DE102016101719A1 - Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement - Google Patents

Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement Download PDF

Info

Publication number
DE102016101719A1
DE102016101719A1 DE102016101719.1A DE102016101719A DE102016101719A1 DE 102016101719 A1 DE102016101719 A1 DE 102016101719A1 DE 102016101719 A DE102016101719 A DE 102016101719A DE 102016101719 A1 DE102016101719 A1 DE 102016101719A1
Authority
DE
Germany
Prior art keywords
cavity
housing body
placeholder structure
placeholder
optoelectronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102016101719.1A
Other languages
English (en)
Inventor
Stefan Schoemaker
Tobias Gebuhr
Markus Boss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to DE102016101719.1A priority Critical patent/DE102016101719A1/de
Priority to PCT/EP2017/051987 priority patent/WO2017134029A1/de
Publication of DE102016101719A1 publication Critical patent/DE102016101719A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

Ein Verfahren zum Herstellen eines optoelektronischen Bauelements umfasst Schritte zum Bereitstellen eines Leiterrahmens mit einer einen Kontaktbereich aufweisenden Oberseite, zum Anordnen einer den Kontaktbereich zumindest abschnittsweise umgrenzenden Platzhalterstruktur aus einem ersten Material an der Oberseite des Leiterrahmens, zum Ausbilden eines Gehäusekörpers aus einem zweiten Material, wobei der Leiterrahmen und die Platzhalterstruktur zumindest teilweise in das zweite Material eingebettet werden, wobei der Gehäusekörper mit einer Kavität ausgebildet wird, wobei der Kontaktbereich und ein Abschnitt der Platzhalterstruktur im Bereich der Kavität unbedeckt durch das zweite Material bleiben, und zum Entfernen zumindest eines Teils der Platzhalterstruktur.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen eines optoelektronischen Bauelements sowie ein optoelektronisches Bauelement.
  • Es sind optoelektronische Bauelemente bekannt, bei denen ein optoelektronischer Halbleiterchip in einer Kavität eines Gehäusekörpers angeordnet und in ein in der Kavität angeordnetes Vergussmaterial eingebettet ist. Durch äußere Einwirkungen, beispielsweise durch Temperaturschwankungen, Lichteinstrahlung oder Feuchtigkeit, kann es bei solchen optoelektronischen Bauelementen zu einer Reduzierung der Grenzflächenhaftung zwischen dem Vergussmaterial und dem Gehäusekörper kommen. Im Extremfall kann dies zu einer Delamination führen.
  • Eine Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zum Herstellen eines optoelektronischen Bauelements anzugeben. Eine weitere Aufgabe der vorliegenden Erfindung besteht darin, ein optoelektronisches Bauelement bereitzustellen. Diese Aufgaben werden durch ein Verfahren und ein optoelektronisches Bauelement mit den Merkmalen der unabhängigen Ansprüche gelöst. In den abhängigen Ansprüchen sind verschiedene Weiterbildungen angegeben.
  • Ein Verfahren zum Herstellen eines optoelektronischen Bauelements umfasst Schritte zum Bereitstellen eines Leiterrahmens mit einer einen Kontaktbereich aufweisenden Oberseite, zum Anordnen einer den Kontaktbereich zumindest abschnittsweise umgrenzenden Platzhalterstruktur aus einem ersten Material an der Oberseite des Leiterrahmens, zum Ausbilden eines Gehäusekörpers aus einem zweiten Material, wobei der Leiterrahmen und die Platzhalterstruktur zumindest teilweise in das zweite Material eingebettet werden, wobei der Gehäusekörper mit einer Kavität ausgebildet wird, wobei der Kontaktbereich und ein Abschnitt der Platzhalterstruktur im Bereich der Kavität unbedeckt durch das zweite Material bleiben, und zum Entfernen zumindest eines Teils der Platzhalterstruktur.
  • Vorteilhafterweise ermöglicht dieses Verfahren die Herstellung eines optoelektronischen Bauelements mit einem Gehäusekörper mit einer Kavität, die eine Verankerungsstruktur in Form einer Hinterschneidung aufweist. Die Hinterschneidung wird dabei im Bereich eines durch das Entfernen zumindest eines Teils der Platzhalterstruktur entstehenden Freiraums gebildet. Die Verankerungsstruktur kann vorteilhafterweise eine wirksame und robuste mechanische Verankerung eines Vergussmaterials in der Kavität des Gehäusekörpers des durch das Verfahren erhältlichen optoelektronischen Bauelements ermöglichen.
  • In einer Ausführungsform des Verfahrens umfasst dieses einen weiteren Schritt zum Anordnen eines optoelektronischen Halbleiterchips in der Kavität. Durch die Anordnung in der Kavität des Gehäusekörpers des optoelektronischen Bauelements ist der optoelektronische Halbleiterchip bei dem durch dieses Verfahren erhältlichen optoelektronischen Bauelement vorteilhafterweise vor einer Beschädigung durch äußere Einwirkungen geschützt. Die Kavität kann bei dem durch dieses Verfahren erhältlichen optoelektronischen Bauelement außerdem vorteilhafterweise als Reflektor zur Sammlung von dem optoelektronischen Halbleiterchip emittierter elektromagnetischer Strahlung dienen.
  • In einer Ausführungsform des Verfahrens umfasst dieses einen weiteren Schritt zum Anordnen eines Vergussmaterials in der Kavität, wobei sich das Vergussmaterial zumindest in einen Teil eines durch das Entfernen der Platzhalterstruktur entstandenen Freiraums erstreckt. Vorteilhafterweise wird das in der Kavität angeordnete Vergussmaterial dabei durch den sich in den Freiraum erstreckenden Teil mechanisch in der Kavität verankert. Dadurch kann bei dem durch das Verfahren erhältlichen optoelektronischen Bauelement eine unbeabsichtigte Ablösung des Vergussmaterials verhindert sein.
  • In einer Ausführungsform des Verfahrens weist die Platzhalterstruktur eine den Kontaktbereich ringförmig umschließende Masche auf. Vorteilhafterweise wird bei dem durch das Verfahren erhältlichen optoelektronischen Bauelement dadurch eine den Kontaktbereich ringförmig umschließende Hinterschneidung gebildet, die eine robuste mechanische Verankerung von Vergussmaterial in der Kavität des Gehäusekörpers des optoelektronischen Bauelements ermöglichen kann.
  • In einer Ausführungsform des Verfahrens wird die Platzhalterstruktur vor dem Anordnen an der Oberseite des Leiterrahmens vorgefertigt. Vorteilhafterweise ermöglicht dies eine besonders kostengünstige Herstellung der Platzhalterstruktur und eine besonders einfache Anordnung der Platzhalterstruktur an der Oberseite des Leiterrahmens.
  • In einer Ausführungsform des Verfahrens erfolgt das Anordnen der Platzhalterstruktur durch flächiges Aufbringen des ersten Materials und eine anschließende Strukturierung des ersten Materials. Vorteilhafterweise ist auch hierdurch eine einfache und kostengünstige Anordnung der Platzhalterstruktur an der Oberseite des Leiterrahmens möglich.
  • In einer Ausführungsform des Verfahrens erfolgt das Ausbilden der Platzhalterstruktur durch Spritzgießen, durch ein Druckverfahren, insbesondere durch ein Siebdruckverfahren, durch Nadeldosieren, durch ein Sprühverfahren, durch Aufbringen von Trockenlack oder durch Aufbringen einer vorgeformten Folie. Vorteilhafterweise lassen sich diese Verfahrensschritte auf günstige Weise mit den übrigen Verfahrensschritten zum Herstellen des optoelektronischen Bauelements kombinieren. Dabei ermöglichen die genannten Techniken eine einfache, kostengünstige und zuverlässige Ausbildung der Platzhalterstruktur.
  • In einer Ausführungsform des Verfahrens weist das erste Material ein Acrylat, einen Fotolack, Polyoxymethylen, Polyvinylacetat, Polyvinylalkohol, ein Duroplast oder ein Wachs oder ein anderes Bindemittel auf. Vorteilhafterweise eignen sich diese Materialien zur Herstellung einer temporären Platzhalterstruktur, die sich nach dem Ausbilden des Gehäusekörpers entfernen lässt.
  • In einer Ausführungsform des Verfahrens erfolgt das Ausbilden des Gehäusekörpers durch Spritzpressen oder durch Spritzgießen. Vorteilhafterweise ermöglichen diese Techniken eine einfache und kostengünstige Ausbildung des Gehäusekörpers.
  • In einer Ausführungsform des Verfahrens weist das zweite Material ein Epoxyd, ein Polyphthalamid oder ein Silikon auf. Vorteilhafterweise ermöglichen diese Materialien eine einfache und kostengünstige Ausbildung des Gehäusekörpers und erlauben eine nachfolgende Entfernung der temporären Platzhalterstruktur.
  • In einer Ausführungsform des Verfahrens erfolgt das Entfernen zumindest eines Teils der Platzhalterstruktur durch Herauslösen mittels eines chemischen Verfahrens, insbesondere durch Lösen mittels einer Säure, einer Base oder eines Lösungsmittels oder durch Herauslösen mittels eines physikalischen Verfahrens, insbesondere durch Verdampfen oder Zersetzen mittels eines thermischen Verfahrens, durch Bestrahlung mit Licht einer festgelegten Wellenlänge oder durch eine mechanische Behandlung, beispielsweise mittels Ultraschall. Vorteilhafterweise ermöglichen all diese Techniken eine einfache, kostengünstige und zuverlässige Entfernung zumindest eines Teils der Platzhalterstruktur.
  • Ein optoelektronisches Bauelement umfasst einen Gehäusekörper, der einen zumindest teilweise eingebetteten Leiterrahmen aufweist. Dabei weist der Gehäusekörper eine Kavität auf. Im Bereich der Kavität ist ein an einer Oberseite des Leiterrahmens ausgebildeter Kontaktbereich unbedeckt durch das Material des Gehäusekörpers. Der Gehäusekörper weist im Bereich der Kavität eine den Kontaktbereich zumindest abschnittsweise umlaufende Hinterschneidung auf. Vorteilhafterweise ermöglicht diese Hinterschneidung eine einfache und zuverlässige mechanische Verankerung eines in der Kavität des Gehäusekörpers angeordneten Vergussmaterials. Dadurch ist bei diesem optoelektronischen Bauelement vorteilhafterweise die Gefahr einer unbeabsichtigten Ablösung eines in der Kavität angeordneten Vergussmaterials reduziert.
  • In einer Ausführungsform des optoelektronischen Bauelements grenzt die Hinterschneidung an den Leiterrahmen an. Vorteilhafterweise wird dadurch eine besonders zuverlässige mechanische Verankerung eines in der Kavität des Gehäusekörpers angeordneten Vergussmaterials ermöglicht.
  • In einer Ausführungsform des optoelektronischen Bauelements ist in der Kavität ein optoelektronischer Halbleiterchip angeordnet. Durch die Anordnung in der Kavität ist bei diesem optoelektronischen Bauelement vorteilhafterweise eine Gefahr einer Beschädigung des optoelektronischen Halbleiterchips durch äußere Einwirkungen reduziert.
  • In einer Ausführungsform des optoelektronischen Bauelements ist in der Kavität ein Vergussmaterial angeordnet, das sich zumindest teilweise in die Hinterschneidung erstreckt. Vorteilhafterweise ist das in der Kavität angeordnete Vergussmaterial bei diesem optoelektronischen Bauelement dadurch mechanisch in der Kavität verankert, wodurch nur eine geringe Gefahr einer unbeabsichtigten Delamination des Vergussmaterials besteht.
  • In einer Ausführungsform des optoelektronischen Bauelements bildet ein Abschnitt des Vergussmaterials eine optische Linse. Die optische Linse kann dazu dienen, von dem optoelektronischen Bauelement abgestrahlte elektromagnetische Strahlung zu bündeln. Durch die im Bereich der Kavität des Gehäusekörpers ausgebildete Hinterschneidung ist dabei die Gefahr einer unbeabsichtigten Delamination der optischen Linse reduziert.
  • Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden. Dabei zeigen in jeweils schematisierter Darstellung
  • 1 eine geschnittene Seitenansicht eines Leiterrahmens mit einer an einer Oberseite angeordneten Platzhalterstruktur;
  • 2 eine Aufsicht auf die Oberseite des Leiterrahmens;
  • 3 eine geschnittene Seitenansicht des Leiterrahmens und der Platzhalterstruktur nach ihrer Einbettung in einen Gehäusekörper;
  • 4 eine geschnittene Seitenansicht eines optoelektronischen Bauelements;
  • 5 eine Aufsicht auf die Oberseite des Leiterrahmens mit einer Platzhalterstruktur gemäß einer zweiten Ausführungsform;
  • 6 eine Darstellung einer Platzhalterstruktur gemäß einer dritten Ausführungsform;
  • 7 eine geschnittene Seitenansicht der dritten Ausführungsform der Platzhalterstruktur;
  • 8 eine geschnittene Seitenansicht eines optoelektronischen Bauelements gemäß einer zweiten Ausführungsform;
  • 9 eine Seitenansicht des optoelektronischen Bauelements der zweiten Ausführungsform;
  • 10 eine Platzhalterstruktur gemäß einer vierten Ausführungsform;
  • 11 eine geschnittene Seitenansicht der vierten Ausführungsform der Platzhalterstruktur;
  • 12 eine geschnittene Seitenansicht eines optoelektronischen Bauelements gemäß einer dritten Ausführungsform; und
  • 13 eine Aufsicht auf die dritte Ausführungsform des optoelektronischen Bauelements.
  • 1 zeigt eine stark schematisierte geschnittene Seitenansicht eines Teils eines Leiterrahmens 100. Der Leiterrahmen 100 kann auch als Leadframe bezeichnet werden. Der Leiterrahmen 100 ist zur Herstellung eines Gehäuses eines optoelektronischen Bauelements vorgesehen.
  • Der Leiterrahmen 100 weist ein elektrisch leitendes Material auf, beispielsweise ein Metall.
  • Der Leiterrahmen 100 ist als im Wesentlichen flaches Blech mit einer Oberseite 101 und einer der Oberseite 101 gegenüberliegenden Unterseite 102 ausgebildet. 2 zeigt in stark schematisierter Darstellung eine Aufsicht auf die Oberseite 101 des Leiterrahmens 100. Der Leiterrahmen 100 kann sich zwischen Oberseite 101 und Unterseite 102 erstreckende Durchbrüche aufweisen, die den Leiterrahmen 100 lateral in voneinander beabstandete Abschnitte unterteilen. Dies ist in der schematischen Darstellung der 1 nicht gezeigt.
  • An seiner Oberseite 101 weist der Leiterrahmen 100 einen Kontaktbereich 110 auf. Der Kontaktbereich 110 ist in der schematischen Darstellung der 1 gegenüber den übrigen Abschnitten der Oberseite 101 des Leiterrahmens 100 erhaben, was jedoch nicht zwingend erforderlich ist. Der Kontaktbereich 110 der Oberseite 101 des Leiterrahmens 100 kann zur Aufnahme eines optoelektronischen Halbleiterchips vorgesehen sein und/oder zur Herstellung einer elektrisch leitenden Verbindung zu einem optoelektronischen Halbleiterchip.
  • An der Oberseite 101 des Leiterrahmens 100 ist eine Platzhalterstruktur 200 angeordnet. Die Platzhalterstruktur 200 ist als sich über die Oberseite 101 des Leiterrahmens 100 erhebender Damm ausgebildet. Die Platzhalterstruktur 200 weist eine geschlossene Masche 230 auf, die den Kontaktbereich 110 der Oberseite 101 des Leiterrahmens 100 ringförmig umgrenzt. Dabei ist der Kontaktbereich 110 der Oberseite 101 des Leiterrahmens 100 nicht durch die Platzhalterstruktur 200 bedeckt. Die Platzhalterstruktur 200 bedeckt lediglich den Kontaktbereich 110 umgrenzende Abschnitte der Oberseite 101 des Leiterrahmens 100.
  • Die Platzhalterstruktur 200 weist ein erstes Material 205 auf. Das erste Material 205 kann beispielsweise ein Acrylat, einen Fotolack, Polyoxymethylen, Polyvinylacetat, Polyvinylalkohol, ein Duroplast oder ein Wachs oder ein anderes Bindemittel aufweisen.
  • Die Platzhalterstruktur 200 kann direkt an der Oberseite 101 des Leiterrahmens 100 ausgebildet worden sein. Dabei kann die Platzhalterstruktur 200 direkt in ihrer endgültigen Gestalt, also als Damm mit der den Kontaktbereich 110 ringförmig umschließenden Masche 230, ausgebildet worden sein. Hierzu kann die Platzhalterstruktur 200 beispielsweise durch ein geeignetes Formverfahren, insbesondere beispielsweise durch Spritzgießen, durch ein geeignetes Druckverfahren, insbesondere durch ein Siebdruckverfahren, oder durch ein geeignetes Dosierverfahren, insbesondere beispielsweise durch Nadeldosieren, an der Oberseite 101 des Leiterrahmens 100 angeordnet worden sein. Die Platzhalterstruktur 200 kann auch in Form einer vorgeformten Folie auf die Oberseite 101 des Leiterrahmens 100 aufgebracht worden sein.
  • Die Platzhalterstruktur 200 kann aber auch an der Oberseite 101 des Leiterrahmens 100 angeordnet worden sein, indem zunächst das erste Material 205 flächig auf die Oberseite 101 des Leiterrahmens 100 aufgebracht wurde und das erste Material 205 anschließend strukturiert wurde, um die Platzhalterstruktur 200 auszubilden. In diesem Fall hat das erste Material 205 zunächst weitere oder sogar alle Abschnitte der Oberseite 101 des Leiterrahmens 100 bedeckt und ist anschließend in einigen Abschnitten der Oberseite 101 des Leiterrahmens 100 derart entfernt worden, dass nur die in 1 und 2 gezeigte Platzhalterstruktur 200 verblieben ist. Das voll- oder teilflächige Aufbringen des ersten Materials 205 kann beispielsweise durch ein Dosierverfahren, durch ein Sprühverfahren, durch Aufbringen von Trockenlack oder durch ein Druckverfahren erfolgt sein. Das Strukturieren des ersten Materials 205 kann beispielsweise durch ein Verfahren erfolgt sein, das eine Belichtung der zu entfernenden lateralen Abschnitte des ersten Materials 205 oder eine Belichtung der verbleibenden Abschnitte des ersten Materials 205 umfasst. Die Strukturierung des ersten Materials 205 kann auch ein fotolithografisches Verfahren umfasst haben.
  • 3 zeigt eine schematische geschnittene Seitenansicht des Leiterrahmens 100 und der an der Oberseite 101 des Leiterrahmens 100 angeordneten Platzhalterstruktur 200 in einem der Darstellung der 1 zeitlich nachfolgenden Bearbeitungsstand.
  • In einem der Darstellung der 1 zeitlich nachfolgenden Bearbeitungsschritt ist ein Gehäusekörper 300 aus einem zweiten Material 305 ausgebildet worden. Dabei sind der Leiterrahmen 100 und die Platzhalterstruktur 200 teilweise in das zweite Material 305 eingebettet worden. Das Ausbilden des Gehäusekörpers 300 kann beispielsweise durch ein Formverfahren (Moldverfahren) erfolgt sein, insbesondere beispielsweise durch Spritzpressen (Transfer Molding) oder durch Spritzgießen (Injection Molding). Dabei sind der Leiterrahmen 100 und die Platzhalterstruktur 200 während des Ausbildens des Gehäusekörpers 300 zumindest teilweise durch das zweite Material 305 des Gehäusekörpers 300 umformt worden.
  • Das zweite Material 305 des Gehäusekörpers 300 kann beispielsweise ein Epoxyd, ein Polyphthalamid oder ein Silikon aufweisen.
  • Der Gehäusekörper 300 weist eine Kavität 310 auf. Im Bereich der Kavität 310 liegt ein Teil der Oberseite 101 des Leiterrahmens 100 frei und ist nicht durch das zweite Material 305 des Gehäusekörpers 300 bedeckt. Insbesondere liegt im Bereich der Kavität 310 des Gehäusekörpers 300 der Kontaktbereich 110 der Oberseite 101 des Leiterrahmens 100 frei.
  • Die an der Oberseite 101 des Leiterrahmens 100 angeordnete Platzhalterstruktur 200 ist derart teilweise in das zweite Material 305 des Gehäusekörpers 300 eingebettet worden, dass ein Abschnitt 210 der Platzhalterstruktur 200 im Bereich der Kavität 310 des Gehäusekörpers 300 freiliegt und nicht durch das zweite Material 305 des Gehäusekörpers 300 bedeckt ist, während die übrigen Teile der Platzhalterstruktur 200 in eine die Kavität 310 begrenzende Wandung des Gehäusekörpers 300 eingebettet sind.
  • 4 zeigt eine schematische geschnittene Seitenansicht eines optoelektronischen Bauelements 10, das durch weitere Bearbeitung aus dem in 3 gezeigten Gehäusekörper 300 hergestellt worden ist. Das optoelektronische Bauelement 10 kann beispielsweise ein Leuchtdioden-Bauelement (LED-Bauelement) sein.
  • In einem der Darstellung der 3 zeitlich nachfolgenden Bearbeitungsschritt wurde die an der Oberseite 101 des Leiterrahmens 100 angeordnete und zumindest teilweise in das zweite Material 305 des Gehäusekörpers 300 eingebettete Platzhalterstruktur 200 zumindest teilweise entfernt. Es ist günstig, wenn das erste Material 205 der Platzhalterstruktur 200 weitgehend vollständig entfernt wurde.
  • Durch das Entfernen des ersten Materials 205 der Platzhalterstruktur 200 ist ein Freiraum 220 entstanden. Hierdurch ist an dem Gehäusekörper 300 im Bereich der Kavität 310 eine Hinterschneidung 320 gebildet worden, die um den in der Kavität 310 freiliegenden Kontaktbereich 110 des Leiterrahmens 100 umläuft. Da die Platzhalterstruktur 200 zuvor unmittelbar an der Oberseite 101 des Leiterrahmens 100 angeordnet war und somit auch der durch das Entfernen der Platzhalterstruktur 200 entstandene Freiraum 220 unmittelbar an die Oberseite 101 des Leiterrahmens 100 angrenzt, grenzt auch die an dem Gehäusekörper 300 ausgebildete Hinterschneidung 320 an die Oberseite 101 des in dem Gehäusekörper 300 eingebetteten Leiterrahmens 100 an.
  • Das Entfernen des ersten Materials 205 der Platzhalterstruktur 200 kann durch Herauslösen des ersten Materials 205 mittels eines chemischen Verfahrens erfolgt sein. Beispielsweise kann das erste Material 205 der Platzhalterstruktur 200 durch eine Säure, eine Base oder ein Lösungsmittel herausgelöst worden sein. Falls das erste Material 205 ein Acrylat aufgewiesen hat, so kann das Herauslösen des ersten Materials 205 der Platzhalterstruktur 200 beispielsweise mit NaOH erfolgt sein. Falls das erste Material 205 Polyoxymethylen aufgewiesen hat, so kann das Herauslösen des ersten Materials 205 der Platzhalterstruktur 200 beispielsweise mit einer Mineralsäure oder einer organischen Säure erfolgt sein. Falls das erste Material 205 Polyvinylacetat aufgewiesen hat, so kann das Herauslösen des ersten Materials 205 der Platzhalterstruktur 200 beispielsweise mit einem niederen Alkohol, einem Keton, einem Ester, einem zyklischen Ether oder einem aromatischen oder chlorierten Kohlenwasserstoff erfolgt sein. Falls das erste Material 205 Polyvinylalkohol aufgewiesen hat, so kann das Herauslösen des ersten Materials 205 der Platzhalterstruktur 200 beispielsweise mit Wasser erfolgt sein.
  • Das Entfernen des ersten Materials 205 der Platzhalterstruktur 200 kann zusätzlich oder alternativ auch mittels eines physikalischen Verfahrens erfolgt sein. Beispielsweise kann das Entfernen des ersten Materials 205 der Platzhalterstruktur 200 durch ein thermisches Verfahren, insbesondere beispielsweise durch Verdampfen oder Zersetzen, durch Bestrahlung, insbesondere beispielsweise durch UV-aktivierte Zersetzung, oder durch ein mechanisches Verfahren, insbesondere beispielsweise durch Zersetzung mittels Ultraschall, erfolgt sein.
  • In jedem Fall werden das erste Material 205 der Platzhalterstruktur 200 und das zweite Material 305 des Gehäusekörpers 300 so gewählt, dass sich das erste Material 205 der Platzhalterstruktur 200 ohne eine wesentliche Schädigung des zweiten Materials 305 des Gehäusekörpers 300 entfernen lässt.
  • In einem weiteren der Darstellung der 3 zeitlich nachfolgenden Bearbeitungsschritt ist ein optoelektronischer Halbleiterchip 400 in der Kavität 310 des Gehäusekörpers 300 angeordnet worden. Das Anordnen des optoelektronischen Halbleiterchips 400 in der Kavität 310 kann vor oder nach dem Entfernen des ersten Materials 205 der Platzhalterstruktur 200 erfolgt sein. Um eine Beschädigung des optoelektronischen Halbleiterchips 400 zu vermeiden, ist es zweckmäßig, den optoelektronischen Halbleiterchip 400 erst nach dem Entfernen des ersten Materials 205 der Platzhalterstruktur 200 in der Kavität 310 des Gehäusekörpers 300 anzuordnen.
  • Der optoelektronische Halbleiterchip 400 kann dazu vorgesehen sein, elektromagnetische Strahlung, beispielsweise sichtbares Licht, zu emittieren. Der optoelektronische Halbleiterchip 400 kann beispielsweise als Leuchtdiodenchip (LED-Chip) ausgebildet sein.
  • Der optoelektronische Halbleiterchip 400 kann in der Kavität 310 des Gehäusekörpers 300 auf dem Kontaktbereich 110 der Oberseite 101 des Leiterrahmens 100 angeordnet sein. Der optoelektronische Halbleiterchip 400 kann aber auch an anderem Ort in der Kavität 310 des Gehäusekörpers 300 angeordnet und lediglich elektrisch leitend mit dem Kontaktbereich 110 des Leiterrahmens 100 verbunden sein, beispielsweise mittels eines Bonddrahts.
  • In einem weiteren, dem Entfernen der Platzhalterstruktur 200 und dem Anordnen des optoelektronischen Halbleiterchips 400 in der Kavität 310 nachfolgenden, Bearbeitungsschritt ist ein Vergussmaterial 500 in der Kavität 310 des Gehäusekörpers 300 angeordnet worden. Dabei ist der optoelektronische Halbleiterchip 400 zumindest teilweise in das Vergussmaterial 500 eingebettet worden. Das Vergussmaterial 500 füllt die Kavität 310 zweckmäßigerweise möglichst vollständig und erstreckt sich insbesondere zumindest in einen Teil des durch das Entfernen der Platzhalterstruktur 200 entstandenen Freiraums 220. Dadurch ist das in der Kavität 310 angeordnete Vergussmaterial 500 formschlüssig hinter der Hinterschneidung 320 verankert.
  • Das Anordnen des Vergussmaterials 500 in der Kavität 310 des Gehäusekörpers 300 kann beispielsweise durch ein Dosierverfahren oder durch ein Formverfahren (Moldverfahren) erfolgt sein, insbesondere beispielsweise durch Formpressen (Compression Molding). Nach dem Einbringen des Vergussmaterials 500 in die Kavität 310 kann das Vergussmaterial 500 ausgehärtet worden sein.
  • Das Vergussmaterial 500 kann beispielsweise ein Silikon aufweisen. Das Vergussmaterial 500 kann eingebettete wellenlängenkonvertierende Partikel aufweisen, die dazu vorgesehen sind, zumindest einen Teil einer durch den optoelektronischen Halbleiterchip 400 emittierten elektromagnetischen Strahlung in elektromagnetische Strahlung einer anderen Wellenlänge zu konvertieren. Das Vergussmaterial 500 kann auch eingebettete Streupartikel aufweisen, beispielsweise Streupartikel, die TiO2 aufweisen.
  • Das Vergussmaterial 500 kann am Ausgang der Kavität 310 an der Außenseite des Gehäusekörpers 300 eine optische Linse 510 bilden. Dies ist jedoch nicht zwingend erforderlich.
  • 5 zeigt in schematischer Darstellung eine Aufsicht auf die Oberseite 101 des Leiterrahmens 100 in einem der Darstellung der 2 entsprechenden Bearbeitungsstand. Dabei ist an der Oberseite 101 des Leiterrahmens 100 eine Platzhalterstruktur 200 gemäß einer alternativen Ausführungsform angeordnet. Die in 5 gezeigte Ausführungsform der Platzhalterstruktur 200 kann die in 1 und 2 gezeigte Ausführungsform der Platzhalterstruktur 200 bei dem anhand der 1 bis 4 erläuterten Verfahren ersetzen.
  • Die in 5 gezeigte Ausführungsform der Platzhalterstruktur 200 unterscheidet sich von der in 1 und 2 gezeigten Ausführungsform der Platzhalterstruktur 200 dadurch, dass die Platzhalterstruktur 200 in 5 keine geschlossene Masche 230 bildet. Stattdessen umgrenzt die Platzhalterstruktur 200 den Kontaktbereich 110 an der Oberseite 101 des Leiterrahmens 100 nur abschnittsweise, also nur in begrenzten Winkelabschnitten in Umfangsrichtung um den Kontaktbereich 110. Dennoch wird auch bei Verwendung der in 5 gezeigten Platzhalterstruktur 200 in dem Gehäusekörper 300 eine Hinterschneidung 320 ausgebildet, die zur Verankerung des Vergussmaterials 500 in der Kavität 310 ausreichend ist.
  • Das anhand der 1 bis 4 beschriebene Verfahren kann für eine parallele Herstellung einer Mehrzahl optoelektronischer Bauelemente 10 genutzt werden. In diesem Fall weist der Leiterrahmen 100 eine größere laterale Ausdehnung auf, als dies in 1 und 2 dargestellt ist. Die Oberseite 101 des Leiterrahmens 100 weist in diesem Fall mehrere Kontaktbereiche 110 auf, die beispielsweise in einer regelmäßigen Matrixanordnung angeordnet sein können. Pro Kontaktbereich 110 wird dann eine Platzhalterstruktur 200 an der Oberseite 101 des Leiterrahmens 100 angeordnet, die den jeweiligen Kontaktbereich 110 zumindest abschnittsweise umgrenzt. Der Leiterrahmen 100 und die Platzhalterstrukturen 200 werden in einen Gehäusekörperverbund eingebettet, der eine Mehrzahl von Gehäusekörpern 300 umfasst. Die Gehäusekörper 300 können in dem Gehäusekörperverbund einstückig zusammenhängend miteinander verbunden sein. Jeder Gehäusekörper 300 ist so ausgebildet, wie dies anhand der 1 bis 4 beschrieben wurde. Das anschließende Entfernen der Platzhalterstrukturen 200 kann bei allen Gehäusekörpern 300 des Gehäusekörperverbunds gleichzeitig erfolgen. In der Kavität 310 jedes Gehäusekörpers 300 des Gehäusekörperverbunds wird ein optoelektronischer Halbleiterchip 400 angeordnet. Anschließend werden die Kavitäten 310 mit dem Vergussmaterial 500 befüllt. Erst zum Abschluss des beschriebenen Herstellungsverfahrens werden die einzelnen Gehäusekörper 300 des Gehäusekörperverbunds gemeinsam mit dem in den Gehäusekörperverbund eingebetteten Leiterrahmen 100 zerteilt, um die einzelnen optoelektronischen Bauelemente 10 zu vereinzeln.
  • 6 zeigt eine schematische Aufsicht auf einen Verbund von Platzhalterstrukturen 200 gemäß einer weiteren alternativen Ausführungsform. 7 zeigt eine schematische geschnittene Seitenansicht des Verbunds von Platzhalterstrukturen 200. Die in 6 und 7 gezeigte Ausführungsform der Platzhalterstrukturen 200 eignet sich besonders zur Verwendung in dem Fall, dass, wie beschrieben, eine Mehrzahl optoelektronischer Bauelemente 10 gleichzeitig in gemeinsamen Bearbeitungsschritten hergestellt wird.
  • Die Platzhalterstrukturen 200 des in 6 und 7 gezeigten Verbunds sind in einer regelmäßigen zweidimensionalen Matrixanordnung angeordnet. Jede Platzhalterstruktur 200 umfasst eine geschlossene Masche 230, die wie bei der in 1 und 2 gezeigten Ausführungsform der Platzhalterstruktur 200 ausgebildet ist. Die Maschen 230 benachbarter Platzhalterstrukturen 200 des Verbunds sind über Verbindungsstege 250 miteinander verbunden, sodass die Platzhalterstrukturen 200 des Verbunds ein zusammenhängendes Gitter bilden.
  • Der in 6 und 7 gezeigte Verbund von Platzhalterstrukturen 200 kann vor der Anordnung der Platzhalterstrukturen 200 an der Oberseite 101 des Leiterrahmens 100 vorgefertigt werden, beispielsweise durch ein Formverfahren (Moldverfahren) oder durch ein Druckverfahren. Das zusammenhängende Gitter des Verbunds von Platzhalterstrukturen 200 kann dann so an der Oberseite 101 des Leiterrahmens 100 angeordnet werden, dass die Maschen 230 aller Platzhalterstrukturen 200 des Verbunds jeweils einen Kontaktbereich 110 des Leiterrahmens 100 umgrenzen. Die weitere Bearbeitung erfolgt wie vorstehend beschrieben.
  • 8 zeigt eine schematische geschnittene Seitenansicht eines optoelektronischen Bauelements 10 in einer Ausführungsform, die sich bei der Verwendung der in 6 und 7 gezeigten Ausführungsform der Platzhalterstruktur 200 ergibt. Die in 8 gezeigte Ausführungsform des optoelektronischen Bauelements 10 unterscheidet sich von der in 4 gezeigten Ausführungsform des optoelektronischen Bauelements 10 dadurch, dass im Bereich der in das zweite Material 305 des Gehäusekörpers 300 eingebetteten Verbindungsstege 250 durch das Entfernen des ersten Materials 205 der Platzhalterstruktur 200 Kanäle 225 gebildet worden sind, die sich von der Kavität 310 des Gehäusekörpers 300 durch den Gehäusekörper 300 bis zu einer Außenseite des Gehäusekörpers 300 erstrecken. Das in der Kavität 310 angeordnete Vergussmaterial 500 erstreckt sich auch in diese Kanäle 225 und ist dadurch an den Öffnungen der Kanäle 225 an den Außenseiten des Gehäusekörpers 300 sichtbar. Dies ist in der schematischen Seitenansicht des optoelektronischen Bauelements 10 der 9 gezeigt.
  • 10 zeigt in schematischer Darstellung eine Aufsicht auf einen Verbund mehrerer Platzhalterstrukturen 200 gemäß einer weiteren Ausführungsform. 11 zeigt eine schematische geschnittene Seitenansicht des Verbunds von Platzhalterstrukturen 200 der in 10 gezeigten Ausführungsform. Die in 10 und 11 gezeigte Ausführungsform der Platzhalterstrukturen 200 entspricht bis auf die nachfolgend erläuterten Unterschiede der in 6 und 7 dargestellten Ausführungsform der Platzhalterstrukturen 200.
  • Die in 10 und 11 gezeigte Ausführungsform der Platzhalterstruktur 200 unterscheidet sich von der in 6 und 7 gezeigten Ausführungsform der Platzhalterstrukturen 200 dadurch, dass sich die Verbindungsstege 250 zwischen den Maschen 230 der einzelnen Platzhalterstrukturen 200 senkrecht aus der lateralen Ebene der Platzhalterstrukturen 200 erheben. Werden die Platzhalterstrukturen 200 der in 10 und 11 gezeigten Ausführungsform an der Oberseite 101 des Leiterrahmens 100 angeordnet, so liegen Teile der Verbindungsstege 250 nicht an der Oberseite 101 des Leiterrahmens 100 an, sondern sind oberhalb der Oberseite 101 und beabstandet von der Oberseite 101 des Leiterrahmens 100 angeordnet. In der Schnittdarstellung der 11 können die Verbindungsstege 250 beispielsweise jeweils eine U-Form aufweisen.
  • 12 zeigt eine schematische geschnittene Seitenansicht des optoelektronischen Bauelements 10 in einer Ausführungsform, die bei Verwendung der in 10 und 11 gezeigten Ausführungsform der Platzhalterstruktur 200 erhältlich ist. 13 zeigt in schematischer Darstellung eine Aufsicht auf eine Oberseite des optoelektronischen Bauelements 10 mit der zur Oberseite des Gehäusekörpers 300 geöffneten Kavität 310.
  • Die in 12 und 13 gezeigte Ausführungsform des optoelektronischen Bauelements 10 unterscheidet sich von der in 8 gezeigten Ausführungsform des optoelektronischen Bauelements 10 dadurch, dass sich die Kanäle 225 durch den Gehäusekörper 300 bis zur Oberseite des Gehäusekörpers 300 erstrecken. Das in den Kanälen 225 angeordnete Vergussmaterial 500 ist somit an der Oberseite des Gehäusekörpers 300 des optoelektronischen Bauelements 10 sichtbar.
  • Die Erfindung wurde anhand der bevorzugten Ausführungsbeispiele näher illustriert und beschrieben. Dennoch ist die Erfindung nicht auf die offenbarten Beispiele eingeschränkt. Vielmehr können hieraus andere Variationen vom Fachmann abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.
  • Bezugszeichenliste
  • 10
    optoelektronisches Bauelement
    100
    Leiterrahmen
    101
    Oberseite
    102
    Unterseite
    110
    Kontaktbereich
    200
    Platzhalterstruktur
    205
    erstes Material
    210
    Abschnitt der Platzhalterstruktur
    220
    Freiraum
    225
    Kanal
    230
    Masche
    240
    Trennbereich
    250
    Verbindungssteg
    300
    Gehäusekörper
    305
    zweites Material
    310
    Kavität
    320
    Hinterschneidung
    400
    optoelektronischer Halbleiterchip
    500
    Vergussmaterial
    510
    optische Linse

Claims (16)

  1. Verfahren zum Herstellen eines optoelektronischen Bauelements (10) mit den folgenden Schritten: – Bereitstellen eines Leiterrahmens (100) mit einer einen Kontaktbereich (110) aufweisenden Oberseite (101); – Anordnen einer den Kontaktbereich (110) zumindest abschnittsweise umgrenzenden Platzhalterstruktur (200) aus einem ersten Material (205) an der Oberseite (101) des Leiterrahmens (100); – Ausbilden eines Gehäusekörpers (300) aus einem zweiten Material (305), wobei der Leiterrahmen (100) und die Platzhalterstruktur (200) zumindest teilweise in das zweite Material (305) eingebettet werden, wobei der Gehäusekörper (300) mit einer Kavität (310) ausgebildet wird, wobei der Kontaktbereich (110) und ein Abschnitt (210) der Platzhalterstruktur (200) im Bereich der Kavität (310) unbedeckt durch das zweite Material (305) bleiben; – Entfernen zumindest eines Teils der Platzhalterstruktur (200).
  2. Verfahren gemäß Anspruch 1, wobei das Verfahren den folgenden weiteren Schritt umfasst: – Anordnen eines optoelektronischen Halbleiterchips (400) in der Kavität (310).
  3. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Verfahren den folgenden weiteren Schritt umfasst: – Anordnen eines Vergussmaterials (500) in der Kavität (310), wobei sich das Vergussmaterial (500) zumindest in einen Teil eines durch das Entfernen der Platzhalterstruktur (200) entstandenen Freiraums (220) erstreckt.
  4. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Platzhalterstruktur (200) eine den Kontaktbereich (110) ringförmig umschließende Masche (230) aufweist.
  5. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Platzhalterstruktur (200) vor dem Anordnen an der Oberseite (101) des Leiterrahmens (100) vorgefertigt wird.
  6. Verfahren gemäß einem der Ansprüche 1 bis 4, wobei das Anordnen der Platzhalterstruktur (200) durch flächiges Aufbringen des ersten Materials (205) und eine anschließende Strukturierung des ersten Materials (205) erfolgt.
  7. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Ausbilden der Platzhalterstruktur (200) durch Spritzgießen, durch ein Druckverfahren, insbesondere durch ein Siebdruckverfahren, durch Nadeldosieren, durch ein Sprühverfahren, durch Aufbringen von Trockenlack oder durch Aufbringen einer vorgeformten Folie erfolgt.
  8. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das erste Material (205) ein Acrylat, einen Fotolack, Polyoxymethylen, Polyvinylacetat, Polyvinylalkohol, ein Duroplast oder ein Wachs oder ein anderes Bindemittel aufweist.
  9. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Ausbilden des Gehäusekörpers (300) durch Spritzpressen oder durch Spritzgießen erfolgt.
  10. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das zweite Material (305) ein Epoxyd, ein Polyphthalamid oder ein Silikon aufweist.
  11. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Entfernen zumindest eines Teils der Platzhalterstruktur (200) durch Herauslösen mittels eines chemischen Verfahrens, insbesondere durch Lösen mittels einer Säure, einer Base oder eines Lösungsmittels oder durch Herauslösen mittels eines physikalischen Verfahrens, insbesondere durch Verdampfen oder Zersetzen mittels eines thermischen Verfahrens, durch Bestrahlung mit Licht einer festgelegten Wellenlänge oder durch eine mechanische Behandlung, beispielsweise mittels Ultraschall, erfolgt.
  12. Optoelektronisches Bauelement (10) mit einem Gehäusekörper (300), der einen zumindest teilweise eingebetteten Leiterrahmen (100) aufweist, wobei der Gehäusekörper (300) eine Kavität (310) aufweist, wobei im Bereich der Kavität (310) ein an einer Oberseite (101) des Leiterrahmens (100) ausgebildeter Kontaktbereich (110) unbedeckt durch das Material (305) des Gehäusekörpers (300) ist, wobei der Gehäusekörper (300) im Bereich der Kavität (310) eine den Kontaktbereich (110) zumindest abschnittsweise umlaufende Hinterschneidung (320) aufweist.
  13. Optoelektronisches Bauelement (10) gemäß Anspruch 12, wobei die Hinterschneidung (320) an den Leiterrahmen (100) angrenzt.
  14. Optoelektronisches Bauelement (10) gemäß einem der Ansprüche 12 und 13, wobei in der Kavität (310) ein optoelektronischer Halbleiterchip (400) angeordnet ist.
  15. Optoelektronisches Bauelement (10) gemäß einem der Ansprüche 12 bis 14, wobei in der Kavität (310) ein Vergussmaterial (500) angeordnet ist, das sich zumindest teilweise in die Hinterschneidung (320) erstreckt.
  16. Optoelektronisches Bauelement (10) gemäß Anspruch 15, wobei ein Abschnitt des Vergussmaterials (500) eine optische Linse (510) bildet.
DE102016101719.1A 2016-02-01 2016-02-01 Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement Withdrawn DE102016101719A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102016101719.1A DE102016101719A1 (de) 2016-02-01 2016-02-01 Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement
PCT/EP2017/051987 WO2017134029A1 (de) 2016-02-01 2017-01-31 Verfahren zum herstellen eines optoelektronischen bauelements und optoelektronisches bauelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016101719.1A DE102016101719A1 (de) 2016-02-01 2016-02-01 Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement

Publications (1)

Publication Number Publication Date
DE102016101719A1 true DE102016101719A1 (de) 2017-08-03

Family

ID=57963196

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016101719.1A Withdrawn DE102016101719A1 (de) 2016-02-01 2016-02-01 Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement

Country Status (2)

Country Link
DE (1) DE102016101719A1 (de)
WO (1) WO2017134029A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018125127A1 (de) * 2018-10-11 2020-04-16 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
WO2023088942A1 (de) * 2021-11-18 2023-05-25 Ams-Osram International Gmbh Elektronische vorrichtung und verfahren zur herstellung einer elektronischen vorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130134445A1 (en) * 2011-11-29 2013-05-30 Cree, Inc. Complex primary optics and methods of fabrication
DE102014102293A1 (de) * 2014-02-21 2015-08-27 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung optoelektronischer Halbleiterbauteile und optoelektronisches Halbleiterbauteil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI245437B (en) * 2004-11-16 2005-12-11 Lighthouse Technology Co Ltd Package structure of a surface mount device light emitting diode
KR20090055272A (ko) * 2007-11-28 2009-06-02 삼성전자주식회사 Led패키지, 이의 제조 방법 및 이를 포함하는 백라이트어셈블리
CN102769089B (zh) * 2011-05-06 2015-01-07 展晶科技(深圳)有限公司 半导体封装结构
CN102856468B (zh) * 2011-06-30 2015-02-04 展晶科技(深圳)有限公司 发光二极管封装结构及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130134445A1 (en) * 2011-11-29 2013-05-30 Cree, Inc. Complex primary optics and methods of fabrication
DE102014102293A1 (de) * 2014-02-21 2015-08-27 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung optoelektronischer Halbleiterbauteile und optoelektronisches Halbleiterbauteil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018125127A1 (de) * 2018-10-11 2020-04-16 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
WO2023088942A1 (de) * 2021-11-18 2023-05-25 Ams-Osram International Gmbh Elektronische vorrichtung und verfahren zur herstellung einer elektronischen vorrichtung

Also Published As

Publication number Publication date
WO2017134029A1 (de) 2017-08-10

Similar Documents

Publication Publication Date Title
DE112018005740B4 (de) Herstellung optoelektronischer Bauelemente und optoelektronisches Bauelement
DE102013214877A1 (de) Verfahren zum Herstellen eines Abdeckelements und eines optoelektronischen Bauelements, Abdeckelement und optoelektronisches Bauelement
DE102013212928A1 (de) Verfahren zum Herstellen eines optoelektronischen Bauelements
DE102005012921A1 (de) Halbleiterlichtemittiervorrichtung und Verfahren zu deren Herstellung
DE102010031945A1 (de) Halbleiterbauelement und Verfahren zur Herstellung eines Halbleiterbauelements
DE102013213073A1 (de) Verfahren zum Herstellen eines optoelektronischen Bauelementes
DE112017005097B4 (de) Herstellung von sensoren
DE102014100772B4 (de) Verfahren zur Herstellung von optoelektronischen Halbleiterbauelementen und optoelektronisches Halbleiterbauelement
DE102014113844B4 (de) Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement
WO2015040107A1 (de) Optoelektronisches bauelement und verfahren zu seiner herstellung
DE102016118990A1 (de) Sensor
DE102014108362B4 (de) Verfahren zur Herstellung mehrerer optoelektronischer Bauelemente und optoelektronisches Bauelement
WO2018029110A1 (de) Optoelektronischer halbleiterchip
WO2017129698A1 (de) Herstellung eines multichip-bauelements
DE102016101719A1 (de) Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement
DE102007053067A1 (de) Verfahren zur Herstellung eines Halbleiterbauelementes und Halbleiterbauelement
DE102018104382A1 (de) Optoelektronisches bauelement und herstellungsverfahren
DE102013211634A1 (de) Verfahren zum Herstellen eines Konversionselements
DE102007043183A1 (de) Optoelektronisches Bauelement und Verfahren zur Herstellung eines solchen
EP2406827A1 (de) Optoelektronisches halbleiterbauelement
DE102013220960A1 (de) Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
DE102018125506A1 (de) Optoelektronische Vorrichtung und Verfahren zur Herstellung von optoelektronischen Vorrichtungen
DE102014116134A1 (de) Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement
DE102013221429A1 (de) Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
DE102013206963A1 (de) Optoelektronisches Bauelement und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
R083 Amendment of/additions to inventor(s)
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee