DE102016123721A1 - Kommunikationssystem zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation - Google Patents

Kommunikationssystem zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation Download PDF

Info

Publication number
DE102016123721A1
DE102016123721A1 DE102016123721.3A DE102016123721A DE102016123721A1 DE 102016123721 A1 DE102016123721 A1 DE 102016123721A1 DE 102016123721 A DE102016123721 A DE 102016123721A DE 102016123721 A1 DE102016123721 A1 DE 102016123721A1
Authority
DE
Germany
Prior art keywords
base station
communication device
communication
field strength
data throughput
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102016123721.3A
Other languages
English (en)
Inventor
Mario Hemp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phoenix Contact GmbH and Co KG
Original Assignee
Phoenix Contact GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix Contact GmbH and Co KG filed Critical Phoenix Contact GmbH and Co KG
Priority to DE102016123721.3A priority Critical patent/DE102016123721A1/de
Publication of DE102016123721A1 publication Critical patent/DE102016123721A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Die Erfindung betrifft ein Kommunikationssystem (100) zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation (101) zu einer zweiten Basisstation (103). Das Kommunikationssystem (100) umfasst die erste Basisstation (101), welche einen Leckwellenleiter umfasst, wobei der Leckwellenleiter ein Dämpfungsglied mit einer vorbestimmten Einfügedämpfung aufweist. Das Kommunikationssystem (100) umfasst ferner die zweite Basisstation (103). Das Kommunikationssystem (100) umfasst zudem ein Kommunikationsgerät (105), welches ausgebildet ist, mit der ersten Basisstation (101) über den Leckwellenleiter zu kommunizieren. Das Kommunikationsgerät (105) ist ausgebildet, ein Empfangssignal von der ersten Basisstation (101) zu empfangen, eine Empfangsfeldstärke des Empfangssignals zu bestimmen, und die Empfangsfeldstärke mit einer Referenzfeldstärke zu vergleichen. Das Kommunikationsgerät (105) ist ausgebildet, bei Unterschreitung der Referenzfeldstärke durch die Empfangsfeldstärke, die Verbindungsübergabe von der ersten Basisstation (101) zu der zweiten Basisstation (103) einzuleiten.

Description

  • TECHNISCHES GEBIET
  • Die vorliegende Erfindung betrifft das Gebiet der Kommunikationstechnik.
  • TECHNISCHER HINTERGRUND
  • Als Verbindungsübergabe (engl. Handover bzw. Roaming) wird ein Vorgang bezeichnet, bei dem ein Kommunikationsgerät einen Wechsel von einer Basisstation zu einer anderen Basisstation in einem Kommunikationssystem durchführt. Der Wechsel soll dabei ohne Unterbrechung einer Datenübertragung oder eines Gesprächs erfolgen.
  • Typischerweise wird eine Verbindungsübergabe von der Basisstation zu der anderen Basisstation durchgeführt, falls durch eine Bewegung des Kommunikationsgerätes eine Qualität der Datenübertragung oder des Gesprächs nicht mehr gewährleisten werden kann.
  • Insbesondere bei Anwendungen im industriellen Umfeld, bei denen sich das Kommunikationsgerät regelmäßig zwischen Basisstationen bewegt, beispielsweise bei Tunnelfunkanlagen, ist eine hohe Qualität der Datenübertragung von besonderer Bedeutung.
  • BESCHREIBUNG DER ERFINDUNG
  • Es ist daher eine Aufgabe der vorliegenden Erfindung, ein effizientes Konzept zur Einleitung einer Verbindungsübergabe zwischen einer ersten Basisstation und einer zweiten Basisstation zu schaffen.
  • Diese Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der Beschreibung, der Figuren sowie der abhängigen Ansprüche.
  • Die vorliegende Erfindung basiert auf der Erkenntnis, dass die obige Aufgabe durch ein Kommunikationssystem mit einer ersten Basisstation, einer zweiten Basisstation und einem Kommunikationsgerät gelöst werden kann, wobei die erste Basisstation einen Leckwellenleiter mit einem Dämpfungsglied umfasst. Das Dämpfungsglied weist eine vorbestimmte Einfügedämpfung auf, wodurch eine Empfangsfeldstärke eines Empfangssignals, welches von der ersten Basisstation empfangen wurde, gezielt herabgesetzt werden kann. Das Kommunikationsgerät vergleicht die Empfangsfeldstärke mit einer Referenzfeldstärke und leitet die Verbindungsübergabe von der ersten Basisstation zu der zweiten Basisstation ein, sobald die Empfangsfeldstärke die Referenzfeldstärke unterschreitet. Das Kommunikationsgerät kann als Kriterium für eine Verbindungsübergabe ferner einen zu erwartenden Datendurchsatz zu der ersten Basisstation und der zweiten Basisstation heranziehen.
  • Dadurch wird erreicht, dass die Verbindungsübergabe an einer Position eingeleitet werden kann, an welchem ein Aufbauen bzw. Abbauen einer jeweiligen Kommunikationsverbindung ohne eine Unterbrechung einer Datenübertragung oder eines Gesprächs möglich ist.
  • Gemäß einem ersten Aspekt betrifft die Erfindung ein Kommunikationssystem zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation. Das Kommunikationssystem umfasst die erste Basisstation, welche einen Leckwellenleiter umfasst, wobei der Leckwellenleiter ein Dämpfungsglied mit einer vorbestimmten Einfügedämpfung aufweist. Das Kommunikationssystem umfasst ferner die zweite Basisstation. Das Kommunikationssystem umfasst zudem ein Kommunikationsgerät, welches ausgebildet ist, mit der ersten Basisstation über den Leckwellenleiter zu kommunizieren. Das Kommunikationsgerät ist ausgebildet, ein Empfangssignal von der ersten Basisstation zu empfangen, eine Empfangsfeldstärke des Empfangssignals zu bestimmen, und die Empfangsfeldstärke mit einer Referenzfeldstärke zu vergleichen. Das Kommunikationsgerät ist ausgebildet, bei Unterschreitung der Referenzfeldstärke durch die Empfangsfeldstärke, die Verbindungsübergabe von der ersten Basisstation zu der zweiten Basisstation einzuleiten. Die Referenzfeldstärke kann mithin einen Schwellwert bzw. Grenzwert repräsentieren, welcher, falls er unterschritten wird, zum Einleiten bzw. Auslösen einer Verbindungsübergabe führen kann. Die vorbestimmte Einfügedämpfung kann beispielsweise 1 dB, 3 dB, 6 dB, 10 dB oder 20 dB betragen.
  • Gemäß einer Ausführungsform umfasst die zweite Basisstation einen weiteren Leckwellenleiter, wobei das Kommunikationsgerät ausgebildet ist, mit der zweiten Basisstation über den weiteren Leckwellenleiter zu kommunizieren, und wobei die erste Basisstation und die zweite Basisstation über den Leckwellenleiter, das Dämpfungsglied und den weiteren Leckwellenleiter miteinander verbunden sind. Dadurch wird der Vorteil erreicht, dass eine weitere Empfangsfeldstärke eines weiteren Empfangssignals von der zweiten Basisstation gezielt herabgesetzt werden kann, um eine korrespondierende Verbindungsübergabe von der zweiten Basisstation zu der ersten Basisstation einzuleiten. Die Verbindungsübergabe von der zweiten Basisstation zu der ersten Basisstation kann auf Grundlage desselben Konzepts realisiert werden wie die beschriebene Verbindungsübergabe von der ersten Basisstation zu der zweiten Basisstation.
  • Gemäß einer Ausführungsform sind der Leckwellenleiter und der weitere Leckwellenleiter parallel zueinander angeordnet. Dadurch wird der Vorteil erreicht, dass die Position der Verbindungsübergabe einfach bestimmt werden kann.
  • Gemäß einer Ausführungsform sind der Leckwellenleiter und der weitere Leckwellenleiter in einer Linie angeordnet. Dadurch wird der Vorteil erreicht, dass die Position der Verbindungsübergabe einfach bestimmt werden kann.
  • Gemäß einer Ausführungsform umfasst der Leckwellenleiter ein Schlitzkabel oder eine Schlitzantenne. Dadurch wird der Vorteil erreicht, dass eine gleichmäßige elektromagnetische Abstrahlung durch den Leckwellenleiter realisiert werden kann.
  • Gemäß einer Ausführungsform umfasst der weitere Leckwellenleiter ein weiteres Schlitzkabel oder eine weitere Schlitzantenne. Dadurch wird der Vorteil erreicht, dass eine gleichmäßige elektromagnetische Abstrahlung durch den weiteren Leckwellenleiter realisiert werden kann.
  • Gemäß einer Ausführungsform ist die Referenzfeldstärke in dem Kommunikationsgerät vorgespeichert. Dadurch wird der Vorteil erreicht, dass eine feste vorgespeicherte Referenzfeldstärke effizient bereitgestellt werden kann. Die Referenzfeldstärke als Schwellwert bzw. Grenzwert ändert sich in diesem Fall während des Betriebes nicht, und kann beispielsweise zur Kompilierungszeit oder durch einen Anwender definiert werden.
  • Gemäß einer Ausführungsform ist das Kommunikationsgerät ausgebildet, ein weiteres Empfangssignal von der zweiten Basisstation zu empfangen, eine weitere Empfangsfeldstärke des weiteren Empfangssignals zu bestimmen, und die Referenzfeldstärke auf der Basis der weiteren Empfangsfeldstärke zu bestimmen. Dadurch wird der Vorteil erreicht, dass die Referenzfeldstärke dynamisch im Betrieb bestimmt werden kann. Die Referenzfeldstärke und die weitere Empfangsfeldstärke können identisch sein. Die Referenzfeldstärke und die weitere Empfangsfeldstärke können jedoch auch in einem vorbestimmten Verhältnis zueinander stehen oder eine vorbestimmte Differenz aufweisen.
  • Gemäß einer Ausführungsform ist das Kommunikationsgerät ausgebildet, einen ersten Datendurchsatz zwischen dem Kommunikationsgerät und der ersten Basisstation und einen zweiten Datendurchsatz zwischen dem Kommunikationsgerät und der zweiten Basisstation zu bestimmen, und die Verbindungsübergabe von der ersten Basisstation zu der zweiten Basisstation einzuleiten, falls der zweite Datendurchsatz größer als der erste Datendurchsatz ist. Dadurch wird der Vorteil erreicht, dass die Verbindungsübergabe nur dann eingeleitet wird, falls die zweite Basisstation eine Kommunikation mit einem größeren Datendurchsatz ermöglicht. Mithin erfolgt bei Unterschreitung der Referenzfeldstärke nicht automatisch die Einleitung der Verbindungsübergabe durch das Kommunikationsgerät. Bei Unterschreitung der Referenzfeldstärke kann folglich ein Entscheidungsprozess gestartet werden, in welchem weitere Parameter, insbesondere der erste Datendurchsatz und der zweite Datendurchsatz, berücksichtigt werden können.
  • Der erste Datendurchsatz kann ein erster theoretisch möglicher Datendurchsatz sein, und der zweite Datendurchsatz kann ein zweiter theoretisch möglicher Datendurchsatz sein. Der erste Datendurchsatz und der zweite Datendurchsatz können beispielsweise anhand von Lookup-Tabellen jeweils theoretisch bestimmt werden.
  • Gemäß einer Ausführungsform ist das Kommunikationsgerät ausgebildet, ein erstes Modulationsschema der ersten Basisstation zu bestimmen, und den ersten Datendurchsatz auf der Basis des ersten Modulationsschemas zu bestimmen, wobei das Kommunikationsgerät ferner ausgebildet ist, ein zweites Modulationsschema der zweiten Basisstation zu bestimmen, und den zweiten Datendurchsatz auf der Basis des zweiten Modulationsschemas zu bestimmen. Dadurch wird der Vorteil erreicht, dass der erste Datendurchsatz und der zweite Datendurchsatz effizient bestimmt werden können. Das Modulationsschema kann beispielsweise die Verwendung einer BPSK-Modulation, einer QPSK-Modulation, einer QAM-Modulation, einer DSSS-Modulation oder einer OFDM-Modulation durch die jeweilige Basisstation anzeigen.
  • Gemäß einer Ausführungsform ist das Kommunikationsgerät ausgebildet, ein erstes Codierungsschema der ersten Basisstation zu bestimmen, und den ersten Datendurchsatz auf der Basis des ersten Codierungsschemas zu bestimmen, wobei das Kommunikationsgerät ferner ausgebildet ist, ein zweites Codierungsschema der zweiten Basisstation zu bestimmen, und den zweiten Datendurchsatz auf der Basis des zweiten Codierungsschemas zu bestimmen. Dadurch wird der Vorteil erreicht, dass der erste Datendurchsatz und der zweite Datendurchsatz effizient bestimmt werden können. Das Codierungsschema kann beispielsweise die Verwendung einer bestimmten Quellencodierung und/oder einer bestimmten Kanalcodierung durch die jeweilige Basisstation anzeigen.
  • Gemäß einer Ausführungsform ist das Kommunikationsgerät ausgebildet, ein erstes Modulations- und Codierungsschema der ersten Basisstation zu bestimmen, und den ersten Datendurchsatz auf der Basis des ersten Modulations- und Codierungsschemas zu bestimmen, wobei das Kommunikationsgerät ferner ausgebildet ist, ein zweites Modulations- und Codierungsschema der zweiten Basisstation zu bestimmen, und den zweiten Datendurchsatz auf der Basis des zweiten Modulations- und Codierungsschemas zu bestimmen. Dadurch wird der Vorteil erreicht, dass der erste Datendurchsatz und der zweite Datendurchsatz effizient bestimmt werden können. Das Modulations- und Codierungsschema (engl. Modulation and Coding Scheme, MCS) kann beispielsweise eine kombinierte Verwendung eines Modulationsschemas und eines Codierungsschemas durch die jeweilige Basisstation anzeigen.
  • Gemäß einer Ausführungsform ist das Kommunikationsgerät ausgebildet, einen ersten Kommunikationsstandard der ersten Basisstation zu bestimmen, und den ersten Datendurchsatz auf der Basis des ersten Kommunikationsstandards zu bestimmen, wobei das Kommunikationsgerät ferner ausgebildet ist, einen zweiten Kommunikationsstandard der zweiten Basisstation zu bestimmen, und den zweiten Datendurchsatz auf der Basis des zweiten Kommunikationsstandards zu bestimmen. Dadurch wird der Vorteil erreicht, dass der erste Datendurchsatz und der zweite Datendurchsatz effizient bestimmt werden können. Der erste Kommunikationsstandard wird zur Kommunikation durch die erste Basisstation verwendet, und der zweite Kommunikationsstandard wird zur Kommunikation durch die zweite Basisstation verwendet. Der erste Kommunikationsstandard und der zweite Kommunikationsstandard können beispielsweise WLAN-Kommunikationsstandards sein, beispielsweise IEEE 802.11a, IEEE 802.11b, IEEE 802.11g oder IEEE 802.11n.
  • Gemäß einer Ausführungsform ist das Kommunikationsgerät ausgebildet, einen ersten Auslastungsgrad eines ersten Kommunikationskanals zwischen dem Kommunikationsgerät und der ersten Basisstation zu bestimmen, und den ersten Datendurchsatz auf der Basis des ersten Auslastungsgrads zu bestimmen, wobei das Kommunikationsgerät ferner ausgebildet ist, einen zweiten Auslastungsgrad eines zweiten Kommunikationskanals zwischen dem Kommunikationsgerät und der zweiten Basisstation zu bestimmen, und den zweiten Datendurchsatz auf der Basis des zweiten Auslastungsgrads zu bestimmen. Dadurch wird der Vorteil erreicht, dass der erste Datendurchsatz und der zweite Datendurchsatz effizient bestimmt werden können.
  • Gemäß einer Ausführungsform ist das Kommunikationsgerät ausgebildet, einen ersten Auslastungsindikator von der ersten Basisstation zu empfangen, wobei der erste Auslastungsindikator den ersten Auslastungsgrad des ersten Kommunikationskanals anzeigt, wobei das Kommunikationsgerät ferner ausgebildet ist, einen zweiten Auslastungsindikator von der zweiten Basisstation zu empfangen, wobei der zweite Auslastungsindikator den zweiten Auslastungsgrad des zweiten Kommunikationskanals anzeigt. Dadurch wird der Vorteil erreicht, dass der jeweilige Auslastungsgrad durch die jeweilige Basisstation bestimmt und dem Kommunikationsgerät signalisiert werden kann.
  • Gemäß einer Ausführungsform ist der erste Auslastungsgrad des ersten Kommunikationskanals durch eine erste Anzahl freier Zeitschlitze des ersten Kommunikationskanals bestimmt, wobei der zweite Auslastungsgrad des zweiten Kommunikationskanals durch eine zweite Anzahl freier Zeitschlitze des zweiten Kommunikationskanals bestimmt ist. Dadurch wird der Vorteil erreicht, dass der Auslastungsgrad des jeweiligen Kommunikationskanals einfach charakterisiert werden kann.
  • Gemäß einer Ausführungsform ist das Kommunikationsgerät ausgebildet, eine Netzkennung zu empfangen, welche der zweiten Basisstation zugeordnet ist, und die Verbindungsübergabe von der ersten Basisstation zu der zweiten Basisstation einzuleiten, falls die empfangene Netzkennung einer vorgespeicherten Netzkennung entspricht. Dadurch wird der Vorteil erreicht, dass die Verbindungsübergabe zu der zweiten Basisstation nur dann erfolgt, wenn die zweite Basisstation dem Kommunikationsgerät bekannt ist. Die Netzkennung kann in dem Kommunikationsgerät vorgespeichert sein. Die Netzkennung kann ein Service Set Identifier (SSID) sein.
  • Gemäß einer Ausführungsform ist das Kommunikationsgerät ausgebildet, eine erste Kommunikationsverbindung zwischen dem Kommunikationsgerät und der ersten Basisstation abzubauen und eine zweite Kommunikationsverbindung zwischen dem Kommunikationsgerät und der zweiten Basisstation aufzubauen, um die Verbindungsübergabe von der ersten Basisstation zu der zweiten Basisstation einzuleiten. Dadurch wird der Vorteil erreicht, dass die Verbindungsübergabe effizient durchgeführt werden kann.
  • Gemäß einer Ausführungsform ist die erste Basisstation ein erster WLAN-Zugangspunkt, wobei die zweite Basisstation ein zweiter WLAN-Zugangspunkt ist, und wobei das Kommunikationsgerät ein WLAN-Client ist. Dadurch wird der Vorteil erreicht, dass eine Verbindungsübergabe in einem Wireless Local Area Network (WLAN) realisiert werden kann.
  • Gemäß einem zweiten Aspekt betrifft die Erfindung ein Verfahren zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation in einem Kommunikationssystem. Das Kommunikationssystem umfasst die erste Basisstation, die zweite Basisstation und ein Kommunikationsgerät, wobei die erste Basisstation einen Leckwellenleiter umfasst, wobei der Leckwellenleiter ein Dämpfungsglied mit einer vorbestimmten Einfügedämpfung aufweist. Das Kommunikationsgerät ist ausgebildet, mit der ersten Basisstation über den Leckwellenleiter zu kommunizieren. Das Verfahren umfasst ein Empfangen eines Empfangssignals von der ersten Basisstation durch das Kommunikationsgerät, ein Bestimmen einer Empfangsfeldstärke des Empfangssignals durch das Kommunikationsgerät, ein Vergleichen der Empfangsfeldstärke mit einer Referenzfeldstärke durch das Kommunikationsgerät, und bei Unterschreitung der Referenzfeldstärke durch die Empfangsfeldstärke ein Einleiten der Verbindungsübergabe von der ersten Basisstation zu der zweiten Basisstation durch das Kommunikationsgerät.
  • Das Verfahren kann durch das Kommunikationssystem ausgeführt werden. Weitere Merkmale des Verfahrens resultieren unmittelbar aus den Merkmalen und/oder der Funktionalität des Kommunikationssystems.
  • Gemäß einem dritten Aspekt betrifft die Erfindung ein Computerprogramm mit einem Programmcode zum Ausführen des Verfahrens gemäß dem zweiten Aspekt der Erfindung.
  • Das Kommunikationssystem, insbesondere die erste Basisstation, die zweite Basisstation und/oder das Kommunikationsgerät, können programmtechnisch eingerichtet sein, um den Programmcode auszuführen.
  • Die Erfindung kann in Hardware und/oder in Software realisiert werden.
  • Figurenliste
  • Weitere Ausführungsbeispiele werden bezugnehmend auf die beiliegenden Figuren näher erläutert. Es zeigen:
    • 1 ein schematisches Diagramm eines Kommunikationssystems zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation;
    • 2 ein schematisches Diagramm eines Kommunikationssystems zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation;
    • 3 ein schematisches Diagramm eines Kommunikationssystems zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation;
    • 4 ein schematisches Diagramm eines Kommunikationssystems zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation; und
    • 5 ein schematisches Diagramm eines Verfahrens zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation in einem Kommunikationssystem.
  • DETAILIERTE BESCHREIBUNG DER FIGUREN
  • 1 zeigt ein schematisches Diagramm eines Kommunikationssystems 100 zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation 101 zu einer zweiten Basisstation 103. Das Kommunikationssystem 100 umfasst die erste Basisstation 101, welche einen Leckwellenleiter umfasst, wobei der Leckwellenleiter ein Dämpfungsglied mit einer vorbestimmten Einfügedämpfung aufweist. Das Kommunikationssystem 100 umfasst ferner die zweite Basisstation 103.
  • Das Kommunikationssystem 100 umfasst zudem ein Kommunikationsgerät 105, welches ausgebildet ist, mit der ersten Basisstation 101 über den Leckwellenleiter zu kommunizieren. Das Kommunikationsgerät 105 ist ausgebildet, ein Empfangssignal von der ersten Basisstation 101 zu empfangen, eine Empfangsfeldstärke des Empfangssignals zu bestimmen, und die Empfangsfeldstärke mit einer Referenzfeldstärke zu vergleichen. Das Kommunikationsgerät 105 ist ausgebildet, bei Unterschreitung der Referenzfeldstärke durch die Empfangsfeldstärke, die Verbindungsübergabe von der ersten Basisstation 101 zu der zweiten Basisstation 103 einzuleiten.
  • Zum Einleiten bzw. Auslösen der Verbindungsübergabe für ein Roaming kann als Kriterium die Empfangsstärke des Empfangssignals, beispielsweise in Form eines Received Signal Strength Indicators (RSSI), herangezogen werden. Unterschreitet die durch das Kommunikationsgerät 105 bestimmte Empfangsfeldstärke des Empfangssignals von der ersten Basisstation 101 beispielsweise eine vorbestimmte, beispielsweise in einem Treiber einstellbare, Referenzfeldstärke, so kann eine Routine gestartet werden, welche zu einer Verbindungsübergabe führen kann. Dabei kann das Kommunikationsgerät 105 nach Basisstationen suchen, deren Netzkennung und Zugangsdaten bekannt sind, und anhand verschiedener Parameter eine Rangfolge (engl. Ranking) erstellen, welches beispielsweise nach dem jeweiligen bestmöglichen Datendurchsatz sortiert ist. Steht beispielsweise die aktuell verbundene erste Basisstation 101 nicht an der höchsten Stelle in der Rangfolge, kann eine Verbindungsübergabe ausgelöst werden. Die erste Basisstation 101 und die zweite Basisstation 103 können WLAN-Zugangspunkte (engl. Access Points, APs) sein. Das Kommunikationsgerät 105 kann ein WLAN-Client sein.
  • Die Parameter zum Erstellen der Rangfolge können u.a. umfassen:
    • - Empfangsfeldstärke des Sendesignals der Basisstation, ermittelt an der Empfangsstation, beispielsweise bestimmt durch RSSI;
    • - Verfügbares Modulationsschema der jeweiligen Basisstation;
    • - Auslastungsgrad des Kommunikationskanals bzw. Übertragungsmediums; und/oder
    • - Verwendeter Kommunikationsstandard der jeweiligen Basisstation, beispielsweise IEEE 802.11a, b, g, n, etc.
  • Während sich die Sendeleistung in Abhängigkeit von der Umgebung verändern kann, sind das verfügbare Modulationsschema und die Auslastung des Kommunikationskanals Parameter, welche im Rahmen eines verwendeten Kommunikationsstandards definiert sein können. Dies sollen im Folgenden näher beschrieben werden.
  • Die Kriterien bzw. Mechanismen zum Einleiten einer Verbindungsübergabe sind in bestimmten Kommunikationsstandards, beispielsweise dem IEEE 802.11 Kommunikationsstandard im Falle von WLAN, nicht festgelegt. Jeder Hersteller von entsprechenden Treibern kann folglich eigene Funktionen implementieren und sie nach eigenem Ermessen dokumentieren und veröffentlichen.
  • Hinsichtlich des verfügbaren Modulationsschemas der jeweiligen Basisstation können die folgenden Aspekte berücksichtigt werden. Je nach verwendetem Kommunikationsstandard sowie Modulations- und Codierungsschema (MCS) ist es möglich, Datenpakete mit unterschiedlichen Datendurchsätzen im Sinne von Übertragungsraten zwischen den Basisstationen 101, 103 und dem Kommunikationsgerät 105 zu versenden. Der IEEE 802.11g Kommunikationsstandard für WLAN ermöglicht beispielsweise, je nach MCS, Datendurchsätze zwischen 6 Mbit/s und 54 Mbit/s.
  • Das Modulations- und Codierungsschema (MCS) kann dabei als Kriterium für das Einleiten einer Verbindungsübergabe herangezogen werden. Es kann beispielsweise nur nach unterschiedlichen Kommunikationsstandards mit deren Modulationsschemata, beispielsweise DSSS-Modulation oder OFDM-Modulation, charakterisiert werden.
  • Ist beispielsweise ein verwendbarer Kommunikationsstandard ermittelt, kann in einem weiteren Schritt der Treiber des Kommunikationsgerätes 105 auch die Sendeleistung der jeweiligen Basisstation mit einbeziehen und einen wahrscheinlichen Datendurchsatz der jeweiligen Basisstation abschätzen. Bei geringem RSSI ist die Wahrscheinlichkeit, einen hohen Datendurchsatz zu erzielen, geringer.
  • Hinsichtlich des Auslastungsgrades können die folgenden Aspekte berücksichtigt werden. Die jeweilige Basisstation 101, 103 kann im laufenden Betrieb jeweils diverse Statistiken, unter anderem auch Angaben zur Auslastung des jeweiligen Kommunikationskanals, bereitstellen. Hierfür kann beispielsweise die Anzahl freier Zeitschlitze gezählt werden, in denen ein Kommunikationsgerät den Kommunikationskanal belegen und darauf senden darf. Die jeweilige Anzahl kann die jeweilige Basisstation 101, 103 in zyklisch ausgesendeten Management Telegrammen oder Beacons als Auslastungsindikatoren aussenden. Ist der jeweilige Kommunikationskanal beispielsweise stark belegt, kann dies zu einem geringeren möglichen Datendurchsatz führen. Das Kommunikationsgerät 105, welches vor einer Verbindungsübergabe steht, kann diese Information verwerten und beim Entscheidungsprozess für oder gegen eine Verbindungsübergabe zu einer anderen Basisstation heranziehen.
  • Zum Einleiten einer Verbindungsübergabe kann folglich eine Bewertung der verschiedenen Basisstationen 101, 103 durch das Kommunikationsgerät 105 durchgeführt werden. Dabei kann durch das Kommunikationsgerät 105 eine Rangfolge der verfügbaren Basisstationen 101, 103 erstellt werden.
  • Als Kriterium hierfür kann beispielsweise der maximal mögliche Datendurchsatz der jeweiligen Kommunikationsverbindung herangezogen werden. Dieser kann u.a. auf der Basis der folgenden Parameter ermittelt werden:
    • - Signalleistung des jeweils ausgesendeten Signals von der Basisstation, beispielsweise in Form eines Signal-Rausch-Abstandes (Signal-to-Noise Ratio, SNR) des jeweiligen Empfangssignals;
    • - Verwendeter Kommunikationsstandard der jeweiligen Basisstation, beispielsweise IEEE 802.11a, b, g, n, etc.; und/oder
    • - Auslastung bzw. Medienbelegung des jeweiligen Kommunikationskanals.
  • Der jeweilige Datendurchsatz kann dabei auf Grundlage einer vorgespeicherten bzw. abgelegten Tabelle, beispielsweise als Lookup-Tabelle, bestimmt werden. Diese kann beispielsweise durch einen Hersteller eines Treibers in einem Datenarray abgelegt werden und für jeden Kommunikationsstandard in Abhängigkeit des SNR Wertes, einen maximal möglichen Brutto-Datendurchsatz anzeigen. Auf jene Basisstation, welche den bestmöglichen theoretischen Datendurchsatz ermöglicht, kann folglich eine Verbindungsübergabe erfolgen. Im Folgenden sind beispielhafte Lookup-Tabellen für die Kommunikationsstandards IEEE 802.11a, IEEE 802.11b, und IEEE 802.11g dargestellt: IEEE 802.11a:
    {105, 30600},
    { 21, 30500 }, (54 Mb/s)
    { 20, 28500 }, (48 Mb/s)
    { 15, 23700}, (36 Mb/s)
    { 11, 17700 }, (24 Mb/s)
    { 8, 14105}, (18 Mb/s)
    { 6, 10105}, (12 Mb/s)
    { 4, 7800}, (9 Mb/s)
    { 3, 5400}, (6 Mb/s)
    { 1, 0} (keine Verbindung)
    IEEE 802.11b:
    { 105, 6500},
    { 7, 6400}, (11 Mb/s)
    { 4, 4300}, (5 Mb/s)
    { 3, 1800}, (2 Mb/s)
    { 2, 105}, (1 Mb/s)
    { 0, 1} (keine Verbindung)
    IEEE 802.11g: Abschlag um 10%
    {105, 28000},
    { 21, 27450}, (54 Mb/s)
    { 20, 25650 }, (48 Mb/s)
    { 15, 21330}, (36 Mb/s)
    { 11, 15930 }, (24 Mb/s)
    { 8, 12690}, (18 Mb/s)
    { 7, 1030}, (12 Mb/s)
    { 6, 6400}, (11 Mb/s)
    { 4, 4300}, (5 Mb/s)
    { 3, 1800}, (2 Mb/s)
    { 2, 105}, (1 Mb/s)
    { 0, 1} (keine Verbindung)
  • Die linke Spalte repräsentiert das Signal-Rausch-Verhältnis SNR, welches beim Suchen einer Basisstation durch das Kommunikationsgerät 105 bestimmt werden kann. Das Kommunikationsgerät 105 bzw. der Treiber kann das SNR später in einen absoluten RSSI Wert umrechnen, beispielsweise unter der Annahme, dass der Rauschpegel bei -94 dBm liegt, welcher typisch für ungestörte Umgebungen sein kann. Die rechte Spalte repräsentiert den erwarteten Brutto-Datendurchsatz für das jeweilige Signal-Rausch-Verhältnis SNR in Kilobit/s. Beispielsweise geht das Kommunikationsgerät 105 bzw. der Treiber bei einem SNR von 21 (also RSSI = -94 + 21 = -73 dBm) oder besser von einem möglichen Datendurchsatz von 27,475 MBit/s aus, wenn die Basisstation den Kommunikationsstandard IEEE 802.11g verwendet. Wenn die Basisstation lediglich den Kommunikationsstandard IEEE 802.11b verwendet, dann wäre der Datendurchsatz bei demselben SNR nur 6,4 MBit/s. Wenn die Basisstation lediglich den Kommunikationsstandard IEEE 802.11a verwendet, dann wäre der Datendurchsatz bei demselben SNR nur 30,5 MBit/s.
  • Ferner lässt sich auch die Auslastung des Kommunikationskanals mit einbeziehen. Diese kann anhand einer Anzahl freier Zeitschlitze auf dem jeweiligen Kommunikationskanal bestimmt werden und/oder bereits von dem Treiber bereitgestellt werden. Befindet sich beispielsweise ein anderer Kommunikationsteilnehmer auf demselben Kommunikationskanal und belegt die Hälfte der möglichen Zugriffszeit, so kann ein Faktor von 50 % mit dem zuvor bestimmten Brutto-Datendurchsatz multipliziert werden. Ist der Kommunikationskanal beispielsweise zu 50% belegt, und ergibt sich anhand des Kommunikationsstandards bzw. des Modulationsschemas und des SNR ein theoretischer Brutto-Datendurchsatz von 27,475 MBit/s, so kann von einem tatsächlichen Datendurchsatz von 0,5 x 27,475 MBit/s = 13,7375 MBit/s ausgegangen werden.
  • Für die Entscheidung zur Verbindungsübergabe können folglich u.a. RSSI Werte und der verwendete Kommunikationsstandard der jeweiligen Basisstation 101, 103 berücksichtigt werden und die Basisstationen 101, 103 gemäß einer Rangliste sortiert werden. Je höher der geschätzte Datendurchsatz für die jeweilige Basisstation 101, 103 ist, beispielsweise aufgrund des RSSI Wertes und des verwendeten Kommunikationsstandards, desto höher ist die Rangfolge bzw. Präferenz für diese Basisstation 101, 103.
  • Dabei kann der Einfluss des Kommunikationsstandards den Einfluss des RSSI Wertes überwiegen, insbesondere falls IEEE 802.11n und IEEE 802.11b als Kommunikationsstandards verglichen werden, wobei eine Basisstation 101, 103 mit IEEE 802.11n üblicherweise selbst bei geringerem RSSI Wert höher einsortiert wird. Falls die gegenwärtige Basisstation 101 die höchste Rangfolge hat, verbleibt das Kommunikationsgerät 105 bei dieser Basisstation 101 und führt einen Neustart der Prozedur durch, falls sich der RSSI Wert der gegenwärtigen Basisstation 101 um mehr als einen einstellbaren Schwellwert verändert und die Empfangsfeldstärke bzw. der RSSI Wert noch unterhalb der Referenzfeldstärke liegt. Ferner kann ein Neustart der Prozedur durchgeführt werden, falls die Empfangsfeldstärke während einer vorbestimmten Zeitdauer, beispielsweise 10 Sekunden, noch unterhalb der Referenzfeldstärke ist. Falls eine Basisstation 103 mit höherer Rangfolge vorhanden ist, kann das Kommunikationsgerät 105 eine Verbindungsübergabe zu dieser Basisstation 103 einleiten.
  • 2 zeigt ein schematisches Diagramm eines Kommunikationssystems 100 zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation 101 zu einer zweiten Basisstation 103. Das Kommunikationssystem 100 umfasst neben der ersten Basisstation 101 und der zweiten Basisstation 103 ein Kommunikationsgerät 105. Die erste Basisstation 101 umfasst einen Leckwellenleiter 201. Die zweite Basisstation 103 umfasst einen weiteren Leckwellenleiter 203. Das Kommunikationsgerät 105 ist ausgebildet, mit der ersten Basisstation 101 über den Leckwellenleiter 201 zu kommunizieren und mit der zweiten Basisstation 103 über den weiteren Leckwellenleiter 203 zu kommunizieren.
  • Für Anwendungen, bei denen entlang einer langen, definierten Strecke, eine Kommunikation zwischen mehreren Kommunikationsgeräten bzw. Basisstationen wünschenswert ist, können Leckwellenleiter eingesetzt werden. Der Leckwellenleiter 201, 203 kann beispielsweise in Form eines Koaxialkabels ausgebildet sein, bei welchem in zyklischen Abständen Schlitze im Mantel vorgesehen sind. Aus diesen Schlitzen kann eine hochfrequente elektromagnetische Welle auskoppeln und den Leckwellenleiter 201, 203 somit zu einer Antenne machen, welche entlang ihrer Ausbreitungsrichtung eine homogene Ausleuchtung ermöglicht. Eine solche Umsetzung bietet eine effiziente Möglichkeit einer Kommunikation, beispielsweise in Tunneln oder ausgedehnten Anlagen, in denen andernfalls viele Basisstationen und viele Antennen platziert werden müssten.
  • Relevant für eine funktionierende Kommunikationsverbindung kann die Dämpfung sein. Ist diese zu groß, wird ein Empfangssignal zu schwach und kann möglicherweise nicht mehr ausgewertet werden. Ursachen einer Dämpfung bei einem Einsatz der Leckwellenleiter 201, 203 sind beispielsweise die Längsdämpfung, also die Dämpfung durch Verluste entlang der jeweiligen Leckwellenleiter 201, 203, sowie die Koppeldämpfung, also die Dämpfung bzw. die Verluste durch das Auskoppeln der hochfrequenten elektromagnetischen Welle aus dem Leckwellenleiter 201, 203 und das mögliche Einkoppeln in eine angrenzende Antenne. Um die gesamte Dämpfung nicht zu groß werden zu lassen, sollten die Leckwellenleiter 201, 203 daher nicht zu lang dimensioniert werden.
  • In großflächigen oder ausgedehnten Bereichen können aus diesem Grund mehrere Leckwellenleiter 201, 203 eingesetzt werden, die von unterschiedlichen Basisstationen 101, 103 gespeist werden können. Bewegt sich dabei das Kommunikationsgerät 105 innerhalb eines Bereiches und überschreitet den Übergang der zwei benachbarten Leckwellenleiter 201, 203, ist es vorteilhaft, sich bei der bisherigen ersten Basisstation 101 abzumelden und bei der zweiten Basisstation 103, welche den weiteren Leckwellenleiter 203 speist, anzumelden. Diesen Vorgang nennt man Verbindungsübergabe bzw. Roaming.
  • Die Verbindungsübergabe kann durch mehrere Protokollschritte beschrieben werden und umfasst u.a. ein Abmelden bei der alten ersten Basisstation 101 und ein Anmelden bei der neuen zweiten Basisstation 103. Somit kann eine zeitkritische Anwendung zur Kommunikation ohne Datenverlust realisiert werden. Verliert das Kommunikationsgerät 105 jedoch die Verbindung zu der ersten Basisstation 101 schlagartig, dauert der erneute Anmeldevorgang üblicherweise länger und es können zeitgleich Datenpakete verloren gehen. Verfährt in einer Anwendung das Kommunikationsgerät 105 entlang des Leckwellenleiters 201 und bewegt sich über dessen Ende hinaus, so kann es aufgrund der Koppeldämpfung, welche sich in Abhängigkeit von der Entfernung vom Leckwellenleiter 201 vergrößert, umgehend die erste Kommunikationsverbindung zur ersten Basisstation 101 verlieren. Insbesondere in solchen Anwendungen ist eine optimierte Verbindungsübergabe wünschenswert.
  • Eine entsprechende Verbindungsübergabe kann beispielsweise autonom ausgelöst werden, wenn nach einer zyklischen Abfrage erkannt wird, dass die folgenden Kriterien hierfür vorliegen. Das Kommunikationsgerät 105 kann beispielsweise folgende Kriterien auswerten:
    • - Ist eine zweite Basisstation 103 vorhanden?
    • - Ist ein Aufbau einer zweiten Kommunikationsverbindung möglich bzw. sind die Zugangsdaten der zweiten Basisstation 103 bekannt?
    • - Ist eine Empfangsfeldstärke von der zweiten Basisstation 103 besser als die Empfangsfeldstärke der ersten Basisstation 101, beispielsweise 15 dB besser?
    • - Ist ein verwendetes Modulationsschema der zweiten Basisstation 103 so gut, dass trotz einer besseren Empfangsfeldstärke von der ersten Basisstation 101 eine schnellere Kommunikationsverbindung mit einem höheren Datendurchsatz zu der zweiten Basisstation 103 aufgebaut werden sollte?
  • Sind die zwei angrenzenden Leckwellenleiter 201, 203 gleich lang, weisen diese auch die gleiche Längsdämpfung auf und das Kommunikationsgerät 105 erkennt an deren Übergang zueinander zwei gleich starke Empfangssignale. Ein Kriterium für die Verbindungsübergabe ist direkt an einem solchen Übergang üblicherweise nicht gegeben und entsteht erst bei einer weiteren räumlichen Entfernung von dem Leckwellenleiter 201, 203. Hierbei kann es jedoch vorkommen, dass die beschriebene Abfrage der Kriterien für eine Verbindungsübergabe erst dann stattfindet, wenn die Empfangsfeldstärke am Kommunikationsgerät 105 bereits zu gering ist und die Kommunikationsverbindung abreißt.
  • Ein möglicher Ansatz besteht darin, die Sendeleistung der ersten Basisstation 101 zu verringern, damit ein ausreichend großer Unterschied der Empfangsfeldstärken am Übergangspunkt der zwei Leckwellenleiter 201, 203 gegeben ist. Bei einer Kaskadierung mehrerer Leckwellenleiter 201, 203 kann dies jedoch dazu führen, dass die erste Basisstation 101 in der Sendeleistung immer weiter begrenzt wird, wodurch die Kommunikationsverbindung zu dem Kommunikationsgerät 105 verschlechtert werden kann und die Anwendung möglicherweise nicht mehr sinnvoll betrieben werden kann.
  • Ein weiterer möglicher Ansatz besteht darin, den Anschluss der zweiten Basisstation 103 nahe an das Ende des Leckwellenleiters 201 heranzuführen, wodurch der Unterschied bzw. das Delta der Empfangsfeldstärken bzw. Pegel vergrößert werden kann. Dies kann letztendlich jedoch dazu führen, in der Anwendung eine höhere Anzahl von Basisstationen einzusetzen, wodurch sich die Kosten erhöhen können.
  • 3 zeigt ein schematisches Diagramm eines Kommunikationssystems 100 zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation 101 zu einer zweiten Basisstation 103. Das Kommunikationssystem 100 umfasst neben der ersten Basisstation 101 und der zweiten Basisstation 103 ein Kommunikationsgerät 105. Die erste Basisstation 101 umfasst einen Leckwellenleiter 201. Die zweite Basisstation 103 umfasst einen weiteren Leckwellenleiter 203. Das Kommunikationsgerät 105 ist ausgebildet, mit der ersten Basisstation 101 über den Leckwellenleiter 201 zu kommunizieren und mit der zweiten Basisstation 103 über den weiteren Leckwellenleiter 203 zu kommunizieren. Der Leckwellenleiter 201 weist ein Dämpfungsglied 301 mit einer vorbestimmten Einfügedämpfung auf.
  • Aus den oben genannten Gründen ist es wünschenswert, einen definierten Unterschied der Empfangsfeldstärken am Übergang der zwei Leckwellenleiter 201, 203 herzustellen. Damit lässt sich das Kriterium, unabhängig von der Länge der Leckwellenleiter 201, 203 und der Position der Basisstationen 101, 103 und deren Sendeleistung, realisieren und eine autonome Verbindungsübergabe an einer vordefinierten Position durchführen.
  • Um zu gewährleisten, dass die oben beschriebene Abfrage von Kriterien für die Verbindungsübergabe stattfinden kann, sollten in Abhängigkeit der Verfahrgeschwindigkeit des Kommunikationsgerätes 105 zwei benachbarte Leckwellenleiter 201, 203 überlappend verlegt werden. Am Übergang der Leckwellenleiter 201, 203 kann dann das Dämpfungsglied 301 in Form eines Hochfrequenz (HF) Dämpfungsglieds eingesetzt werden.
  • Dieses führt dazu, dass an der vordefinierten Position ein ausreichend großer Dämpfungsunterschied realisiert werden kann. Weiterhin wird durch die Überlappung der Leckwellenleiter 201, 203 erreicht, dass die Abfrage zu einem Zeitpunkt erfolgt, an dem noch eine ausreichend große Empfangsfeldstärke vorhanden ist, um die erste Kommunikationsverbindung zum der ersten Basisstation 101 aufrecht zu erhalten.
  • 4 zeigt ein schematisches Diagramm eines Kommunikationssystems 100 zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation 101 zu einer zweiten Basisstation 103. Das Kommunikationssystem 100 umfasst neben der ersten Basisstation 101 und der zweiten Basisstation 103 ein Kommunikationsgerät 105. Die erste Basisstation 101 umfasst einen Leckwellenleiter 201. Die zweite Basisstation 103 umfasst einen weiteren Leckwellenleiter 203. Das Kommunikationsgerät 105 ist ausgebildet, mit der ersten Basisstation 101 über den Leckwellenleiter 201 zu kommunizieren und mit der zweiten Basisstation 103 über den weiteren Leckwellenleiter 203 zu kommunizieren. Der Leckwellenleiter 201 weist ein Dämpfungsglied 301 mit einer vorbestimmten Einfügedämpfung auf. Die erste Basisstation 101 und die zweite Basisstation 103 sind über den Leckwellenleiter 201, das Dämpfungsglied 301 und den weiteren Leckwellenleiter 203 miteinander verbunden.
  • Der zuvor beschriebene Ansatz kann vorteilhaft bei einer bestimmten Fahrtrichtung des Kommunikationsgerätes 105 verwendet werden. Für diesen Fall wird die Differenz der Empfangsfeldstärken zum Einleiten einer autonomen Verbindungsübergabe erreicht. Fährt das Kommunikationsgerät 105 jedoch in die entgegengesetzte Richtung, ist dies typischerweise nicht der Fall. Weiterhin werden die Leckwellenleiter 201, 203 häufig in engen Kabelkanälen oder in beengten Anwendungen eingesetzt. Dort existiert möglicherweise nur wenig Platz für eine überlappende Verlegung der zwei Leckwellenleiter 201, 203. Es ist daher ein Ansatz wünschenswert, bei dem ein Verfahren des Kommunikationsgerätes 105 entlang des Übergangs der zwei Leckwellenleiter 201, 203 in beide Richtungen möglich ist, und welcher platzsparend ist.
  • Anstatt zwei voneinander getrennte Leckwellenleiter 201, 203 zu nutzen, können die Leckwellenleiter 201, 203 über das Dämpfungsglied 301 miteinander verbunden werden. Alternativ kann ein gemeinsamer Leckwellenleiter mit einem Dämpfungsglied 301 verwendet werden.
  • In der Mitte zwischen den Leckwellenleitern 201, 203, d.h. an der Stelle, an welcher sonst eine Überlappung der zwei Leckwellenleiter 201, 203 vorhanden wäre, wird das Dämpfungsglied 301 gesetzt. Somit werden wiederum ein definierter Unterschied der Empfangsfeldstärken für die Empfangssignale von den beiden, an den Enden der Leckwellenleiter 201, 203 verbauten, Basisstationen 101, 103 erzeugt und die Kriterien für eine autonome Verbindungsübergabe erfüllt.
  • Die Nutzung der zwei Leckwellenleiter 201, 203 ohne das integrierte Dämpfungsglied 301 ist mit Herausforderungen verbunden, da aufgrund der üblicherweise geringen Längsdämpfung über die zwei Leckwellenleiter 201, 203, der jeweilige Eingang der angeschlossenen zwei Basisstationen 101, 103 übersteuert werden könnte.
  • Durch diesen Ansatz können die folgenden Vorteile realisiert werden:
    • - Eine Verbindungsübergabe ist bei Verfahren des Kommunikationsgerätes 105 in beide Richtungen möglich;
    • - Geringer Platzaufwand durch die Zusammenfügung beider Leckwellenleiter 201, 203, anstatt der Überlappung zweier Leckwellenleiter 201, 203;
    • - Einsparung von Abschlusswiderständen von beispielsweise 50 Ohm an den Enden der Leckwellenleiter 201, 203;
    • - Einsparung von Leckwellenleitermaterial durch die nicht durchgeführte Überlappung, ferner ist eine insgesamt größere Länge der Leckwellenleiter 201, 203 möglich;
    • - Die Verbindungsübergabe kann an einer vordefinierten Position durchgeführt werden, beispielsweise an einer Position, an welcher keine Kommunikation stattfindet.
  • 5 zeigt ein schematisches Diagramm eines Verfahrens 500 zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation in einem Kommunikationssystem. Das Kommunikationssystem umfasst die erste Basisstation, die zweite Basisstation und ein Kommunikationsgerät, wobei die erste Basisstation einen Leckwellenleiter umfasst, wobei der Leckwellenleiter ein Dämpfungsglied mit einer vorbestimmten Einfügedämpfung aufweist. Das Kommunikationsgerät ist ausgebildet, mit der ersten Basisstation über den Leckwellenleiter zu kommunizieren.
  • Das Verfahren 500 umfasst ein Empfangen 501 eines Empfangssignals von der ersten Basisstation durch das Kommunikationsgerät, ein Bestimmen 503 einer Empfangsfeldstärke des Empfangssignals durch das Kommunikationsgerät, ein Vergleichen 505 der Empfangsfeldstärke mit einer Referenzfeldstärke durch das Kommunikationsgerät, und bei Unterschreitung der Referenzfeldstärke durch die Empfangsfeldstärke ein Einleiten 507 der Verbindungsübergabe von der ersten Basisstation zu der zweiten Basisstation durch das Kommunikationsgerät.
  • Alle in Verbindung mit einzelnen Ausführungsformen der Erfindung gezeigten oder beschriebenen Merkmale können in beliebiger Kombination in dem erfindungsgemäßen Gegenstand vorgesehen sein, um gleichzeitig deren vorteilhafte Wirkungen zu realisieren.
  • Bezugszeichenliste
  • 100
    Kommunikationssystem
    101
    Erste Basisstation
    103
    Zweite Basisstation
    105
    Kommunikationsgerät
    201
    Leckwellenleiter
    203
    Weiterer Leckwellenleiter
    301
    Dämpfungsglied
    500
    Verfahren zum Einleiten einer Verbindungsübergabe
    501
    Empfangen eines Empfangssignals
    503
    Bestimmen einer Empfangsfeldstärke
    505
    Vergleichen der Empfangsfeldstärke mit einer Referenzfeldstärke
    507
    Einleiten der Verbindungsübergabe
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Nicht-Patentliteratur
    • IEEE 802.11a [0022, 0047]
    • IEEE 802.11b [0022, 0047, 0051]
    • IEEE 802.11g [0022, 0047]
    • IEEE 802.11n [0022, 0051]

Claims (14)

  1. Kommunikationssystem (100) zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation (101) zu einer zweiten Basisstation (103), mit: der ersten Basisstation (101), welche einen Leckwellenleiter (201) umfasst, wobei der Leckwellenleiter (201) ein Dämpfungsglied (301) mit einer vorbestimmten Einfügedämpfung aufweist; der zweiten Basisstation (103); und einem Kommunikationsgerät (105), welches ausgebildet ist, mit der ersten Basisstation (101) über den Leckwellenleiter (201) zu kommunizieren, wobei das Kommunikationsgerät (105) ausgebildet ist, ein Empfangssignal von der ersten Basisstation (101) zu empfangen, eine Empfangsfeldstärke des Empfangssignals zu bestimmen, und die Empfangsfeldstärke mit einer Referenzfeldstärke zu vergleichen, wobei das Kommunikationsgerät (105) ausgebildet ist, bei Unterschreitung der Referenzfeldstärke durch die Empfangsfeldstärke, die Verbindungsübergabe von der ersten Basisstation (101) zu der zweiten Basisstation (103) einzuleiten.
  2. Kommunikationssystem (100) nach Anspruch 1, wobei die zweite Basisstation (103) einen weiteren Leckwellenleiter (203) umfasst, wobei das Kommunikationsgerät (105) ausgebildet ist, mit der zweiten Basisstation (103) über den weiteren Leckwellenleiter (203) zu kommunizieren, und wobei die erste Basisstation (101) und die zweite Basisstation (103) über den Leckwellenleiter (201), das Dämpfungsglied (301) und den weiteren Leckwellenleiter (203) miteinander verbunden sind.
  3. Kommunikationssystem (100) nach einem der vorstehenden Ansprüche, wobei der Leckwellenleiter (201) ein Schlitzkabel oder eine Schlitzantenne umfasst.
  4. Kommunikationssystem (100) nach einem der vorstehenden Ansprüche, wobei das Kommunikationsgerät (105) ausgebildet ist, einen ersten Datendurchsatz zwischen dem Kommunikationsgerät (105) und der ersten Basisstation (101) und einen zweiten Datendurchsatz zwischen dem Kommunikationsgerät (105) und der zweiten Basisstation (103) zu bestimmen, und die Verbindungsübergabe von der ersten Basisstation (101) zu der zweiten Basisstation (103) einzuleiten, falls der zweite Datendurchsatz größer als der erste Datendurchsatz ist.
  5. Kommunikationssystem (100) nach Anspruch 4, wobei das Kommunikationsgerät (105) ausgebildet ist, ein erstes Modulationsschema der ersten Basisstation (101) zu bestimmen, und den ersten Datendurchsatz auf der Basis des ersten Modulationsschemas zu bestimmen, und wobei das Kommunikationsgerät (105) ausgebildet ist, ein zweites Modulationsschema der zweiten Basisstation (103) zu bestimmen, und den zweiten Datendurchsatz auf der Basis des zweiten Modulationsschemas zu bestimmen.
  6. Kommunikationssystem (100) nach einem der Ansprüche 4 oder 5, wobei das Kommunikationsgerät (105) ausgebildet ist, ein erstes Codierungsschema der ersten Basisstation (101) zu bestimmen, und den ersten Datendurchsatz auf der Basis des ersten Codierungsschemas zu bestimmen, und wobei das Kommunikationsgerät (105) ausgebildet ist, ein zweites Codierungsschema der zweiten Basisstation (103) zu bestimmen, und den zweiten Datendurchsatz auf der Basis des zweiten Codierungsschemas zu bestimmen.
  7. Kommunikationssystem (100) nach einem der Ansprüche 4 bis 6, wobei das Kommunikationsgerät (105) ausgebildet ist, einen ersten Kommunikationsstandard der ersten Basisstation (101) zu bestimmen, und den ersten Datendurchsatz auf der Basis des ersten Kommunikationsstandards zu bestimmen, und wobei das Kommunikationsgerät (105) ausgebildet ist, einen zweiten Kommunikationsstandard der zweiten Basisstation (103) zu bestimmen, und den zweiten Datendurchsatz auf der Basis des zweiten Kommunikationsstandards zu bestimmen.
  8. Kommunikationssystem (100) nach einem der Ansprüche 4 bis 7, wobei das Kommunikationsgerät (105) ausgebildet ist, einen ersten Auslastungsgrad eines ersten Kommunikationskanals zwischen dem Kommunikationsgerät (105) und der ersten Basisstation (101) zu bestimmen, und den ersten Datendurchsatz auf der Basis des ersten Auslastungsgrads zu bestimmen, und wobei das Kommunikationsgerät (105) ausgebildet ist, einen zweiten Auslastungsgrad eines zweiten Kommunikationskanals zwischen dem Kommunikationsgerät (105) und der zweiten Basisstation (103) zu bestimmen, und den zweiten Datendurchsatz auf der Basis des zweiten Auslastungsgrads zu bestimmen.
  9. Kommunikationssystem (100) nach Anspruch 8, wobei das Kommunikationsgerät (105) ausgebildet ist, einen ersten Auslastungsindikator von der ersten Basisstation (101) zu empfangen, wobei der erste Auslastungsindikator den ersten Auslastungsgrad des ersten Kommunikationskanals anzeigt, und wobei das Kommunikationsgerät (105) ausgebildet ist, einen zweiten Auslastungsindikator von der zweiten Basisstation (103) zu empfangen, wobei der zweite Auslastungsindikator den zweiten Auslastungsgrad des zweiten Kommunikationskanals anzeigt.
  10. Kommunikationssystem (100) nach einem der Ansprüche 8 oder 9, wobei der erste Auslastungsgrad des ersten Kommunikationskanals durch eine erste Anzahl freier Zeitschlitze des ersten Kommunikationskanals bestimmt ist, und wobei der zweite Auslastungsgrad des zweiten Kommunikationskanals durch eine zweite Anzahl freier Zeitschlitze des zweiten Kommunikationskanals bestimmt ist.
  11. Kommunikationssystem (100) nach einem der vorstehenden Ansprüche, wobei das Kommunikationsgerät (105) ausgebildet ist, eine erste Kommunikationsverbindung zwischen dem Kommunikationsgerät (105) und der ersten Basisstation (101) abzubauen und eine zweite Kommunikationsverbindung zwischen dem Kommunikationsgerät (105) und der zweiten Basisstation (103) aufzubauen, um die Verbindungsübergabe von der ersten Basisstation (101) zu der zweiten Basisstation (103) einzuleiten.
  12. Kommunikationssystem (100) nach einem der vorstehenden Ansprüche, wobei die erste Basisstation (101) ein erster WLAN-Zugangspunkt ist, wobei die zweite Basisstation (103) ein zweiter WLAN-Zugangspunkt ist, und wobei das Kommunikationsgerät (105) ein WLAN-Client ist.
  13. Verfahren (500) zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation (101) zu einer zweiten Basisstation (103) in einem Kommunikationssystem (100), wobei das Kommunikationssystem (100) die erste Basisstation (101), die zweite Basisstation (103) und ein Kommunikationsgerät (105) umfasst, wobei die erste Basisstation (101) einen Leckwellenleiter (201) umfasst, wobei der Leckwellenleiter (201) ein Dämpfungsglied (301) mit einer vorbestimmten Einfügedämpfung aufweist, wobei das Kommunikationsgerät (105) ausgebildet ist, mit der ersten Basisstation (101) über den Leckwellenleiter (201) zu kommunizieren, mit: Empfangen (501) eines Empfangssignals von der ersten Basisstation (101) durch das Kommunikationsgerät (105); Bestimmen (503) einer Empfangsfeldstärke des Empfangssignals durch das Kommunikationsgerät (105); Vergleichen (505) der Empfangsfeldstärke mit einer Referenzfeldstärke durch das Kommunikationsgerät (105); und bei Unterschreitung der Referenzfeldstärke durch die Empfangsfeldstärke, Einleiten (507) der Verbindungsübergabe von der ersten Basisstation (101) zu der zweiten Basisstation (103) durch das Kommunikationsgerät (105).
  14. Computerprogramm mit einem Programmcode zum Ausführen des Verfahrens (500) nach Anspruch 13.
DE102016123721.3A 2016-12-07 2016-12-07 Kommunikationssystem zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation Pending DE102016123721A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102016123721.3A DE102016123721A1 (de) 2016-12-07 2016-12-07 Kommunikationssystem zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016123721.3A DE102016123721A1 (de) 2016-12-07 2016-12-07 Kommunikationssystem zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation

Publications (1)

Publication Number Publication Date
DE102016123721A1 true DE102016123721A1 (de) 2018-06-07

Family

ID=62163677

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016123721.3A Pending DE102016123721A1 (de) 2016-12-07 2016-12-07 Kommunikationssystem zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation

Country Status (1)

Country Link
DE (1) DE102016123721A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1349409A1 (de) * 2002-03-28 2003-10-01 Siemens Aktiengesellschaft Dienstqualitätsmotivierter Zellwechsel in einem zellularen Funk-Kommunikationssystem
DE69627470T2 (de) * 1995-11-01 2004-01-15 Nokia Corp Verfahren und anordnung zur funktelefon-rufübergabe in einem u-bahn-kommunikationssystem
AT411557B (de) * 2002-03-22 2004-02-25 Siemens Ag Oesterreich Trassengebundenes datenübertragungssystem
US6876854B1 (en) * 1999-11-26 2005-04-05 Matra Nortel Communications Mobile communication system using loss cables as transmission elements
DE19983085B3 (de) * 1998-04-01 2013-03-28 Telefonaktiebolaget Lm Ericsson (Publ) Zellenauswahl in Mobilfunksystemen
US9479980B1 (en) * 2014-07-09 2016-10-25 Sprint Spectrum L.P. Methods and systems for cell selection using uplink load measurements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69627470T2 (de) * 1995-11-01 2004-01-15 Nokia Corp Verfahren und anordnung zur funktelefon-rufübergabe in einem u-bahn-kommunikationssystem
DE19983085B3 (de) * 1998-04-01 2013-03-28 Telefonaktiebolaget Lm Ericsson (Publ) Zellenauswahl in Mobilfunksystemen
US6876854B1 (en) * 1999-11-26 2005-04-05 Matra Nortel Communications Mobile communication system using loss cables as transmission elements
AT411557B (de) * 2002-03-22 2004-02-25 Siemens Ag Oesterreich Trassengebundenes datenübertragungssystem
EP1349409A1 (de) * 2002-03-28 2003-10-01 Siemens Aktiengesellschaft Dienstqualitätsmotivierter Zellwechsel in einem zellularen Funk-Kommunikationssystem
US9479980B1 (en) * 2014-07-09 2016-10-25 Sprint Spectrum L.P. Methods and systems for cell selection using uplink load measurements

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
IEEE 802.11a
IEEE 802.11b
IEEE 802.11g
IEEE 802.11n

Similar Documents

Publication Publication Date Title
DE102005061823B4 (de) Mobiles Kommunikationssystem und Steuerungstechnik dafür
EP1143759B1 (de) Funkkommunikationssystem und Komponenten für ein Funkübertragungsverfahren nach verschiedenen Funkübertragungsmodi
DE60212697T2 (de) Zugang zu einem drahtlosen netzwerk basierend auf einer verbindungskostenmetrik
DE112013005228B4 (de) Verfahren und Vorrichtung zum Blockieren störender Zwischen-Frequenz- und Zwischen-System-Messberichte
DE202006005211U1 (de) Vorrichtung zum Auswählen eines Mehrband-Zugangspunkts für die Verbindung mit einer Mehrband-Mobilstation
EP2421297B1 (de) Verfahren zum Kanalwechsel in einem drahtlosen Kommunikationsnetzwerk
DE60225934T2 (de) Verfahren und Vorrichtung für Funkverbindunganpassung
EP1749373A1 (de) Verfahren zum betreiben einer datenverbindung
DE60008979T2 (de) Verfahren zur Erhaltung einer Kommunikationsverbindung in drahtlosen Netzwerkgruppen
EP2365643B1 (de) Funkstation-System für ein Drahtlosnetzwerk
EP1678877A1 (de) Verfahren zur übertragung von informationen in einem kommunikationssystem unter verwendung eines pfades
DE19827916A1 (de) Verfahren und Funk-Kommunikationssystem zur Datenübertragung
DE102016123721A1 (de) Kommunikationssystem zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation
EP1532715B1 (de) Ansteuerung einer antennenordnung, deren umfeld in sektoren unterteilt ist
DE102016123719A1 (de) Kommunikationsgerät zum Einleiten einer Verbindungsübergabe von einer ersten Basisstation zu einer zweiten Basisstation
WO2004066646A1 (de) Verfahren zur synchronisation in funkkommunikationssystemen
DE102016104162B4 (de) Peer-to-Peer-Datentransferverfahren unter Verwendung einer Wireless-Local-Area-Network-Funkausrüstung
DE102019002144A1 (de) Verfahren zum Auswählen einer ersten Übertragungstechnologie oder einer zweiten Übertragungstechnologie in Abhängigkeit einer Anforderung eines aktuellen Anwendungsfalls sowie elektronische Recheneinrichtung
WO2005011318A1 (de) Verfahren zur steuerung des einbuchens einer mobilen station eines funkkommunikationssystems in eine funkzelle einer virtuellen basisstation sowie virtuelle basisstation
EP1871125A1 (de) Effiziente Funkressourcenverwaltung in einem Mobilfunkkommunikationssystem
EP1566896A1 (de) Verfahren zur Kommunikation über eine Mehrzahl von netzseitigen Sendeantennen
WO2000038453A1 (de) Verfahren zur signalübertragung in einem kanal zum willkürlichen zugriff eines funk-kommunikationssystems
EP1654901B1 (de) Verfahren und Vorrichtungen zur Auswahl eines gemeinsam genutzten Übertragungskanals für eine Teilnehmerstation eines Funkkommunikationssystems
EP3185607A1 (de) Vorrichtungen und verfahren zum betreiben eines kommunikationsnetzwerkes
EP1582034A1 (de) Verfahren und kommunikationseinrichtung zur erweiterung der breite der datenübertragungsraten in drahtlosen lokalen netzwerken

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication