Flechtkern aus einem gehärteten Gemisch kann beispielsweise aus einem Rohling aus dem gehärteten Gemisch gefräst werden. Alternativ kann das ungehärtete Gemisch in eine Form gegossen und dann gehärtet werden. Das Härten kann gegebenenfalls unter Wärmeeinwirkung stattfinden. Ein geeignetes Lösungsmittel ist beispielsweise Wasser. Ein derart aufgebauter Flechtkern ist gegen Wasser nicht formstabil, was eine einfache Durchführung von Schritt (E) durch Abtragen des Flechtkerns mit Wasser ermöglicht.
  • Hierin gelten Ausführungen in Bezug auf die räumliche Gestalt des Flechtkerns, die räumliche Gestalt des Hohlraums der Faserverbundstruktur bzw. die räumliche Gestalt des Betonkerns des Verzweigungsknotens zum Gebäudebau entsprechend für die räumliche Gestalt des Flechtkerns, des Hohlraums bzw. des Betonkerns. Das heißt, insoweit hierin eine der drei vorstehenden räumlichen Gestalten beschrieben wird, gelten die Ausführungen entsprechend für die beiden anderen. Entsprechend gelten hierin die Ausführungen in Bezug auf das Geflecht gleichermaßen für die erfindungsgemäßen Herstellungsverfahren sowie die erfindungsgemäße Faserverbundstruktur und den erfindungsgemäßen Verzweigungsknoten.
  • Die Form (räumliche Gestalt) des Flechtkerns unterliegt keiner besonderen Einschränkung, solange er mindestens drei Arme aufweist und eine Verzweigung bildet. Der einfachste Fall einer Verzweigung bei drei Armen wird als Gabelung bezeichnet. Hierbei treffen drei Arme in einem Gabelungsbereich zusammen, wie es beispielsweise bei einer Astgabelung eines Baumes der Fall ist. Die mindestens drei Arme gehen von einem gemeinsamen Verzweigungsbereich aus und erstrecken sich von dort aus in unterschiedliche Richtungen. Die drei Arme laufen in einem (einzigen) Verzweigungsbereich zusammen. Das äußere Ende eines Armes ist der Bereich des Armes, welcher am weitesten vom Verzweigungsbereich entfernt ist. Der Verzweigungsbereich ist der Bereich, in dem die mindestens drei Arme zusammenlaufen beziehungsweise ineinander übergehen. Die Stirnseite eines Arms ist derjenige Teil des äußeren Endes des Arms, welcher in einer Draufsicht auf das äußere Ende entlang der Armachse sichtbar ist. Die Achse eines Arms verläuft vom Verzweigungsbereich zum äußeren Ende des Arms.
  • Die Anzahl der Arme des Flechtkerns unterliegt keiner besonderen Einschränkung. Aus fertigungstechnischen Gründen weist der Flechtkern bevorzugt 3 bis 6, besonders bevorzugt 3 oder 4, insbesondere bevorzugt 3 Arme auf.
  • Das aus dem erfindungsgemäßen Herstellungsverfahren erhaltene Geflecht weist im Bereich der Arme mindestens zwei Flechtlagen auf (m ≥ 2). Somit sind im Bereich der Arme zwei oder mehrere voneinander abgrenzbare geflochtene Lagen (Schichten) vorhanden. Erfindungsgemäß bedeutet „das Geflecht weist im Bereich der Arme mindestens zwei Lagen auf”, dass die Arme zumindest teilweise mit zwei Flechtlagen umflochten sind. Vorzugsweise sind die Arme, abgesehen von den Stirnseiten des Flechtkerns, vollständig mit zwei Flechtlagen umflochten.
  • Vorzugsweise weist das Geflecht im Verzweigungsbereich zumindest eine Flechtlage auf. Herstellungsbedingt kann die Anzahl der Flechtlagen im Verzweigungsbereich schwanken. Das heißt, das Geflecht kann im Verzweigungsbereich Stellen mit jeweils unterschiedlicher Anzahl an Flechtlagen aufweisen. Gemäß einer bevorzugten Ausführungsform weist das Geflecht im Verzweigungsbereich Stellen mit m-1, m und m+1 Flechtlagen auf. So kann die Anzahl der Flechtlagen beispielsweise bei m = 2 an unterschiedlichen Orten des Verzweigungsbereichs 1, 2 und 3 betragen. Insbesondere bei mehr als drei Armen kann die Anzahl der Flechtlagen im Verzweigungsbereich eine noch größere Schwankungsbreite aufweisen. Die Anzahl der Flechtlagen kann beispielsweise an unterschiedlichen Orten des Verzweigungsbereichs 1, 2, 3 und 4 betragen oder 1, 2, 3, 4 und 5.
  • Gemäß einer bevorzugten Ausführungsform weist das Geflecht an jeder Stelle im Bereich der Arme die gleiche Anzahl an Flechtlagen m auf. Das heißt, die Anzahl an Flechtlagen im Bereich der Arme m ist vorzugsweise an jeder Stelle (an jedem Ort) des Geflechts im Bereich der Arme gleich (konstant).
  • In Schritt (B) wird der Flechtkern mit einem Flechtmaterial umflochten. Geeignete Flechtverfahren und Vorrichtungen zum Flechten sind dem Fachmann bekannt. Erfindungsgemäß besonders geeignet ist die Verwendung einer Radialflechtmaschine, wobei auch andere Vorrichtungen zum Flechten verwendet werden können.
  • Geeignete Flechtmaterialien sind dem Fachmann bekannt. Sie sind üblicherweise strang-, band- bzw. fadenförmig und weisen eine gewisse Flexibilität auf. Geeignete Flechtmaterialien umfassen vorzugsweise Glasfasern, Aramidfasern, Keramikfasern, Basaltfasern, Hybridgarn und/oder Carbonfasern, wobei Carbonfasern bevorzugt sind. Besonders bevorzugt besteht das Flechtmaterial aus Carbonfasern. Weiterhin ist bevorzugt, dass das Flechtmaterial in Form eines Rovings (Bündel aus parallel angeordneten Filamenten) vorliegt. Insbesondere ist bevorzugt, dass das Flechtmaterial ein Carbonfaserroving ist.
  • Hybridgarn enthält Verstärkungsfasern und thermoplastische Fasern. Die Verstärkungsfasern sind vorzugsweise aus der Gruppe, bestehend aus Glasfasern, Aramidfasern, Keramikfasern, Basaltfasern und/oder Carbonfasern, ausgewählt. Die thermoplastischen Fasern umfassen ein Material, welches durch Wärme aufschmelzbar ist und durch Abkühlen wieder erstarrt. Die thermoplastischen Fasern sind vorzugsweise aus einem thermoplastischen Material, besonders bevorzugt aus einem thermoplastischen organischen Polymer wie Polyethylen und/oder Polypropylen aufgebaut. Mithilfe von Hybridgarn kann aus dem Geflecht, ohne dass weitere Komponenten notwendig wären, eine Faserverbundstruktur hergestellt werden.
  • Die Feinheit des Flechtmaterials unterliegt keiner besonderen Einschränkung. Vorzugsweise weist das Flechtmaterial einen Tex-Wert von 200 bis 4000 tex auf (1 tex = 1 g / 1000 m).
  • Erfindungsgemäß reicht es aus, das Geflecht allein aus Flechtfäden zu bilden. Gemäß einer bevorzugten Ausführungsform werden neben Flechtfäden zusätzlich Stehfäden verwendet, wodurch ein Verzweigungsknoten mit vorteilhaften statischen Eigenschaften erhalten werden kann. Vorzugsweise beträgt das Verhältnis der Gewichtsanteile der Stehfäden und Flechtfäden von 1:2 bis 6:1, besonders bevorzugt 1:2 bis 2:1, beispielsweise 1:1, sofern Stehfäden vorhanden sind.
  • Es ist bevorzugt, dass die Stehfäden einen höheren Tex-Wert als die Flechtfäden aufweisen. Besonders bevorzugt ist der Tex-Wert der Stehfäden um mindestens 400 tex, weiter bevorzugt um mindestens 800 tex, insbesondere bevorzugt um mindestens 1600 tex höher als der Tex-Wert der Flechtfäden. Dadurch können im Flechtprozess die Faden-Faden-Reibung minimiert und eine ausreichende Fadenspannung gewährleistet werden.
  • Die Flechtfäden weisen vorzugsweise einen Tex-Wert von 200 bis 4000 tex auf. Die Stehfäden weisen vorzugsweise einen Tex-Wert von 600 bis 4000 tex auf. Wenn die Flecht- bzw. Stehfäden Tex-Werte aus den vorstehenden Bereichen aufweisen, kann ein Verzweigungsknoten mit besonders vorteilhaften statischen Eigenschaften bereitgestellt werden.
  • Erfindungsgemäß kann die Anordnung der Stehfäden im Geflecht grundsätzlich beliebig sein. Vorzugsweise verlaufen die Stehfäden zwischen den äußeren Enden der Arme und über den Verzweigungsbereich. Das heißt, die Stehfäden verlaufen vorzugsweise vom äußeren Ende eines Arms über den Verzweigungsbereich zum Ende eines anderen Armes. Durch diese Anordnung kann die Zugfestigkeit der Hülle gesteigert werden, was für die Aufnahme von Momenten durch einen entsprechenden Verzweigungsknoten vorteilhaft ist. Zudem ist es möglich, nur teilweise in das Geflecht Stehfäden einzubringen. Insbesondere können zur mechanischen Stabilisierung Stehfäden nur an ausgewählten Stellen des Geflechts eingebracht werden. Gleichermaßen können zur mechanischen Stabilisierung in ausgewählten Bereichen des Geflechts Stehfäden eingebracht werden, die einen höheren Tex-Wert als die sonstigen Stehfäden des Geflechts aufweisen. Durch vorstehende Maßnahmen ist es möglich, ausgewählte Bereiche des Geflechts, welche im Verzweigungsknoten besonders hohen Belastungen standhalten sollen, mit Stehfäden zu verstärken.
  • Gemäß einer bevorzugten Ausführungsform umfasst Schritt (B) mehrere Flechtschritte, wobei in jedem der Flechtschritte die Flechtrichtung von dem äußeren Ende eines Arms zu dem äußeren Ende eines davon verschiedenen Arms des Flechtkerns verläuft (siehe 2). Das heißt, die Arme werden vorzugsweise paarweise umflochten. Dadurch kann das erfindungsgemäße Verfahren zur Herstellung des Geflechts besonders effizient ausgestaltet werden.
  • Um eine besonders hohe Stabilität der Faserverbundstruktur und des Verzweigungsknotens zu erhalten, sind die Arme, die paarweise umflochten werden, vorzugsweise zueinander benachbart. Jeder Arm des Flechtkerns ist mindestens zu denjenigen zwei Armen benachbart, die ihm räumlich am nächsten sind. Beispielsweise ist ein erster Arm zu den beiden Armen benachbart, zu denen der erste Arm die beiden kleinsten Winkel des Flechtkerns bildet. Die Winkel des Flechtkerns werden zwischen den jeweiligen Längsrichtungen, entlang der sich die Arme erstrecken (Armachsen), gebildet. Für den Fall, dass mehrere Arme den gleichen Winkel zum ersten Arm bilden und dies der kleinste von allen Winkeln des Flechtkerns ist, ist der Arm zu allen Armen benachbart, die besagten gleichen und kleinsten Winkel zu dem ersten Arm bilden.
  • Erfindungsgemäß wird zwischen ebenen (zweidimensionalen) und nicht-ebenen (dreidimensionalen, räumlichen) Flechtkernen (bzw. Faserverbundstrukturen/Verzweigungsknoten) unterschieden. „Eben“ bedeutet in diesem Zusammenhang, dass die Achsen der Arme des Flechtkerns, der Faserverbundstruktur bzw. des Verzweigungsknotens im Wesentlichen in einer Ebene liegen. Bei einem nicht-ebenen Flechtkern ist dies nicht der Fall. Ein ebener Flechtkern spannt ein zweidimensionales Polygon auf, ein nicht-ebener Flechtkern ein Polyeder, wobei die Kanten des Polygons bzw. Polyeders durch die Strecken zwischen den Endbereichen der Arme gebildet werden.
  • Gemäß einer bevorzugten Ausführungsform umfasst Schritt (B) mindestens k Flechtschritte, wobei in jedem der k Flechtschritte der Flechtkern von dem äußeren Ende eines Arms zu dem äußeren Ende eines davon verschiedenen Arms umflochten wird (paarweises Umflechten der Arme) und k die Anzahl der Kanten des von dem Flechtkern aufgespannten Polygons bzw. Polyeders darstellt.
  • Sofern in dem erfindungsgemäßen Verfahren ein ebener Flechtkern umflochten wird und die Arme paarweise umflochten werden, umfasst Schritt (B) mindestens m = n Flechtschritte, wobei n die Anzahl der Arme des Flechtkerns darstellt und m die Anzahl der Flechtlagen im Bereich der Arme darstellt.
  • Gemäß einer bevorzugten Ausführungsform ist das erfindungsgemäße Verfahren zur Herstellung eines Geflechts dadurch gekennzeichnet, dass die Anzahl der Flechtlagen im Bereich der Arme m gerade ist und Schritt (B) m/2·n Flechtschritte umfasst, wobei n die Anzahl der Arme des Flechtkerns darstellt, und in jedem der m/2·n Flechtschritte, jeweils ausgehend vom äußeren Ende eines Armes, der mit weniger als den m Flechtlagen umflochten ist, zum äußeren Ende eines davon verschiedenen Armes, der mit weniger als den m Flechtlagen umflochten ist, der Flechtkern mit dem Flechtmaterial umflochten wird. Diese bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens ist insbesondere zum Umflechten eines ebenen Verzweigungsknotens bzw. zur Herstellung einer ebenen Faserverbundstruktur / eines ebenen Verzweigungsknotens geeignet.
  • Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung umfasst Schritt (B) die folgenden Schritte (B1) bis (B3), worin
    • (B1) in einem ersten Flechtschritt ein erster Arm und ein davon verschiedener zweiter Arm des Flechtkerns mit dem Flechtmaterial umflochten werden und vom äußeren Ende des ersten Armes zum äußeren Ende des zweiten Armes umflochten wird;
    • (B2) in weiteren Flechtschritten jeweils ausgehend vom äußeren Ende des zuletzt umflochtenen Armes zum äußeren Ende eines nicht mit m Flechtlagen umflochtenen Armes umflochten wird; und
    • (B3) in einem letzten Flechtschritt ausgehend vom äußeren Ende des zuletzt umflochtenen Armes zum äußeren Ende des ersten Armes umflochten wird.
  • Durch Schritte (B1) bis (B3) kann das Geflecht besonders einfach und schnell hergestellt werden. Zudem ist es dadurch möglich, eine Faserverbundstruktur und einen Verzweigungsknoten zu erhalten, die besonders vorteilhafte mechanische bzw. statische Eigenschaften aufweisen.
  • Vorzugsweise umfasst Schritt (B2) (m/2·n)-2 Flechtschritte. In Bezug auf Schritt (B2) ist zudem bevorzugt, dass der nicht mit m Flechtlagen umflochtene Arm zu dem zuletzt umflochtenen Arm benachbart ist. Zusätzlich oder alternativ dazu ist der nicht mit m Flechtlagen umflochtene Arm vorzugsweise aus den Armen des Flechtkerns mit der geringsten Anzahl an Flechtlagen ausgewählt. Das heißt, die Arme werden gleichmäßig aufeinanderfolgend (sequentiell, „der Reihe nach“) umflochten. Dadurch kann ein besonders regelmäßig strukturiertes Geflecht erhalten werden, wodurch die mechanische Stabilität der Faserverbundstruktur bzw. die statischen Eigenschaften des Verzweigungsknotens besonders vorteilhaft beeinflusst werden können.
  • Gegebenenfalls wird nach Schritt (B), beziehungsweise nach jedem der einzelnen Flechtschritte von Schritt (B), überstehendes Flechtmaterial abgetrennt, sodass die äußeren Enden bzw. Stirnseiten der Arme des Flechtkerns freiliegen/nicht mit einem Flechtmaterial umflochten sind.
  • Der mittlere Flechtwinkel (Winkel zwischen Steh- und Flechtfaden im Geflecht) beträgt vorzugsweise 40° bis 80°, besonders bevorzugt 50° bis 70°, insbesondere bevorzugt 55° bis 65°, beispielsweise 60°. Für diese Flechtwinkel werden besonders vorteilhafte statische Eigenschaften des Verzweigungsknotens beobachtet.
  • Der mittlere Flechtwinkel kann beispielsweise wie folgt bestimmt werden: An 10 unterschiedlichen Stellen des Geflechts (5 Stellen im Bereich der Arme, 5 Stellen im Verzweigungsbereich) wird der Flechtwinkel gemessen. Als mittlerer Flechtwinkel wird das arithmetische Mittel der Flechtwinkel der 10 unterschiedlichen Stellen verwendet.
  • Der Flechtwinkel ist von Parametern, wie beispielsweise Flügelraddrehzahl, Vorschubgeschwindigkeit, Flechtkerndurchmesser etc. abhängig und daher über das Bauteil veränderlich. Der Flechtwinkel kann beispielsweise mithilfe eines Geodreiecks oder auch optisch mithilfe einer Kamera am zylindrischen Ende gemessen werden.
  • In einem weiteren Aspekt betrifft die vorliegende Erfindung ein Verfahren zur Herstellung einer Faserverbundstruktur, umfassend das erfindungsgemäße Verfahren zur Herstellung eines Geflechts sowie einen Schritt des Verbindens des Geflechts mit einer Matrix und einen Schritt (E) des Entfernens des Flechtkerns unter Bildung eines Hohlraums. Durch den Schritt des Verbindens mit einer Matrix wird die Faserverbundstruktur formstabil.
  • In Schritt (E) wird der Flechtkern entfernt. Dies kann grundsätzlich auf beliebige Weise erfolgen. Vorzugsweise wird, wie bereits vorstehend beschrieben, der Flechtkern durch ein Fluid (z. B. Wasser oder ein organisches Lösungsmittel) aufgelöst bzw. abgetragen. Die vorstehenden Ausführungen in Bezug auf das Flechtkernmaterial gelten für Schritt (E) des erfindungsgemäßen Verfahrens entsprechend.
  • Beim Entfernen des Flechtkerns wird ein Hohlraum ausgebildet, der weitgehend die gleiche räumliche Gestalt wie der Flechtkern und der Betonkern des erfindungsgemäßen Verzweigungsknotens aufweist. Sofern, wie vorstehend beschrieben, während oder nach Schritt (B) überstehendes Flechtmaterial abgetrennt wurde, liegen die äußeren Enden der Arme des Hohlraums der Faserverbundstruktur bzw. der faserverstärkten Kunststoffstruktur stirnseitig frei. Das heißt, der Hohlraum ist über die äußeren Enden seiner Arme von außen zugänglich (sofern er nicht in eine Tagstruktur, wie einer verzweigten Stütze, integriert ist).
  • Das Matrixmaterial, aus dem die Matrix besteht, unterliegt keiner besonderen Einschränkung. Als Matrixmaterial geeignet ist grundsätzlich jedwedes Material, welches zur Herstellung von Faserverbundwerkstoffen geeignet ist.
  • Gemäß einer bevorzugten Ausführungsform wird ein keramisches Matrixmaterial verwendet. Grundsätzlich können alle zur Herstellung von Faserverbundwerkstoffen geeigneten keramischen Matrixmaterialen verwendet werden. Zu Beispielen für geeignete Materialien zählen Keramiken auf Grundlage von Siliziumcarbid und/oder Aluminiumoxid. Ein keramisches Matrixmaterial ist insbesondere mit Hinblick auf Brandschutzerfordernisse vorteilhaft.
  • Gemäß einer weiteren bevorzugten Ausführungsform ist das Matrixmaterial ein Kunststoffmaterial. In diesem Fall kann das erfindungsgemäße Verfahren zur Herstellung einer Faserverbundstruktur auch als Verfahren zur Herstellung einer faserverstärkten Kunststoffstruktur bezeichnet werden. Zu geeigneten Kunststoffen, die als Matrixmaterialien verwendet werden können, zählen organische Polymere, gehärtete Harzzusammensetzungen sowie thermoplastische Materialien, insbesondere solche thermoplastischen Materialen, aus denen die thermoplastischen Fasern des Hybridgarns aufgebaut sein können.
  • Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung umfasst das Flechtmaterial Hybridgarn und das erfindungsgemäße Verfahren zur Herstellung einer Faserverbundstruktur umfasst den Schritt des Aufschmelzens des Hybridgarns. In diesem Schritt werden die thermoplastischen Fasern des Hybridgarns aufgeschmolzen, sodass sie die Matrix ausbilden. Dies erfolgt vorzugsweise unter Anwendung von Druck, insbesondere durch Verpressen. Dadurch kann direkt aus dem Geflecht eine faserverstärkte Kunststoffstruktur erhalten werden, ohne dass weitere Komponenten notwendig sind. Allerdings ist es ebenso möglich, den Schritt des Aufschmelzens des Hybridgarns mit anderen Maßnahmen zum Verbinden des Geflechts mit einer Matrix zu kombinieren. Hinsichtlich des Hybridgarns und seiner Bestandteile gelten die vorstehenden Ausführungen entsprechend. Der Schritt des Aufschmelzens des Hybridgarns unterliegt keiner besonderen Einschränkung. Beispielsweise kann durch Erwärmen des Geflechts aufgeschmolzen werden, allerdings auch durch Anwenden von Ultraschall. Nach dem Aufschmelzen, gegebenenfalls gefolgt von Verpressen, wird das Geflecht vorzugsweise auf eine Temperatur unterhalb von 50°C und besonders bevorzugt auf Raumtemperatur (25 °C) abgekühlt, damit sich das thermoplastische Material verfestigt und so der Faserverbundstruktur Formstabilität verleiht.
  • Gemäß einer bevorzugten Ausführungsform ist das erfindungsgemäße Verfahren zur Herstellung einer Faserverbundstruktur ein Verfahren zur Herstellung einer faserverstärkten Kunststoffstruktur, umfassend das erfindungsgemäße Verfahren zur Herstellung eines Geflechts sowie die Schritte
    • (C) Einbringen eines duroplastischen Matrixsystems in das Geflecht;
    • (D) Vernetzen des duroplastischen Matrixsystems; und
    • (E) Entfernen des Flechtkerns unter Bildung eines Hohlraums.
  • Schritt (C) unterliegt keiner besonderen Einschränkung. Das Einbringen kann beispielsweise durch Aufbringen auf das Geflecht erfolgen. Die Matrix (duroplastisches Matrixsystem) kann grundsätzlich in jeder geeigneten Weise ein- bzw. aufgebracht werden. Beispiele für geeignete Ein- bzw. Aufbringungsverfahren sind Handlaminieren, Tauchen, Infusionsverfahren und Injektionsverfahren, wobei mit Hinblick auf eine effiziente Verfahrensführung Infusions- und Injektionsverfahren bevorzugt sind. Sofern das Einbringen durch Aufbringen erfolgt, so wird in Schritt (C) die Matrix so auf das Geflecht aufgebracht, dass dieses vollständig von der Matrix durchdrungen wird.
  • Die Matrix enthält ein oder mehrere Harze. Als Harz eignet sich grundsätzlich jedes Harz, welches für das Gebiet der Gebäudekonstruktion geeignet ist. Vorzugsweise wird als duroplastisches Matrixmaterial eine härtbare Harzzusammensetzung verwendet. Die Matrix kann Epoxidharze, Polyesterharze, Polyurethane und/oder Phenolharze umfassen. Zudem kann die Matrix weitere Bestandteile, z. B. ein oder mehrere Härtungsmittel, enthalten. Aus brandschutztechnischen Gründen wird vorzugsweise ein Harz mit hoher Flammbeständigkeit verwendet. Vorzugsweise enthält die Matrix ein oder mehrere Flammschutzmittel. Besonders bevorzugt besteht die Matrix aus einem oder mehreren (vorzugsweise härtbaren) Harzen, gegebenenfalls einem oder mehreren Härtungsmitteln und gegebenenfalls einem oder mehreren Flammschutzmitteln.
  • Schritt (D) unterliegt keiner besonderen Einschränkung. In Schritt (D) werden Bedingungen angewandt, die zum Aushärten der Matrix bzw. der Harzzusammensetzung führen. Beispielsweise kann dies durch Erwärmen des Matrixsystems bzw. der Harzzusammensetzung oder durch Bestrahlen des Matrixsystems bzw. der Harzzusammensetzung mit elektromagnetischer Strahlung (beispielsweise UV-Licht) erfolgen, wodurch die mechanischen Eigenschaften der resultierenden faserverstärkten Kunststoffstruktur bzw. des Verzweigungsknotens wesentlich verbessert werden. Schritt (D) kann gegebenenfalls auch lediglich darin bestehen, dass das Geflecht mit dem darauf aufgebrachten Matrixsystem bzw. der darauf aufgebrachten Harzzusammensetzung gelagert (stehen gelassen) wird, beispielsweise für eine Minute bis einen Tag, vorzugsweise 1 bis 12 Stunden. Auch Erwärmen bzw. Bestrahlen sind nicht zwingend erforderlich. So kann Schritt (D) beispielsweise bei einer Temperatur von 5 bis 50 °C, vorzugsweise 15 bis 30 °C, beispielsweise bei Raumtemperatur, durchgeführt werden. Dadurch, dass auf das Geflecht ein Matrixsystems bzw. eine Harzzusammensetzung aufgebracht (Schritt (C)) und gehärtet (Schritt (D)) wird, ist die resultierende faserverstärkte Kunststoffstruktur formstabil.
  • In Bezug auf Schritt (E) gelten die vorstehenden Ausführungen entsprechend.
  • Gemäß einer bevorzugten Ausführungsform ist das erfindungsgemäße Verfahren zur Herstellung einer Faserverbundstruktur ein Verfahren zur Herstellung einer faserverstärkten Kunststoffstruktur, umfassend das erfindungsgemäße Verfahren zur Herstellung eines Geflechts sowie die Schritte
    • (C) Aufbringen einer härtbaren Harzzusammensetzung auf das Geflecht;
    • (D) Härten der härtbaren Harzzusammensetzung; und
    • (E) Entfernen des Flechtkerns unter Bildung eines Hohlraums.
  • In einem weiteren Aspekt betrifft die vorliegende Erfindung ein Verfahren zur Herstellung eines Verzweigungsknotens zum Gebäudebau, umfassend das erfindungsgemäße Verfahren zur Herstellung einer Faserverbundstruktur sowie die Schritte
    • (F) Befüllen des von der Faserverbundstruktur umhüllten Hohlraums mit einem Betongemisch; und
    • (G) Aushärten des Betongemisches.
  • Durch Schritte (F) und (G) wird Beton in den Hohlraum eingebaut. In Schritt (F) können gegebenenfalls Maßnahmen zur Verdichtung durchgeführt werden. In Schritt (G) kann das Betongemisch gegebenenfalls nachbehandelt werden.
  • Sofern der Verzweigungsknoten eine (innere) Bewehrung, beispielsweise eine Längsbewehrung und/oder eine Anschlussbewehrung, aufweisen soll, kann diese vor Schritt (F) vollständig oder im Falle einer Anschlussbewehrung teilweise in den Hohlraum der Faserverbundstruktur eingebracht werden. Vorzugsweise besteht die Anschlussbewehrung aus einem üblichen Bewehrungsmaterial wie Stahl und weist Stangenform auf. Zur Bewehrung können Textilien oder Rovings, beispielsweise Carbonfaserrovings und/oder Glasfaserrovings, eingesetzt werden.
  • Das in Schritt (F) verwendete Betongemisch unterliegt keiner besonderen Einschränkung. Sowohl Normalbeton, hochfester Beton als auch ultrahochfester Beton können verwendet werden. Vorzugsweise wird schwindarmer, selbstverdichtender Beton verwendet. Das Betongemisch kann ausschließlich aus Beton bestehen. Das Betongemisch kann Fasern (insbesondere Stahlfasern, Kunststofffasern, beispielsweise Polyethylenfasern (PE-Fasern), Carbonfasern und/oder Glasfasern sowie gegebenenfalls weitere Zuschläge als Zusatzstoff oder Zusatzmittel enthalten.
  • Es ist bevorzugt, dass die äußeren Enden aller Arme der Faserverbundstruktur stirnseitig freiliegen, also nicht mit dem Flechtmaterial umflochten sind. Zur Herstellung des erfindungsgemäßen Verzweigungsknotens werden vor dem Befüllen (F) vorzugsweise n-1 Arme verschalt. Das Befüllen (F) erfolgt dann über das freistehende Ende des Arms, dessen äußeres Ende nicht verschalt ist. Nach dem Befüllen können gegebenenfalls vorhandene Lufteinschlüsse in dem befüllten Betongemisch entfernt werden, beispielsweise mithilfe eines Rüttlers, vorzugsweise unter Verwendung eines Innenrüttlers.
  • Der erfindungsgemäße Verzweigungsknoten kann in konventioneller Bauweise in eine Tragstruktur eingesetzt werden. Hierzu kann die gegebenenfalls vorhandene Anschlussbewehrung des Verzweigungsknotens mit den umliegenden Teilen der Tragstruktur verbunden werden. Alternativ kann die an den Verzweigungsknoten angeschlossene Tragstruktur oder Teile davon in einer Kern-/Hüllebauweise hergestellt werden und die Tragstruktur im Ganzen oder in Teilen betoniert werden.
  • Zwischen den Schritten (F) und (G) wird das eingefüllte Betongemisch gegebenenfalls unter üblichen Bedingungen nachbehandelt. Eine Nachbehandlung kann über die gegebenenfalls freiliegende(n) Stirnseite(n) eines oder mehrerer Arme erfolgen. Dies ist beispielsweise dann möglich, wenn ein oder mehrere Arme nicht an angrenzende Bauteile anschließen.
  • In Schritt (G) wird das eingefüllte Betongemisch unter üblichen Bedingungen ausgehärtet. Gegebenenfalls wird nach dem Aushärten die Verschalung der n-1 Arme entfernt.
  • In einem weiteren Aspekt betrifft die vorliegende Erfindung eine Faserverbundstruktur, umfassend einen Faseranteil und einen Matrixanteil, wobei die Faserverbundstruktur einen Hohlraum zumindest teilweise umhüllt, wobei der Hohlraum mindestens drei Arme aufweist und eine Verzweigung bildet; und der Faseranteil ein Geflecht mit mindestens zwei Flechtlagen im Bereich der Arme umfasst.
  • Die vorstehenden Ausführungen in Bezug auf das Herstellungsverfahren für das Geflecht und das Herstellungsverfahren für die Faserverbundstruktur gelten entsprechend für die Faserverbundstruktur.
  • Gemäß einer bevorzugten Ausführungsform ist die Faserverbundstruktur eine faserverstärkte Kunststoffstruktur, umfassend einen Faseranteil und einen Kunststoffanteil, wobei die faserverstärkte Kunststoffstruktur einen Hohlraum zumindest teilweise umhüllt, wobei der Hohlraum mindestens drei Arme aufweist und eine Verzweigung bildet; und der Faseranteil ein Geflecht mit mindestens zwei Flechtlagen im Bereich der Arme umfasst.
  • Die Faserverbundstruktur der vorliegenden Erfindung ist aus dem erfindungsgemäßen Verfahren zu seiner Herstellung erhältlich.
  • In einem weiteren Aspekt betrifft die vorliegende Erfindung einen Verzweigungsknoten zum Gebäudebau, umfassend einen Betonkern, wobei der Betonkern mindestens drei Arme aufweist und eine Verzweigung bildet; und eine den Betonkern zumindest teilweise umhüllende Faserverbundstruktur, deren Faseranteil ein textiles Halbzeug mit mindestens zwei Lagen (Textillagen) im Bereich der Arme umfasst.
  • Die vorstehenden Ausführungen in Bezug auf das Herstellungsverfahren für das Geflecht, das Herstellungsverfahren für die Faserverbundstruktur und das Herstellungsverfahren für den Verzweigungsknoten gelten entsprechend für den Verzweigungsknoten.
  • Das textile Halbzeug unterliegt keiner besonderen Einschränkung. Es kann beispielsweise ein Gewebe, ein Gewirke und/oder ein Geflecht umfassen. Vorzugsweise ist das textile Halbzeug das erfindungsgemäße Geflecht.
  • Die Anzahl der Flechtlagen der Faserverbundstruktur bzw. der Textil- oder Flechtlagen des Verzweigungsknotens im Bereich der Arme m unterliegt keiner besonderen Einschränkung, solange m mindestens 2 beträgt. Dadurch, dass m ≥ 2 ist, weist der Verzweigungsknoten besonders vorteilhafte statische Eigenschaften auf. Vorzugsweise ist m gerade, beispielsweise im Fall einer ebenen Faserverbundstruktur / eines ebenen Verzweigungsknotens. Besonders bevorzugt beträgt m 2 bis 12, mehr bevorzugt 2 bis 8, insbesondere bevorzugt 2 bis 6, beispielsweise 2.
  • Vorzugsweise weist das Halbzeug im Verzweigungsbereich zumindest eine Textillage auf. Vorzugsweise ist die Anzahl der Textillagen an jeder Stelle des Halbzeugs gleich. Herstellungsbedingt kann die Anzahl der Textillagen im Verzweigungsbereich jedoch schwanken, insbesondere, wenn das Halbzeug ein Geflecht ist. Das heißt, das Halbzeug bzw. Geflecht kann im Verzweigungsbereich Stellen mit jeweils unterschiedlicher Anzahl an Textillagen aufweisen. Gemäß einer bevorzugten Ausführungsform (ebener Verzweigungsknoten mit drei Armen) weist das Halbzeug bzw. das Geflecht im Verzweigungsbereich Stellen mit m-1, m und m+1 Textil- bzw. Flechtlagen auf. So kann die Anzahl der Textil- bzw. Flechtlagen beispielsweise bei m = 2 (zwei Textil- bzw. Flechtlagen im Bereich der Arme) an unterschiedlichen Orten des Verzweigungsbereichs 1, 2 bzw. 3 betragen. Bei komplexerer Struktur des Verzweigungsknotens, z. B. bei mehr als drei Armen, kann die Anzahl der Textil- bzw. Flechtlagen über einen noch größeren Bereich schwanken.
  • Kern und Hülle des Verzweigungsknotens können jeweils tragend und nicht tragend sein. Die Hülle kann auch nur als Schalung dienen ohne als Bewehrung mitzuwirken. Das Füllmaterial, der Beton, kann auch lediglich als Aussteifung für die Hülle dienen. Die Hülle kann ebenso nur teilweise als Bewehrung dienen. Der Widerstand der Faserverbundstruktur ohne Zusatzmaßnahmen kann in der Kaltbemessung gegeben sein, ohne dass der Widerstand der Faserverbundstruktur ohne Zusatzmaßnahmen auch in der Heißbemessung gegeben sein muss.
  • Der erfindungsgemäße Verzweigungsknoten kann eine hohe Tragfähigkeit aufweisen. Die von der Faserverbundstruktur gebildete Hülle des Verzweigungsknotens kann als verlorene Schalung und gleichzeitig als äußere Bewehrung (äußere Armierung) dienen. Es ist möglich, dass Druckkräfte hauptsächlich vom Betonkern abgetragen und Zugkräfte von der Hülle aufgenommen werden. Die Hülle kann so bemessen werden, dass sie den Beton effektiv umschnürt und zu einer Tragfähigkeitssteigerung, bezogen auf die einaxiale Festigkeit des Betons, durch Ausbilden eines mehraxialen Spannungszustands im Beton führt. Die Hülle kann Zugkräfte in Umfangsrichtung aufnehmen und bei ausreichender Umschnürungssteifigkeit im Beton durch Einengung vor allem bei einer Druckbeanspruchung einen mehraxialen Spannungszustand hervorrufen. Zugkräfte in Längsrichtung, die durch Momente entstehen können, kann die Hülle ebenfalls aufnehmen.
  • Vorzugsweise ist der Betonkern nur teilweise von der Faserverbundstruktur umhüllt. Besonders bevorzugt liegen die äußeren Enden der Arme des Betonkerns stirnseitig frei. Das heißt, die Stirnseiten der äußeren Enden der Arme des Betonkerns sind vorzugsweise nicht von der Faserverbundstruktur umhüllt bzw. bedeckt, sodass die Oberfläche des Verzweigungsknotens an den Stirnseiten eine Betonoberfläche ist, aus der gegebenenfalls eine Bewehrung bzw. eine Anschlussbewehrung ragt.
  • Vorzugsweise weist der Betonkern im Verzweigungsbereich Ausrundungen auf. Besonders bevorzugt weist der Betonkern im Verzweigungsbereich keine Kanten auf. Hierdurch kann eine ansprechende ästhetische Wirkung des Verzweigungsknotens erzielt werden. Zudem kann hierdurch die Geometrie des Verzweigungsknotens an den Kräfteverlauf einer tragenden Struktur, worin der Verzweigungsknoten verbaut ist, angepasst werden.
  • Die Arme des Verzweigungsknotens können unterschiedliche Durchmesser, Längen, Orientierungen und Ausrundungen zu den anderen Armen besitzen. Der Durchmesser eines Armes ist seine größte Längendimension senkrecht zur Armachse, gemessen am äußeren Ende des Arms. Vorzugsweise liegen die Armachsen zumindest bei drei Armen in einer gemeinsamen Ebene. Der Betonkern ist vorzugsweise rotationssymmetrisch, besonders bevorzugt punktsymmetrisch. Es ist zudem bevorzugt, dass die Querschnittsflächen am jeweiligen äußeren Ende der Arme rund sind und somit keine Ecken aufweisen. Die Querschnittsflächen können beispielsweise ellipsenförmig sein und sind vorzugsweise kreisförmig. Die Querschnittsfläche am äußeren Ende eines Arms ist die Querschnittsfläche in der Draufsicht auf die Stirnseite entlang der Armachse.
  • In besonders bevorzugten Ausführungsformen weisen das Geflecht, die erfindungsgemäße Faserverbundstruktur und/oder der erfindungsgemäße Verzweigungsknoten gleiche Durchmesser der Arme, abgerundete Querschnittsflächen und/oder Rotations- bzw. Punktsymmetrie auf.
  • Hinsichtlich der Dimensionen des Betonkerns bestehen keine besonderen Einschränkungen. Zum Einsatz in Gebäuden ist eine Mindesttragfähigkeit notwendig, diese bestimmt die geometrischen Abmessungen und erfordert eine individuelle Auslegung des Bauteils für jeden Anwendungsfall.
  • Die Durchmesser der Arme können in einem Bereich von wenigen Zentimetern (beispielsweise 1 cm) bis zu mehreren hundert Zentimetern (beispielsweise 500 cm) liegen. Die Durchmesser der mindestens drei Arme betragen unabhängig voneinander vorzugsweise mindestens 4 cm, vorzugsweise mindestens 8 cm, insbesondere bevorzugt mindestens 10 cm. Der Durchmesser der Arme beträgt vorzugsweise höchstens 100 cm, insbesondere bevorzugt höchstens 20 cm.
  • Damit der Verzweigungsknoten im Gebäudebau eingesetzt werden kann, sollte er eine minimale Schenkellänge aufweisen, um an umliegende Tragelemente (angrenzende Tragglieder) angeschlossen werden zu können. Die Schenkellänge ist die Länge vom Anfang der Achse des Schenkels entlang der geraden Achse des Schenkels bis zum äußersten Rand des Schenkels. Die Begriffe „Arm“ und „Schenkel“ sind in diesem Zusammenhang gleichbedeutend. Vorzugsweise erfolgt die Verbindung an umliegende Tragelemente über eine Steck- oder Muffenverbindung, die zusätzlich geklebt sein kann und eine mechanische Verzahnung (Torsionsknagge, Noppen, etc.) aufweisen kann und in der Regel eine Überlappung erfordert. Für diese Verbindungen insbesondere bevorzugt ist ein zylindrisches bzw. rohrförmiges Teilstück (Verbindungsbereich) zwischen dem Ende der doppeltgekrümmten Bereiche der Verzweigung und dem äußersten Rand des Schenkels. Für diese Verbindungsarten ist weiter eine Länge des zylindrischen bzw. rohrförmigen Teilstücks von mindestens dem einfachen Armdurchmesser, insbesondere mindestens dem zweifachen Armdurchmesser bevorzugt. Die Länge zwischen zwei Verzweigungen beträgt vorzugsweise höchstens 20 m, insbesondere bevorzugt höchstens 10 m, beispielsweise höchstens 5 m. Entsprechend beträgt die Länge eines Arms des erfindungsgemäßen Verzweigungsknotens (bzw. der Faserverbundstruktur) höchstens 10 m, insbesondere bevorzugt höchstens 5 m, beispielsweise höchstens 2,5 m. Die Länge des Verbindungsbereichs für Steck- und Muffenverbindungen beträgt vorzugsweise mindestens 4 cm, besonders bevorzugt mindestens 8 cm, insbesondere bevorzugt mindestens 20 cm.
  • Der Verzweigungsknoten bzw. der Betonkern weisen vorzugsweise eine Bewehrung auf. Vorzugsweise ist die Bewehrung eine Anschlussbewehrung, durch die der Verzweigungsknoten mit angrenzenden Traggliedern verbunden werden kann. Alternativ bzw. ergänzend dazu kann eine Verbindung zu angrenzenden Traggliedern über Stahleinbauteile, Muffen, Einstecker, Verschraubungen etc. oder über geklebte Verbindungen erfolgen. Die angrenzenden Tragglieder können ebenfalls erfindungsgemäße Verbindungsknoten und/oder konventionelle Tragglieder sein.
  • Zur Sicherstellung des Brandtragverhaltens kann der Betonkern des erfindungsgemäßen Verbindungsknotens eine zusätzliche Bewehrung, insbesondere Längsbewehrung, aufweisen.
  • Der erfindungsgemäße Verzweigungsknoten eignet sich insbesondere für die Verwendung zum Gebäudebau, insbesondere zum Hoch- und/oder Tiefbau. Der Verzweigungsknoten kann in Tragsystemen, wie Fachwerk- oder Rahmensystemen, verwendet werden.
    • 1A zeigt einen Rohrknoten mit Schlitzblech und Flanschplatte aus Stahl aus dem Stand der Technik.
    • 1B zeigt einen Rohrknoten aus geschnittenen und verschweißten Stahlrohren aus dem Stand der Technik.
    • 1C zeigt einen Stahlgussknoten aus dem Stand der Technik.
    • 2 zeigt einen Kern zur Herstellung eines erfindungsgemäßen Verzweigungsknoten mit drei Armen (1, 2, 3). Flechtrichtungen sind durch doppelköpfige Pfeile angegeben.
  • Die vorliegende Erfindung wird anhand der folgenden, nicht einschränkenden Beispiele näher erläutert.
  • Beispiele
  • Beispiel 1: Herstellung eines Verzweigungsknotens mit Hülle aus faserverstärkter Kunststoffstruktur
  • Aus einer Polystyrolplatte wurde mit einem Fräsroboter ein Flechtkern ausgefräst. Der erhaltene Kern wies drei Arme auf und hatte eine punktsymmetrische räumliche Gestalt (siehe 2).
  • Der Flechtkern mit einem Schenkeldurchmesser von 125 mm und einer Schenkellänge von 175 cm wurde mit einer Radialflechtmaschine (144er Radialflechters der Firma Herzog) in 3 Flechtschritten beflochten, wodurch ein zweilagiges Geflecht erhalten wurde. Wie in 2 gezeigt, wurde zunächst im ersten Flechtschritt vom äußeren Ende des Arms 1 zum äußeren Ende des Arms 2, dann im zweiten Flechtschritt vom äußeren Ende des Arms 2 zum äußeren Ende des Arms 3 und zuletzt im dritten und letzten Flechtschritt vom äußeren Ende des Arms 3 zum äußeren Ende des Arms 1 umflochten. Nach jedem der drei Flechtschritte wurden die Enden der zuletzt umflochtenen Arme mit Klebeband abgeklebt und überstehendes Flechtmaterial abgeschnitten.
  • Als Flechtmaterial wurden Flecht- und Stehfäden verwendet. Die Flechtfäden bestanden aus einem Carbonfaserroving mit 24 K (Feinheit von 1600 tex) und die Stehfäden aus einem Carbonfaserroving mit 48 K (Feinheit von 3200 tex). Die Carbonfaserrovings waren vom Typ „Tenax® STS Filamentgarn“ der Firma Toho Tenax. Es wurden 72 Flechtfäden und 72 Stehfäden (massebezogenes Verhältnis von Flechtfäden zu Stehfäden = 1:2) verwendet. Der Flechtwinkel betrug etwa 60°.
  • Auf den beflochtenen Flechtkern wurde eine Harzzusammensetzung (Zweikomponenten-Epoxidharzzusammensetzung MGS® RIMR 135 mit Epoxidharzkomponente „RIMR 135“ und flüssiger Härterkomponente „RIMH 137“ der Firma Hexion; Gewichtsverhältnis Harz/Härtungsmittel = 10/3) durch Handlaminieren aufgebracht. Das Geflecht wurde dabei vollständig von der Harzzusammensetzung durchdrungen. Der Flechtkern mit auf dem Geflecht aufgebrachter Epoxidharzzusammensetzung wurde für 24 Stunden bei Raumtemperatur gehärtet und anschließend für 15 Stunden bei 80°C getempert.
  • Nach Abkühlen auf Raumtemperatur wurde der Kern durch Auflösen in Aceton entfernt.
  • Zwei der freistehenden (offenen) Arme der erhaltenen faserverstärkten Kunststoffstruktur wurden anschließend verschalt. Der Hohlraum der faserverstärkten Kunststoffstruktur wurde mit Beton (Sorte „119M“ der Firma Godel Beton) befüllt. Mithilfe eines Innenrüttlers wurden Lufteinschlüsse entfernt und das entstandene freie Volumen mit Beton aufgefüllt. Danach wurde der erhaltene Verzweigungsknoten für 28 Tage ausgehärtet.
  • Vergleichsbeispiel: Herstellung eines Verzweigungsknotens ohne Hülle aus faserverstärktem Kunststoff
  • Es wurde ein Verzweigungsknoten aus Beton ohne Hülle aus faserverstärktem Kunststoff hergestellt. Abgesehen von der fehlenden Hülle wurden die gleichen Parameter wie in Beispiel 1 gewählt.
  • Beispiel 2: Vergleich
  • Die aus Beispiel 1 sowie dem Vergleichsbeispiel erhaltenen Verzweigungsknoten wurden jeweils einer Biegeprüfung unterzogen, indem die Verzweigung stehend, vertikal an einem Schenkel in der Ebene der Verzweigung belastet wurde und an zwei Enden entgegengesetzt zur Kraftrichtung gehalten wurde. Eine Festhaltung in horizontaler Richtung erfolgte nicht, wodurch zwei Schenkel auf Biegung belastet wurden. Die gemessene Prüfkraft im Versuchsstand für Beispiel 1 betrug 753,7 kN. Für das Vergleichsbeispiel wurden lediglich 51,1 kN gemessen. Die Ergebnisse sind in folgender Tabelle 1 zusammengefasst. Tabelle 1: Prüfkraft von Beispiel 1 und des Vergleichsbeispiels
    Prüfkraft
    Beispiel 1 753,7 kN
    Vergleichsbeispiel 51,1 kN
  • In weiteren Versuchen wurden auch die Drucktragfähigkeit und die Tragfähigkeitssteigerung durch die Umschnürungswirkung untersucht. Auch diese Versuche bestätigten die ausgezeichneten mechanischen Eigenschaften des Verzweigungsknotens von Beispiel 1.
  • Die vorliegende Erfindung ermöglicht die Herstellung von Verzweigungsknoten mit individuellen Geometrien und hoher Qualität der Oberfläche des Verzweigungsknotens. Anders als bei der Herstellung von Stahlgussknoten sind die Herstellungskosten unabhängig von der gefertigten Stückzahl, da die aufwändige Verwendung von Gussformen entfällt.
  • Durch die Hülle (Faserverbundstruktur) des Verzweigungsknotens wird dessen mechanische Belastbarkeit stark erhöht. Insbesondere durch Anpassung der Anordnung des Flechtmaterials (innere Geometrie) können filigrane und an die individuelle Belastungssituation exakt angepasste Verzweigungsknoten bereitgestellt werden. Zudem wird eine hohe Materialeffizienz erreicht. Durch geeignete Anpassung der räumlichen Gestalt des Verzweigungsknotens bzw. des Betonkerns (äußere Geometrie), wie die bevorzugten Ausrundungen zwischen den Schenkeln, können äußere und innere Geometrie entsprechend des Kraftflusses angepasst werden. Durch synergistisches Zusammenwirken der inneren und äußeren Geometrie des erfindungsgemäßen Verzweigungsknotens kann selbst bei schlanker und leichter Konstruktion des Verzweigungsknotens eine hohe Tragfähigkeit erzielt werden, wodurch Material eingespart werden kann.

Claims (10)

  1. Verfahren zur Herstellung eines Geflechts, umfassend die Schritte (A) Bereitstellen eines Flechtkerns, welcher mindestens drei Arme aufweist und eine Verzweigung bildet; (B) Bilden des Geflechts durch Umflechten des Flechtkerns mit einem Flechtmaterial, wobei das Geflecht im Bereich der Arme mindestens zwei Flechtlagen aufweist.
  2. Verfahren nach Anspruch 1, worin Schritt (B) mehrere Flechtschritte umfasst, wobei in jedem der Flechtschritte die Flechtrichtung von dem äußeren Ende eines Arms zu dem äußeren Ende eines davon verschiedenen Arms des Flechtkerns verläuft.
  3. Verfahren nach Anspruch 1 oder 2, wobei das Flechtmaterial Flechtfäden und Stehfäden umfasst.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei das Flechtmaterial Glasfasern, Carbonfasern, Basaltfasern, Hybridgarn, Keramikfasern und/oder Aramidfasern umfasst.
  5. Verfahren zur Herstellung einer Faserverbundstruktur, umfassend das Verfahren zur Herstellung eines Geflechts nach einem der Ansprüche 1 bis 4 sowie einen Schritt des Verbindens des Geflechts mit einer Matrix und einen Schritt (E) des Entfernens des Flechtkerns unter Bildung eines Hohlraums.
  6. Faserverbundstruktur, erhalten aus dem Verfahren nach Anspruch 5.
  7. Faserverbundstruktur, umfassend einen Faseranteil und einen Matrixanteil, wobei die Faserverbundstruktur einen Hohlraum zumindest teilweise umhüllt, wobei der Hohlraum mindestens drei Arme aufweist und eine Verzweigung bildet; und der Faseranteil ein Geflecht mit mindestens zwei Flechtlagen im Bereich der Arme umfasst.
  8. Verfahren zur Herstellung eines Verzweigungsknotens zum Gebäudebau, umfassend das Verfahren zur Herstellung einer Faserverbundstruktur nach Anspruch 5 sowie die Schritte (F) Befüllen des von der Faserverbundstruktur umhüllten Hohlraums mit einem Betongemisch; und (G) Aushärten des Betongemisches.
  9. Verzweigungsknoten zum Gebäudebau, erhalten aus dem Verfahren nach Anspruch 8.
  10. Verzweigungsknoten zum Gebäudebau, umfassend einen Betonkern, wobei der Betonkern mindestens drei Arme aufweist und eine Verzweigung bildet; und eine den Betonkern zumindest teilweise umhüllende Faserverbundstruktur, deren Faseranteil ein textiles Halbzeug mit mindestens zwei Lagen im Bereich der Arme umfasst.
DE102017008661.3A 2017-09-15 2017-09-15 Faserverbundstruktur, Verzweigungsknoten zum Gebäudebau sowie Verfahren zur Herstellung eines Geflechts, der Faserverbundstruktur und des Verzweigungsknotens zum Gebäudebau Withdrawn DE102017008661A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102017008661.3A DE102017008661A1 (de) 2017-09-15 2017-09-15 Faserverbundstruktur, Verzweigungsknoten zum Gebäudebau sowie Verfahren zur Herstellung eines Geflechts, der Faserverbundstruktur und des Verzweigungsknotens zum Gebäudebau
EP18191052.2A EP3460114B1 (de) 2017-09-15 2018-08-28 Verzweigungsknoten zum gebäudebau sowie verfahren zur herstellung des verzweigungsknotens zum gebäudebau

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017008661.3A DE102017008661A1 (de) 2017-09-15 2017-09-15 Faserverbundstruktur, Verzweigungsknoten zum Gebäudebau sowie Verfahren zur Herstellung eines Geflechts, der Faserverbundstruktur und des Verzweigungsknotens zum Gebäudebau

Publications (1)

Publication Number Publication Date
DE102017008661A1 true DE102017008661A1 (de) 2019-03-21

Family

ID=63442408

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017008661.3A Withdrawn DE102017008661A1 (de) 2017-09-15 2017-09-15 Faserverbundstruktur, Verzweigungsknoten zum Gebäudebau sowie Verfahren zur Herstellung eines Geflechts, der Faserverbundstruktur und des Verzweigungsknotens zum Gebäudebau

Country Status (2)

Country Link
EP (1) EP3460114B1 (de)
DE (1) DE102017008661A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019204427B4 (de) 2019-03-29 2023-12-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von mit Fasern verstärkten Bauteilen aus Kunststoff

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3586058A (en) * 1968-09-25 1971-06-22 Mc Donnell Douglas Corp Hollow bodies and method of fabricating the same
DE4127678A1 (de) * 1990-08-25 1992-03-05 Murata Machinery Ltd Verfahren und vorrichtung zum bilden eines geflechts
US5361674A (en) * 1991-10-18 1994-11-08 Murata Kikai Kabushiki Kaisha Braiding apparatus for a tubular braid structure
JPH0839692A (ja) * 1994-07-29 1996-02-13 Yokohama Rubber Co Ltd:The 自転車用フロントフォークの製造方法
DE102011119226A1 (de) * 2011-11-22 2013-05-23 Daimler Ag Verfahren zum Herstellen eines Hohlprofilssowie Hohlprofilbauteil
DE102014207818A1 (de) * 2014-04-25 2015-10-29 Deutsche Institute für Textil-und Faserforschung Denkendorf Stiftung des öffentlichen Rechts Verfahren zum Flechten eines länglichen Hohlkörpers, insbesondere mit Schlaufenanschlüssen, geflochtener Hohlkörper, Erzeugnis und Flechtmaschine
DE102014015411A1 (de) * 2014-10-20 2016-04-21 Hermann-Frank Müller Betonplatte
DE102016002856A1 (de) * 2015-03-19 2016-11-17 Sumitomo Riko Company Limited Verfahren zur Herstellung eines Harzformgegenstands und Harzformgegenstand
DE102015120476A1 (de) * 2015-11-26 2017-06-01 Verena Kara Verbundelement mit mindestens zwei Flächenelementen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053679A1 (en) * 2001-12-19 2003-07-03 Lawrence Technological University Ductile hybrid structural fabric
FR2952653B1 (fr) * 2009-11-18 2011-12-09 Commissariat Energie Atomique Architecture fibreuse tubulaire fermee et procede de fabrication

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3586058A (en) * 1968-09-25 1971-06-22 Mc Donnell Douglas Corp Hollow bodies and method of fabricating the same
DE4127678A1 (de) * 1990-08-25 1992-03-05 Murata Machinery Ltd Verfahren und vorrichtung zum bilden eines geflechts
US5361674A (en) * 1991-10-18 1994-11-08 Murata Kikai Kabushiki Kaisha Braiding apparatus for a tubular braid structure
JPH0839692A (ja) * 1994-07-29 1996-02-13 Yokohama Rubber Co Ltd:The 自転車用フロントフォークの製造方法
DE102011119226A1 (de) * 2011-11-22 2013-05-23 Daimler Ag Verfahren zum Herstellen eines Hohlprofilssowie Hohlprofilbauteil
DE102014207818A1 (de) * 2014-04-25 2015-10-29 Deutsche Institute für Textil-und Faserforschung Denkendorf Stiftung des öffentlichen Rechts Verfahren zum Flechten eines länglichen Hohlkörpers, insbesondere mit Schlaufenanschlüssen, geflochtener Hohlkörper, Erzeugnis und Flechtmaschine
DE102014015411A1 (de) * 2014-10-20 2016-04-21 Hermann-Frank Müller Betonplatte
DE102016002856A1 (de) * 2015-03-19 2016-11-17 Sumitomo Riko Company Limited Verfahren zur Herstellung eines Harzformgegenstands und Harzformgegenstand
DE102015120476A1 (de) * 2015-11-26 2017-06-01 Verena Kara Verbundelement mit mindestens zwei Flächenelementen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP H08 - 39 692 A (Maschinenübersetzung), TXPMTJEA [online] EPO [abgerufen am 25.04.2018] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019204427B4 (de) 2019-03-29 2023-12-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von mit Fasern verstärkten Bauteilen aus Kunststoff

Also Published As

Publication number Publication date
EP3460114B1 (de) 2022-03-30
EP3460114A2 (de) 2019-03-27
EP3460114A3 (de) 2019-04-10

Similar Documents

Publication Publication Date Title
EP2666922B2 (de) Textilbewehrtes Betonbauelement
DE102012210043A1 (de) Verfahren und Vorrichtung zur Herstellung einer Leichtbaustruktur sowie Leichtbaustruktur
EP3218170B1 (de) Faserverbundwerkstoffbauteil sowie verfahren zur herstellung eines faserverbundwerkstoffbauteils
EP2646226A1 (de) Unidirektionale faserbänder aufweisender faservorformling aus verstärkungsfaserbündeln und verbundwerkstoff-bauteil
DE102005034401A1 (de) Verfahren zur Herstellung von ein- oder mehrschichtigen Faservorformlingen sowie Fixierfaden und Tragschicht
DE102010042128A1 (de) Strukturbauteil, Luft- oder Raumfahrzeug sowie Verfahren
DE102008063545A1 (de) Multiaxialgelege
EP3052306A1 (de) Faserverbundwerkstoffbauteil, verfahren zur herstellung eines faserverbundwerkstoffbauteils sowie verwendung von faserbündeln und verstrebungsmitteln zur herstellung eines faserverbundwerkstoffbauteils
DE102008011658A1 (de) Verfahren zum Herstellen eines Faserverbund-Bauteils und Faserverbund-Bauteil
DE10326422A1 (de) Verfahren zur Herstellung von sich in einer Längsrichtung erstreckenden FVK-Hohlprofilen
EP2707530B1 (de) Textile mehrschicht-verstärkungsstruktur mit integrierter thermoplastischer matrix zur herstellung von umformbaren faserverbund-halbzeugstrukturen
DE102011014244A1 (de) Fasereinleger für Kraftfahrzeug-Faserbundkunststoffbauteil und Verfahren zur Herstellung des Kraftfahrzeug-Faserbundkunststoffbauteils
EP3460114B1 (de) Verzweigungsknoten zum gebäudebau sowie verfahren zur herstellung des verzweigungsknotens zum gebäudebau
EP2280821B1 (de) Ausschnittsverstärkung für kernverbunde und verfahren zu deren herstellung
DE102012001055B4 (de) Bauteil
DE102008023208A1 (de) Bauteil in Hybridbauweise
EP3030781B1 (de) Verbundbauteil und verfahren zur herstellung eines verbundbauteils
DE102013205440A1 (de) Verfahren zur Herstellung eines Faserverbundbauteils mit verstärktem Anbindungsabschnitt zur lokalen Krafteinleitung
EP3684985B1 (de) Bewehrungsmaterial
DE102015102437B4 (de) Verfahren zur Herstellung einer Verstärkung für Flanschstrukturen aus Faserverbundwerkstoff
WO2021037389A1 (de) Faserverstärktes geflochtenes strukturbauteil mit einer kunststoffmatrix sowie verfahren zu seiner herstellung
EP3574041B1 (de) Feuerhemmend ausgeführtes faserverbundbauteil
DE102019126608B4 (de) Stützvorrichtung und Verfahren zur Herstellung einer textilen Querkraftbewehrung und Betonbauteil
EP3552807B1 (de) Faserverbundbauteil, hybridbauteil und verfahren zum herstellen eines faserverbundbauteils
DE102013200288A1 (de) Verfahren für die Herstellung eines Strukturbauteils eines Fahrzeugs

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee