DE102014014398A1 - Fluidführungssystem - Google Patents

Fluidführungssystem Download PDF

Info

Publication number
DE102014014398A1
DE102014014398A1 DE102014014398.8A DE102014014398A DE102014014398A1 DE 102014014398 A1 DE102014014398 A1 DE 102014014398A1 DE 102014014398 A DE102014014398 A DE 102014014398A DE 102014014398 A1 DE102014014398 A1 DE 102014014398A1
Authority
DE
Germany
Prior art keywords
fluid
section
sensor
cross
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102014014398.8A
Other languages
English (en)
Inventor
Timo Dirnberger
Michael Frank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mann and Hummel GmbH
Original Assignee
Mann and Hummel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mann and Hummel GmbH filed Critical Mann and Hummel GmbH
Priority to DE102014014398.8A priority Critical patent/DE102014014398A1/de
Priority to PCT/EP2015/072768 priority patent/WO2016050947A1/de
Priority to DE112015004508.2T priority patent/DE112015004508A5/de
Publication of DE102014014398A1 publication Critical patent/DE102014014398A1/de
Priority to US15/476,046 priority patent/US10662907B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10262Flow guides, obstructions, deflectors or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/0201Housings; Casings; Frame constructions; Lids; Manufacturing or assembling thereof
    • F02M35/0205Details, e.g. sensors or measuring devices
    • F02M35/0207Details, e.g. sensors or measuring devices on the clean air side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/0201Housings; Casings; Frame constructions; Lids; Manufacturing or assembling thereof
    • F02M35/021Arrangements of air flow meters in or on air cleaner housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Die Erfindung betrifft ein Fluidführungssystem (100) zum Transport eines Fluids, insbesondere von Luft im Ansaugtrakt einer Brennkraftmaschine, das ein Gehäuse (108) mit einem Einlass (102) und mit einem Auslass (104) für das Fluid in das Gehäuse (108) umfasst. Weiter umfasst das Fluidführungssystem einen im Gehäuse (108) angeordneten oder von außen in das Gehäuse (108) ragenden Sensor (50) zum Messen eines Massenstroms und/oder eines Volumenstroms des im Gehäuse (108) strömenden Fluids, sowie ein Filterelement (10), welches stromaufwärts des Sensors (50) im Gehäuse (108) angeordnet ist. Dabei ist ein Fluidkanalabschnitt (22) stromaufwärts vor dem Sensor (50) angeordnet und grenzt mit seinem Austrittsquerschnitt (36) an den Sensor (50) an. Der Fluidkanalabschnitt (22) weist einen sich von seinem Eintrittsquerschnitt (34) für das Fluid zum Sensor (50) hin verjüngenden Querschnitt auf und beschleunigt wenigstens einen Teil des strömenden Fluids und führt diesen Teil zum Sensor (50). Der Querschnitt verjüngt sich wenigstens in einem Bereich des Austrittsquerschnitts (36) vor dem Sensor (50) stetig. Die Erfindung betrifft ferner ein Fluidführungselement (20) zur Verwendung in einem Fluidführungssystem (100), mit einem Fluidkanalabschnitt (22), der stromaufwärts vor einem Sensor (50) angeordnet ist und mit seinem Austrittsquerschnitt (36) an den Sensor (50) angrenzt.

Description

  • Technisches Gebiet
  • Die Erfindung betrifft ein Fluidführungssystem zum Transport eines Fluids, insbesondere von Luft im Ansaugtrakt einer Brennkraftmaschine.
  • Stand der Technik
  • Moderne Brennkraftmaschinen beinhalten elektronische Steuerungen um für eine optimale Motorleistung zu sorgen. Ein besonders wichtiger Sensor ist dabei, zum Erreichen einer optimalen Motorsteuerung, ein Luftmassensensor zur Beeinflussung des Lufteinlasses in die Brennkraftmaschine.
  • Es ist für einen optimalen Motorbetrieb entscheidend, dass die Luftmengendurchsatzmessung präzise ist. Ein signifikantes Problem, das die Luftmengenmessung beeinflusst, sind Turbulenzen im Luftstrom, die zu einem großen Rausch-Signalverhältnis führen können. Bei Durchflussreglern nach dem Stand der Technik wurde versucht, dieses Problem durch das zur Verfügung stellen von Vorrichtungen zu lösen, die die Turbulenzen des gesamten Strömungsfeldes reduzieren.
  • Üblicherweise benutzen die Vorrichtungen nach dem Stand der Technik entweder ein Gitter bzw. Sieb oder eine Blende. Während die hier diskutierten Vorrichtungen nach dem Stand der Technik die Turbulenzen des gesamten Strömungsfeldes reduzieren, sind sie empfindlich gegen Einfrieren. Weiterhin sind diese Geräte kostenintensiv in der Herstellung, da eine hohe Fertigungsgenauigkeit erforderlich ist.
  • Da die Messquerschnittsfläche der dabei verwendeten Luftmassensensoren deutlich kleiner ist als die von der Luftströmung durchströmte Kanalquerschnittsfläche, erfolgt ein Abgleich über Kennfelder, welche insbesondere auch ein Geschwindigkeitsprofil innerhalb der Kanalquerschnittsfläche berücksichtigten. Es hat sich jedoch gezeigt, dass Frischluftfilter, die im Frischluftkanal stromaufwärts der Messvorrichtung angeordnet sein können, abhängig von ihrem Beladungszustand eine mehr oder weniger starke Veränderung des Geschwindigkeitsprofils im Kanalquerschnitt erzeugen. Eine derartige Veränderung der Geschwindigkeitsverteilung innerhalb der Kanalquerschnittsfläche wird jedoch vom Luftmassensensor nicht erfasst, wodurch die von der Messvorrichtung ermittelte Luftmasse mit zunehmender Beladung des Luftfilters immer mehr von der tatsächlich durch den Frischluftkanal strömenden Luftmasse abweicht.
  • In der DE 103 43 892 A1 wird ein in einem Kraftfahrzeug installiertes Luftinduktionssystem beschrieben. Das Luftinduktionssystem beinhaltet einen Luftfilter, einen Reinluftkanal, einen Luftmengendurchsatzsensor, einen Luftmassensensorgehäusekanal und einen Durchflussregler. Der Durchflussregler ist im Zentrum des Luftmassensensorgehäusekanals angeordnet. Der Durchflussregler befindet sich stromaufwärts des Luftmassensensors und stromabwärts des Luftfilters im Luftströmungsweg. Der Durchflussregler hat einen Einlass zum Eintritt der Luft vom Reinluftluftkanal und einen Auslass zum Austritt der Luft zum Luftmassensensor.
  • Offenbarung der Erfindung
  • Eine Aufgabe der Erfindung ist es daher, ein Fluidführungssystem zum Transport eines Fluids, insbesondere von Luft im Ansaugtrakt einer Brennkraftmaschine, zu schaffen, das es erlaubt, einen Massenstrom und/oder einen Volumenstrom des im Fluidführungssystem strömenden Fluids auf zuverlässige und reproduzierbare Art zu messen.
  • Eine weitere Aufgabe ist die Schaffung eines Fluidführungselements zum Einsatz in einem solchen Fluidführungssystem.
  • Die vorgenannten Aufgaben werden gelöst von einem Fluidführungssystem zum Filtern eines Fluids, insbesondere einer Brennkraftmaschine, beispielsweise eines Kraftfahrzeugs, das ein Gehäuse mit einem Einlass und mit einem Auslass, für das Fluid in das Gehäuse, und einen im Gehäuse angeordneten oder von außen in das Gehäuse ragenden Sensor zum Messen eines Massenstroms und/oder eines Volumenstroms des im Gehäuse strömenden Fluids umfasst.
  • Günstige Ausgestaltungen und Vorteile der Erfindung ergeben sich aus den weiteren Ansprüchen, der Beschreibung und der Zeichnung.
  • Es wird ein Fluidführungssystem zum Transport eines Fluids, insbesondere von Luft im Ansaugtrakt einer Brennkraftmaschine, vorgeschlagen, das ein Gehäuse mit einem Einlass und mit einem Auslass, für das Fluid in das Gehäuse, umfasst. Weiter umfasst das Fluidführungssystem einen im Gehäuse angeordneten oder von außen in das Gehäuse ragenden Sensor zum Messen eines Massenstroms und/oder eines Volumenstroms des im Gehäuse strömenden Fluids, sowie ein Filterelement, welches stromaufwärts des Sensors im Gehäuse angeordnet ist. Dabei ist ein Fluidkanalabschnitt stromaufwärts vor dem Sensor angeordnet und grenzt mit seinem Austrittsquerschnitt an den Sensor an. Der Fluidkanalabschnitt weist einen sich von seinem Eintrittsquerschnitt für das Fluid zum Sensor hin verjüngenden Querschnitt auf und beschleunigt wenigstens einen Teil des strömenden Fluids und führt diesen Teil zum Sensor. Der Querschnitt verjüngt sich wenigstens in einem Bereich des Austrittsquerschnitts vor dem Sensor stetig. Der Bereich, in dem sich der Querschnitt des Fluidkanalabschnitts stetig verjüngt, kann typischerweise 30% der Länge des Fluidkanalabschnitts, bevorzugt 50% und ganz besonders bevorzugt die ganze Länge des Fluidkanalabschnitts betragen.
  • Dabei kann der Sensor gehäuselos (sogenanntes Plug-In-Sensor-Konzept) ausgeführt sein. Im Falle eines in einem zusätzlichen HFM-Gehäuse aufgenommenen Sensors wird das beschleunigte Fluid auf den Bereich des Gehäuses geleitet, welcher offen für das Fluid ist. Der Sensor kann in einem Rohrabschnitt angeordnet sein, der das strömende Fluid zu dem Auslass des Fluidführungssystems führt. Der Fluidkanalabschnitt kann so Bestandteil des Rohrabschnitts sein. Alternativ kann er auch innerhalb des Rohrabschnitts angeordnet sein. Der Fluidkanalabschnitt fungiert vorteilhaft als Strömungsstabilisator. Besonders vorteilhaft kann der Fluidkanalabschnitt rotationssymmetrisch ausgestaltet sein.
  • Das erfindungsgemäße Fluidführungssystem weist gegenüber dem Stand der Technik den Vorteil auf, dass zur Messung von Massenströmen oder Volumenströmen des durchströmenden Fluids mit Sensoren wie etwa im Luftführungssystem einer Brennkraftmaschine eines Fahrzeugs mit Luftmassensensoren wie Heißfilmmassensensoren (HFM) wegen des Fluidkanalabschnitts auf ein Strömungsgitter vor dem Sensor verzichtet werden kann. Dieses Strömungsgitter eliminiert üblicherweise Strömungsablösungen und vergleichmäßigt die Strömung des Fluids hinsichtlich der Geschwindigkeitsverteilung. Dies gilt sowohl für ein sogenanntes Plug-In-Sensor-Konzept, bei dem ein Sensor in das Luftfiltergehäuse eingeschoben werden kann als auch für ein sogenanntes Gehäuse-Sensor-Konzept, bei dem der Sensor fest in einem HFM-Gehäuse eines Luftführungssystems eingebaut ist. Auch dort kann dann auf ein Strömungsgitter verzichtet werden. Durch eine Ausgestaltung des Fluidkanalabschnitts mit einem sich von seinem Eintrittsquerschnitt für das Fluid aus zum Sensor hin stetig verjüngenden Querschnitt wird wenigstens ein Teil des strömenden Fluids beschleunigt und wenigstens auf eine Sensorfläche des Sensors geführt, was eine sehr präzise und konstante Bestimmung von Fluidmassen- und/oder Volumenwerten erlaubt.
  • Ein Nachteil bei der Verwendung eines Strömungsgitters besteht darin, dass auch geringe Abweichungen der Geometrie des Gitters, beispielsweise durch Trenngrate verursacht, negative Auswirkungen auf das HFM Signal haben. Bei der erfindungsgemäßen Verwendung eines Strömungsstabilisators, insbesondere eines konischen Strömungsstabilisators, kann vorteilhaft zum einen auf das Strömungsgitter verzichtet werden und zum anderen kann durch die konische Form eine Luftbeschleunigung erzielt werden, welche etwaig auftretende störende Turbulenzen reduziert. Zusätzlich wird die Gleichverteilung der Strömungsgeschwindigkeit wesentlich verbessert. Insgesamt erhält man also für Plug-In-Sensor-Konzept ein wesentlich robusteres Konzept bzgl. der Luftmassenmessung. Zum anderen erhält man eine wesentliche Reduzierung der Teilekosten, da der einfach aufgebaute Strömungsstabilisator in Kombination mit einem Plug-In-Sensor wesentlich günstiger ist als Sensor in einem HFM-Gehäuse.
  • Gemäß einer vorteilhaften Ausgestaltung kann der Fluidkanalabschnitt Bestandteil eines Fluidführungselements sein, dessen Eintrittsquerschnitt zumindest einen Teil eines Gesamtströmungsquerschnitts des strömenden Fluids vor dem Fluidführungselement erfasst. Ein solches Fluidführungselement als Fluidkanalabschnitt erlaubt es, eine definierte Menge des strömenden Fluids zu bündeln und gezielt auf einen Sensor, bzw. auf eine Sensorfläche des Sensors zu leiten, welche als sensitive Fläche eine funktionelle Erfassung von Massen- und/oder Volumenstrom ermöglicht. Das Fluidführungselement wird dabei günstigerweise aus einem sehr formstabilen Werkstoff gefertigt, der seine Form auch bei größeren Änderungen der Umweltrandbedingungen, wie Temperatur, Feuchtigkeit, Vibrationen beibehält. Als Kunststoffe, die auch noch den Vorteil haben, dass sie leicht und in beliebiger Form zu fertigen sind, kommt beispielsweise feuchteunempfindliche Kunststoffe, wie Polybutylenterephtalat mit Glasfaserverstärkung (PBT GF 35) in Frage. Vorteilhaft kann das Fluidführungselement rotationssymmetrisch ausgestaltet sein.
  • Gemäß einer vorteilhaften Ausgestaltung kann der Eintrittsquerschnitt des Fluidführungselements einen Teil aus einem mittleren Bereich eines Gesamtströmungsquerschnitts des strömenden Fluids vor dem Fluidführungselement erfassen. Der Gesamtströmungsquerschnitt erfasst hierbei die gesamte Fluidmenge, die von dem Einlass zu dem Auslass geführt wird, insbesondere umfasst der Gesamtströmungsquerschnitt so einen Eintrittsquerschnitt in den Rohrabschnitt, in dem der Sensor angeordnet ist, und der das strömende Fluid zu dem Auslass führt. Durch die Erfassung einer Strömungsmenge aus einem mittleren Bereich des Gesamtströmungsquerschnitts des strömenden Fluids ist es möglich, eine höhere Genauigkeit und Konstanz des bestimmten Messwerts der Fluidmassen- und/oder Fluidvolumengrößen zu erreichen, da Randeffekte durch die Gehäusekonturen als Störungsgrößen eher vernachlässigbar sind.
  • Alternativ kann in einer anderen vorteilhaften Ausgestaltung der Eintrittsquerschnitt des Fluidführungselements den Gesamtströmungsquerschnitt des strömenden Fluids vor dem Fluidführungselement erfassen. Auf diese Weise ist es möglich, ein größeres Messvolumen zu erfassen und absolut größere Werte zu bekommen, was der Messgenauigkeit dienlich ist. Außerdem spielt es in dieser Ausgestaltung keine Rolle, wie groß der Effekt des nicht erfassten Fluidstroms bezogen auf den gesamten Fluidstrom ist.
  • Gemäß einer vorteilhaften Ausgestaltung kann das Fluidführungselement stromaufwärts des Sensors angeordnet sein. Dadurch ist es möglich, den von dem Fluidführungselement erfassten Fluidstrom gezielt auf den Sensor zu führen und so Messwerte mit hoher Präzision und Konstanz über die Betriebsdauer des Fluidführungssystems zu erhalten.
  • Gemäß einer vorteilhaften Ausgestaltung kann der Sensor wenigstens mit einem Teil der Sensorfläche innerhalb des Fluidführungselements angeordnet sein. Eine solche Anordnung schafft eine sehr homogene Strömung im Bereich der Sensorfläche des Sensors, dadurch, dass die Fluidströmung auch stromab des Sensors gezielt weitergeführt wird. Durch diese homogenisierte Strömung sind die mit dem Sensor erfassten Fluidmassen- und/oder Volumenwerte sehr präzise und zeitlich konstanter als wenn der Sensor außerhalb des Fluidführungselements angeordnet ist.
  • Gemäß einer vorteilhaften Ausgestaltung kann der Fluidkanalabschnitt die Strömungsgeschwindigkeit des strömenden Fluids steigern. Die Erhöhung der Strömungsgeschwindigkeit des strömenden Fluids bewirkt eine Verringerung von Turbulenzen vor dem Sensor und damit eine Verringerung der Fehler bei der Bestimmung von Fluidmassen und/oder Volumen, da Randeffekte des strömenden Fluids eine geringere Rolle spielen und so die turbulente kinetische Energie abnimmt.
  • Gemäß einer vorteilhaften Ausgestaltung kann der Sensor in dem Fluidkanalabschnitt und/oder dem Fluidführungselement von außen austauschbar angeordnet sein. Dabei ist es möglich, dass der Sensor von außen einschiebbar und wieder entnehmbar ausgeführt ist. Er kann jedoch auch eingeklebt sein, beispielsweise mit einem Kleber, der wieder lösbar ist. Dadurch ist ein Austausch eines defekten Sensors leicht möglich ohne gleich einen Tausch des gesamten Fluidführungssystems nötig zu machen, was die Reparaturkosten für einen defekten Sensor signifikant senkt.
  • Gemäß einer vorteilhaften Ausgestaltung kann der Fluidkanalabschnitt als konisch zulaufendes Rohr ausgebildet sein, wobei die Fluidströmung in den größeren Eintrittsquerschnitt eintritt und die Sensorfläche des Sensors angrenzend an den Austrittsquerschnitt des Fluidführungselements angeordnet ist. So kann der Fluidkanalabschnitt beispielsweise in Form eines Trichters vor dem Sensor angeordnet sein, der dann das strömende Fluid auf die Sensorfläche leitet und so eine präzise Fluidmassen- und/oder Volumenbestimmung ermöglicht.
  • Gemäß einer vorteilhaften Ausgestaltung kann eine im inneren des Fluidkanalabschnitts befindliche Oberfläche des Fluidführungselements turbulenzmindernd ausgebildet sein. Eine solche Ausbildung der inneren Oberfläche des Fluidführungselements beispielsweise mit einer Art Noppen oder in Form einer sogenannten Haifischhaut kann die Fluidströmung zusätzlich zu der konischen Form des Fluidführungselements und einer damit einhergehenden Erhöhung der Strömungsgeschwindigkeit homogenisieren und so die Turbulenzen auf Grund von Randeffekten der Fluidströmung signifikant mindern, was wiederum die Messgenauigkeit des Sensors erhöht.
  • Gemäß einer vorteilhaften Ausgestaltung kann ein Querschnitt einer Innenwand des Fluidkanalabschnitts mit einem aerodynamischen, die Strömungsgeschwindigkeit erhöhenden Profil gestaltet sein. Auch ist es möglich, durch geeignete Profilgebung der Innenwand des Fluidführungselements, beispielsweise in Form eines Tragflügels, eine zusätzliche Erhöhung der Strömungsgeschwindigkeit des strömenden Fluids zu erzielen und so die Messgenauigkeit des Sensors zusätzlich zu erhöhen.
  • Gemäß einem weiteren Aspekt der Erfindung wird ein Fluidführungselement zur Verwendung in einem Fluidführungssystem vorgeschlagen, mit einem Fluidkanalabschnitt, der stromaufwärts vor einem Sensor angeordnet ist und mit seinem Austrittsquerschnitt an den Sensor angrenzt. Der Fluidkanalabschnitt weist einen sich von seinem Eintrittsquerschnitt für das Fluid zum Sensor hin verjüngenden Querschnitt auf und beschleunigt wenigstens einen Teil des strömenden Fluids und führt diesen Teil zum Sensor. Der Querschnitt verjüngt sich wenigstens in einem Bereich des Austrittsquerschnitts vor dem Sensor stetig. Durch die sich verjüngende Form des Fluidkanalabschnitts kann eine Erhöhung der Strömungsgeschwindigkeit des strömenden Fluids erzielt werden, welche die auftretenden Turbulenzen reduziert. Zusätzlich wird die Gleichverteilung der Strömungsgeschwindigkeit wesentlich verbessert. Insgesamt lässt sich so die Genauigkeit und Konstanz einer Messung von Fluidmassen- und/oder Volumenströmen signifikant verbessern.
  • Gemäß einer vorteilhaften Ausgestaltung kann eine Öffnung zwischen Eintrittsquerschnitt und Austrittsquerschnitt vorgesehen sein, durch welche zumindest im Betriebszustand ein Sensor wenigstens mit einer Sensorfläche in das Fluidführungselement ragen kann. Dadurch ist es möglich die Sensorfläche, die den eigentlich sensitiven Bereich des Sensors darstellt, günstig in der Fluidströmung zu platzieren, sodass die die Genauigkeit und Konstanz einer Messung von Fluidmassen- und/oder Volumenströmen signifikant erhöht werden kann.
  • Gemäß einer vorteilhaften Ausgestaltung kann eine Innenwand ein aerodynamisches, die Strömungsgeschwindigkeit erhöhendes Profil aufweisen. Durch eine geeignete Profilgebung der Innenwand des Fluidführungselements, beispielsweise in Form eines Tragflügels, lässt sich eine zusätzliche Erhöhung der Strömungsgeschwindigkeit des strömenden Fluids erzielen und so die Messgenauigkeit des Sensors zusätzlich erhöhen.
  • Kurze Beschreibung der Zeichnungen
  • Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In den Zeichnungen sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnungen, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.
  • Es zeigen beispielhaft
  • 1 einen schematischen Querschnitt durch ein Fluidführungssystem mit einem in einem Fluidkanalabschnitt vor einem Sensor angeordneten Fluidführungselement nach einem Ausführungsbeispiel der Erfindung, welches einen Teil einer Fluidströmung auf den Sensor führt;
  • 2 eine Innenansicht eines Teils eines Gehäuses eines Fluidführungssystems mit einem in einem Fluidkanalabschnitt vor einem Sensor angeordneten Fluidführungselement nach dem in 1 dargestellten Ausführungsbeispiel der Erfindung, welches einen Teil einer Fluidströmung auf den Sensor führt;
  • 3 einen schematischen Querschnitt durch ein Fluidführungssystem mit einem in einem Fluidkanalabschnitt vor einem Sensor angeordneten Fluidführungselement nach einem weiteren Ausführungsbeispiel der Erfindung, welches einen Gesamtströmungsquerschnitt einer Fluidströmung auf den Sensor führt;
  • 4 einen schematischen Querschnitt durch ein Fluidführungssystem mit einem in einem Fluidkanalabschnitt angeordneten Fluidführungselement nach einem anderen Ausführungsbeispiel der Erfindung, welches einen Teil einer Fluidströmung auf den Sensor führt, der mit einer Sensorfläche in dem Fluidführungselement angeordnet ist; und
  • 5 einen schematischen Querschnitt durch ein Fluidführungssystem mit einem in einem Fluidkanalabschnitt angeordneten Fluidführungselement nach einem weiteren Ausführungsbeispiel der Erfindung, welches einen Gesamtströmungsquerschnitt einer Fluidströmung auf den Sensor führt, der mit einer Sensorfläche in dem Fluidführungselement angeordnet ist.
  • Ausführungsformen der Erfindung
  • In den Figuren sind gleiche oder gleichartige Komponenten mit gleichen Bezugszeichen beziffert. Die Figuren zeigen lediglich Beispiele und sind nicht beschränkend zu verstehen.
  • 1 zeigt einen schematischen Querschnitt durch ein Fluidführungssystem 100 mit einem in einem Fluidkanalabschnitt 22 vor einem Sensor 50 angeordneten Fluidführungselement 20 nach einem Ausführungsbeispiel der Erfindung, welches einen Teil einer Fluidströmung auf den Sensor 50 führt.
  • Das Fluidführungssystem 100 zum Transport eines Fluids, insbesondere von Luft als Fluid im Ansaugtrakt einer Brennkraftmaschine, umfasst ein Gehäuse 108 mit einem Einlass 102 und mit einem Auslass 104, für das Fluid in das Gehäuse 108. Weiter umfasst das Fluidführungssystem 100 einen von außen in das Gehäuse 108 ragenden Sensor 50 zum Messen eines Massenstroms und/oder eines Volumenstroms des im Gehäuse 108 strömenden Fluids, sowie ein Filterelement 10, welches stromaufwärts des Sensors 50 im Gehäuse 108 angeordnet ist, wobei ein Fluidkanalabschnitt (22) stromaufwärts vor dem Sensor (50) angeordnet ist und mit seinem Austrittsquerschnitt (36) an den Sensor (50) angrenzt. Der Fluidkanalabschnitt (22) weist einen sich von seinem Eintrittsquerschnitt (34) für das Fluid zum Sensor (50) hin verjüngenden Querschnitt auf und beschleunigt wenigstens einen Teil des strömenden Fluids und führt diesen Teil zum Sensor (50). Der Querschnitt verjüngt sich wenigstens in einem Bereich des Austrittsquerschnitts (36) vor dem Sensor (50) stetig. Der Sensor 50 ragt in einen Rohrabschnitt 30 hinein, der das strömende Fluid aus dem Inneren 106 des Gehäuses zum Auslass 104 führt. Der Fluidkanalabschnitt 22 ist stromaufwärts des Sensors zumindest teilweise in dem Rohrabschnitt 30 angeordnet. Alternativ ist auch denkbar, dass der Rohrabschnitt 30 selbst den Fluidkanalabschnitt 22 umfasst oder selbst darstellt.
  • Der Fluidpfad 14 des strömenden Fluids ist mit gestrichelten Pfeilen rein schematisch eingezeichnet. Das Fluid tritt durch den Einlass 102 in das Gehäuse 108 ein und tritt durch das Filterelement 10 hindurch. Das gefilterte Fluid kann dann im Inneren 106 des Gehäuses 108 über den Rohrabschnitt 30 zum Auslass 104 strömen, wobei ein Teil der Fluidströmung durch das Fluidführungselement 20 strömt und von diesem auf die Sensorfläche 52 des Sensors 50 geführt wird.
  • Der Fluidkanalabschnitt 22 ist Bestandteil des Fluidführungselements 20, dessen Eintrittsquerschnitt 34 zumindest einen Teil des strömenden Fluids, und zwar einen Teil aus einem mittleren Bereich eines Gesamtströmungsquerschnitts 28 des strömenden Fluids, erfasst. Der Gesamtströmungsquerschnitt 28 umfasst hierbei die gesamte Fluidmenge, die von dem Einlass 102 zu dem Auslass 104 geführt wird, insbesondere umfasst der Gesamtströmungsquerschnitt 28 so einen Eintrittsquerschnitt in den Rohrabschnitt 30, in dem der Sensor 50 angeordnet ist, und der das strömende Fluid zu dem Auslass 104 führt. Das Fluidführungselement 20 ist stromaufwärts des Sensors 50 angeordnet. Der Fluidkanalabschnitt 22, als Bestandteil des Fluidführungselements 20, ist als konisch zulaufendes Rohr ausgebildet, wobei die Fluidströmung in den größeren Eintrittsquerschnitt 34 eintritt und die Sensorfläche 52 des Sensors 50 angrenzend an den Austrittsquerschnitt 36 des Fluidführungselements 20 angeordnet ist. Der Sensor 50 ist in dem Fluidkanalabschnitt 22 von außen austauschbar angeordnet.
  • Das Fluidführungselement 20 umfasst einen Fluidkanalabschnitt 22, der einen sich von seinem Eintrittsquerschnitt 34 für das Fluid aus zu seinem Austrittsquerschnitt 36 und der Sensorfläche 52 des Sensors 50 hin stetig verjüngenden Querschnitt aufweist. Eine Öffnung 60 ist zwischen Eintrittsquerschnitt 34 und Austrittsquerschnitt 36 vorgesehen, durch welche der Sensor 50 mit der Sensorfläche 52 in das Fluidführungselement 20 ragt.
  • Der Fluidkanalabschnitt 22 steigert eine Strömungsgeschwindigkeit des in dem Fluidkanal strömenden Fluids. Dies kann zusätzlich erhöht werden, indem der Querschnitt der Innenwand 24 des Fluidkanalabschnitts 22 mit einem aerodynamischen, die Strömungsgeschwindigkeit erhöhenden Profil, beispielsweise einem Tragflügelprofil, gestaltet ist. Außerdem kann es günstig sein, eine im Inneren 26 des Fluidkanalabschnitts 22 befindliche Oberfläche des Fluidführungselements 20 turbulenzmindernd auszubilden, um so eine weitere Homogenisierung der Fluidströmung zu erreichen.
  • In 2 ist eine Innenansicht eines Teils eines Gehäuses 108 eines Fluidführungssystems 100 dargestellt mit einem in einem Fluidkanalabschnitt 22 vor einem Sensor 50 angeordneten Fluidführungselement 20 nach dem in 1 dargestellten Ausführungsbeispiel der Erfindung, welches einen Teil einer Fluidströmung auf den Sensor 50 führt. Der Rohrabschnitt 30 ist in einer Halbschale des Gehäuses 108 angeordnet und mit einem verdeckten Auslass 104 verbunden. Im Inneren des Rohrabschnitts 30 ist der Fluidkanalabschnitt 22 als konusförmiges Fluidführungselement 20 angeordnet, das die Fluidströmung durch den Eintrittsquerschnitt 34 auf einen nicht dargestellten Sensor 50 führen kann. Der Sensor 50 ragt in der gezeigten Darstellung von unten in den Fluidkanalabschnitt 22 herein.
  • 3 zeigt einen schematischen Querschnitt durch ein Fluidführungssystem 100 mit einem in einem Fluidkanalabschnitt 22 vor einem Sensor 50 angeordneten Fluidführungselement 20 nach einem weiteren Ausführungsbeispiel der Erfindung, welches einen Gesamtströmungsquerschnitt 28 einer Fluidströmung auf den Sensor 50 führt. Bei dieser Ausgestaltung des Fluidführungssystems 100 wird im Gegensatz zu der in den 1 und 2 dargestellten Ausgestaltung die gesamte Fluidströmung, die zum Auslass 104 strömt, durch den Eintrittsquerschnitt 34 des Fluidführungselements 20 auf die Sensorfläche 52 des Sensors 50 geführt. Durch die Verengung des Strömungsquerschnitts innerhalb des Fluidführungselements 20 wird die Strömungsgeschwindigkeit der Fluidströmung signifikant erhöht und so die Messgenauigkeit der Bestimmung der Fluidmassen und/oder Volumenwerte verbessert.
  • In 4 ist ein schematischer Querschnitt durch ein Fluidführungssystem 100 dargestellt mit einem in einem Fluidkanalabschnitt 22 angeordneten Fluidführungselement 20 nach einem anderen Ausführungsbeispiel der Erfindung, welches einen Teil einer Fluidströmung auf den Sensor 50 führt, der mit einer Sensorfläche 52 in dem Fluidführungselement angeordnet ist. In dieser Ausgestaltung ist der Sensor 50 mit einem Teil der Sensorfläche 52 innerhalb des Fluidführungselements 20 angeordnet ist. Die Fluidströmung wird dabei auch stromabwärts des Sensors 50 noch durch das Fluidführungselement 20 geführt, wodurch am Ort der Sensorfläche 52 eine zusätzliche Homogenisierung der Strömung des Fluids erreicht wird. Auch in dieser Ausgestaltung des Fluidführungssystems 100 ist der Sensor 50 in dem Rohrabschnitt 30, sowie in dem Fluidkanalabschnitt 22 als Bestandteil des Fluidführungselements 20 von außen austauschbar angeordnet.
  • 5 zeigt einen schematischen Querschnitt durch ein Fluidführungssystem 100 mit einem in einem Fluidkanalabschnitt 22 angeordneten Fluidführungselement 20 nach einem weiteren Ausführungsbeispiel der Erfindung, welches einen Gesamtströmungsquerschnitt 28 einer Fluidströmung auf den Sensor 50 führt, der mit einer Sensorfläche 52 in dem Fluidführungselement 20 angeordnet ist. Diese Ausgestaltung ist ähnlich der in 4 gezeigten Ausgestaltung. In diesem Fall erfasst jedoch der Eintrittsquerschnitt 34 des Fluidführungselements 20 den Gesamtströmungsquerschnitt 28 der Fluidströmung und führt diese auf die Sensorfläche 52, die im Inneren 26 des Fluidführungselements 20 angeordnet ist. Das Fluidführungselement 20 ist stromabwärts des Sensors 50 weitergeführt, um eine erhöhte Homogenisierung der Fluidströmung zu erreichen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 10343892 A1 [0006]

Claims (10)

  1. Fluidführungssystem (100) zum Transport eines Fluids, insbesondere von Luft im Ansaugtrakt einer Brennkraftmaschine, umfassend – ein Gehäuse (108) mit einem Einlass (102) und einem Auslass (104) für das Fluid in dem Gehäuse (108), – einen im Gehäuse (108) angeordneten oder von außen in das Gehäuse (108) ragenden Sensor (50) zum Messen eines Massenstroms und/oder eines Volumenstroms des im Gehäuse (108) strömenden Fluids, – ein Filterelement (10), welches stromaufwärts des Sensors (50) im Gehäuse (108) angeordnet ist, wobei ein Fluidkanalabschnitt (22) stromaufwärts vor dem Sensor (50) angeordnet ist und mit seinem Austrittsquerschnitt (36) an den Sensor (50) angrenzt, wobei der Fluidkanalabschnitt (22) einen sich von seinem Eintrittsquerschnitt (34) für das Fluid zum Sensor (50) hin verjüngenden Querschnitt aufweist und wenigstens einen Teil des strömenden Fluids beschleunigt und zum Sensor (50) führt, wobei sich der Querschnitt des Fluidkanalabschnitts (22) wenigstens in einem Bereich des Austrittsquerschnitts (36) vor dem Sensor (50) stetig verjüngt.
  2. Fluidführungssystem nach Anspruch 1, wobei der Fluidkanalabschnitt (22) Bestandteil eines Fluidführungselements (20) ist, dessen Eintrittsquerschnitt (34) zumindest einen Teil eines Gesamtströmungsquerschnitts (28) des strömenden Fluids vor dem Fluidführungselement (20) erfasst.
  3. Fluidführungssystem nach Anspruch 2, wobei der Eintrittsquerschnitt (34) des Fluidführungselements (20) einen Teil aus einem mittleren Bereich eines Gesamtströmungsquerschnitts (28) des strömenden Fluids erfasst.
  4. Fluidführungssystem nach Anspruch 2, wobei der Eintrittsquerschnitt (34) des Fluidführungselements (20) den Gesamtströmungsquerschnitt (28) vor dem Fluidführungselement (20) des strömenden Fluids erfasst.
  5. Fluidführungssystem nach einem der Ansprüche 2 bis 4, wobei der Sensor (50) wenigstens mit einem Teil der Sensorfläche (52) innerhalb des Fluidführungselements (20) angeordnet ist.
  6. Fluidführungssystem nach einem der vorhergehenden Ansprüche, wobei der Sensor (50) in dem Fluidkanalabschnitt (22) und/oder dem Fluidführungselement (20) von außen austauschbar angeordnet ist.
  7. Fluidführungssystem nach einem der vorhergehenden Ansprüche, wobei der Fluidkanalabschnitt (22) als konisch zulaufendes Rohr ausgebildet ist, wobei die Fluidströmung in den größeren Eintrittsquerschnitt (34) eintritt und die Sensorfläche (52) des Sensors (50) angrenzend an den Austrittsquerschnitt (36) des Fluidführungselements (20) angeordnet ist.
  8. Fluidführungssystem nach einem der vorhergehenden Ansprüche, wobei ein Querschnitt einer Innenwand (24) des Fluidkanalabschnitts (22) mit einem aerodynamischen, die Strömungsgeschwindigkeit erhöhenden Profil gestaltet ist.
  9. Fluidführungselement (20) zur Verwendung in einem Fluidführungssystem (100) nach einem der vorhergehenden Ansprüche, mit einem Fluidkanalabschnitt (22), der stromaufwärts vor einem Sensor (50) angeordnet ist und mit seinem Austrittsquerschnitt (36) an den Sensor (50) angrenzt, wobei der Fluidkanalabschnitt (22) einen sich von seinem Eintrittsquerschnitt (34) für das Fluid zum Sensor (50) hin verjüngenden Querschnitt aufweist und wenigstens einen Teil des strömenden Fluids beschleunigt und zum Sensor (50) führt, wobei sich der Querschnitt wenigstens in einem Bereich des Austrittsquerschnitts (36) vor dem Sensor (50) stetig verjüngt.
  10. Fluidführungselement nach Anspruch 9, wobei eine Öffnung (60) zwischen Eintrittsquerschnitt (34) und Austrittsquerschnitt (36) vorgesehen ist, durch welche zumindest im Betriebszustand ein Sensor (50) wenigstens mit einer Sensorfläche (52) in das Fluidführungselement (20) ragen kann.
DE102014014398.8A 2014-10-02 2014-10-02 Fluidführungssystem Withdrawn DE102014014398A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102014014398.8A DE102014014398A1 (de) 2014-10-02 2014-10-02 Fluidführungssystem
PCT/EP2015/072768 WO2016050947A1 (de) 2014-10-02 2015-10-02 Fluidführungssystem
DE112015004508.2T DE112015004508A5 (de) 2014-10-02 2015-10-02 Fluidführungssystem
US15/476,046 US10662907B2 (en) 2014-10-02 2017-03-31 Fluid conducting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014014398.8A DE102014014398A1 (de) 2014-10-02 2014-10-02 Fluidführungssystem

Publications (1)

Publication Number Publication Date
DE102014014398A1 true DE102014014398A1 (de) 2016-04-07

Family

ID=54238450

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102014014398.8A Withdrawn DE102014014398A1 (de) 2014-10-02 2014-10-02 Fluidführungssystem
DE112015004508.2T Pending DE112015004508A5 (de) 2014-10-02 2015-10-02 Fluidführungssystem

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE112015004508.2T Pending DE112015004508A5 (de) 2014-10-02 2015-10-02 Fluidführungssystem

Country Status (3)

Country Link
US (1) US10662907B2 (de)
DE (2) DE102014014398A1 (de)
WO (1) WO2016050947A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600111263A1 (it) * 2016-11-04 2018-05-04 Piaggio & C Spa Motore endotermico con sistema di aspirazione migliorato e relativo motoveicolo
IT201600111270A1 (it) * 2016-11-04 2018-05-04 Piaggio & C Spa Motore endotermico con sistema di aspirazione migliorato e relativo motoveicolo
IT201600111255A1 (it) * 2016-11-04 2018-05-04 Piaggio & C Spa Motore endotermico con sistema di aspirazione migliorato e relativo motoveicolo

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9440175B2 (en) * 2012-11-01 2016-09-13 Advanced Flow Engineering, Inc. Interface air filter and assembly
WO2018013857A1 (en) 2016-07-13 2018-01-18 Rain Bird Corporation Flow sensor
JP2019011725A (ja) * 2017-06-30 2019-01-24 いすゞ自動車株式会社 エアクリーナ
JP2019052566A (ja) * 2017-09-13 2019-04-04 トヨタ自動車株式会社 エアクリーナ
US10473494B2 (en) 2017-10-24 2019-11-12 Rain Bird Corporation Flow sensor
KR102347737B1 (ko) * 2017-12-15 2022-01-06 현대자동차주식회사 지지부재를 구비한 차량의 에어클리너
US11236713B2 (en) * 2018-07-12 2022-02-01 Advanced Flow Engineering, Inc. Sealed intake air system
DE102019121342B4 (de) * 2018-08-15 2021-03-18 Mann+Hummel Gmbh Filterelement für den Einsatz als Partikelfilter in einem Kühlkreislauf eines elektrochemischen Energiewandlers und Verwendung des Filterelements in einer Anordnung mit einem elektrochemischen Energiewandler und einem Kühlkreislauf
JP7495205B2 (ja) * 2018-11-29 2024-06-04 株式会社デンソー エアクリーナ
US11662242B2 (en) 2018-12-31 2023-05-30 Rain Bird Corporation Flow sensor gauge
US11874149B2 (en) 2020-04-27 2024-01-16 Rain Bird Corporation Irrigation flow sensor systems and methods of detecting irrigation flow

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110676A (ja) * 1998-10-02 2000-04-18 Toyota Motor Corp 流量計を備えた流体配管及びエアクリーナ
US6240775B1 (en) * 1998-05-11 2001-06-05 Mitsubishi Denki Kabushiki Kaisha Flow rate sensor
DE10343892A1 (de) 2002-09-20 2004-04-01 Visteon Global Technologies, Inc., Dearborn Durchflußreglervorrichtung

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE394587A (de) * 1932-02-25
US3722275A (en) * 1971-11-04 1973-03-27 Eastech Bluff body flowmeter arrangement for use in controlling air pollution produced by internal combustion engines
DE4013351A1 (de) * 1989-04-25 1990-10-31 Mitsubishi Motors Corp Wirbelstroemungsmesser
DE4130218A1 (de) * 1991-09-11 1993-03-18 Audi Ag Luftfilter fuer eine brennkraftmaschine
US5383356A (en) * 1993-04-08 1995-01-24 Ford Motor Company Mass air flow sensor arrangement having increased dynamic range
US5369990A (en) * 1993-04-08 1994-12-06 Ford Motor Company Remote mount air flow sensor
US5789673A (en) * 1993-09-14 1998-08-04 Hitachi, Ltd. Thermal type air flow measuring instrument for internal combustion engine
DE4340882A1 (de) * 1993-12-01 1995-06-08 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines strömenden Mediums
JP3324106B2 (ja) * 1994-06-23 2002-09-17 株式会社デンソー 熱式流量計
JP3193837B2 (ja) * 1994-10-18 2001-07-30 株式会社日立製作所 発熱抵抗式流量測定装置
JP3169808B2 (ja) * 1995-09-29 2001-05-28 株式会社日立製作所 空気流量測定装置およびエアクリーナケース
JPH09210749A (ja) * 1996-02-07 1997-08-15 Hitachi Ltd 発熱抵抗体式空気流量測定装置
JP3292817B2 (ja) * 1997-04-24 2002-06-17 三菱電機株式会社 感熱式流量センサ
JP3285513B2 (ja) * 1997-05-28 2002-05-27 三菱電機株式会社 感熱式流量センサおよび内燃機関の吸気装置
JP3577941B2 (ja) * 1998-04-02 2004-10-20 三菱電機株式会社 流量測定装置
JP3475853B2 (ja) * 1998-12-21 2003-12-10 三菱電機株式会社 流量測定装置
DE19960822B4 (de) * 1999-06-08 2005-11-03 Mitsubishi Denki K.K. Flussratensensor
DE19942502A1 (de) * 1999-09-07 2001-03-08 Bosch Gmbh Robert Vorrichtung zur Messung von zumindest einem Parameter eines in einer Leitung strömenden Mediums
US6920784B2 (en) * 2003-06-18 2005-07-26 Visteon Global Technologies, Inc. Flow conditioning device
DE202008010058U1 (de) * 2008-07-25 2009-12-03 Mann+Hummel Gmbh Luftfiltersystem eines Kraftfahrzeuges
JP5751533B2 (ja) * 2012-08-21 2015-07-22 株式会社デンソー 吸気装置
SE538092C2 (sv) * 2012-12-04 2016-03-01 Scania Cv Ab Luftmassemätarrör
JP2014156854A (ja) * 2013-01-17 2014-08-28 Denso Corp エアクリーナ
JP6274021B2 (ja) * 2014-06-10 2018-02-07 株式会社デンソー 湿度測定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240775B1 (en) * 1998-05-11 2001-06-05 Mitsubishi Denki Kabushiki Kaisha Flow rate sensor
JP2000110676A (ja) * 1998-10-02 2000-04-18 Toyota Motor Corp 流量計を備えた流体配管及びエアクリーナ
DE10343892A1 (de) 2002-09-20 2004-04-01 Visteon Global Technologies, Inc., Dearborn Durchflußreglervorrichtung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600111263A1 (it) * 2016-11-04 2018-05-04 Piaggio & C Spa Motore endotermico con sistema di aspirazione migliorato e relativo motoveicolo
IT201600111270A1 (it) * 2016-11-04 2018-05-04 Piaggio & C Spa Motore endotermico con sistema di aspirazione migliorato e relativo motoveicolo
IT201600111255A1 (it) * 2016-11-04 2018-05-04 Piaggio & C Spa Motore endotermico con sistema di aspirazione migliorato e relativo motoveicolo

Also Published As

Publication number Publication date
US10662907B2 (en) 2020-05-26
US20170204820A1 (en) 2017-07-20
DE112015004508A5 (de) 2017-11-16
WO2016050947A1 (de) 2016-04-07

Similar Documents

Publication Publication Date Title
DE102014014398A1 (de) Fluidführungssystem
DE102008001980B4 (de) Luftströmungsmessvorrichtung
EP1843035B1 (de) Filtereinsatz für einen Luftfilter eines Luftansaugsystems einer Brennkraftmaschine und Luftansaugsystem für eine Brennkraftmaschine
DE10343892A1 (de) Durchflußreglervorrichtung
DE102004029476A1 (de) Strömungskonditionierungsvorrichtung
DE10124997C2 (de) Strömungsraten-Messvorrichtung
EP3044451B1 (de) Luftfilter
DE112017001103T5 (de) Lufteinlassvorrichtung Für Motoren
EP3097388B1 (de) Sensoranordnung zur bestimmung wenigstens eines parameters eines durch eine kanalstruktur strömenden fluiden mediums
WO2008128886A1 (de) Vorrichtung zur messung strömender medien
DE102013216348A1 (de) Einlassvorrichtung
EP2215434B1 (de) Sensoranordnung zur bestimmung eines parameters eines fluiden mediums
DE102009048684B4 (de) Bausatz mit einer Luftfilterpatrone und einem Restriktorelement
DE102010045985A1 (de) Luftzuführung einer Brennkraftmaschine mit Luftleitelement
EP3737919B1 (de) Messanordnung zur bestimmung eines parameters eines durch einen fluidströmungskanal strömenden fluiden mediums sowie fluidströmungskanal mit einer solchen messanordnung
DE102017210123A1 (de) Luftleitsystem sowie Messsystem und Verfahren zum Ermitteln von wenigstens einem Parameter eines aus einem Luftausströmer austretenden Luftstroms
DE102010029217A1 (de) Vorrichtung zur Erfassung einer Eigenschaft eines strömenden fluiden Mediums
DE102007026673A1 (de) Vorrichtung zur Bestimmung eines Parameters eines strömenden Mediums
EP3769052B1 (de) Sensoranordnung
DE10230430A1 (de) Ansaugluftführung einer Brennkraftmaschine
DE102018112906B4 (de) Luftfilter
DE102010025898A1 (de) Baukastensatz und Verfahren zum Herstellen eines Luftmassenmessers für Kraftwagen und Verfahren zum Herstellen eines Kraftwagens
DE10139933A1 (de) Massenstrommesser
DE102011006528B4 (de) Luftströmungsmessvorrichtung
DE102009054082A1 (de) Messvorrichtung, Frischluftkanal, Frischluftanlage und Strömungsführungselement

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R118 Application deemed withdrawn due to claim for domestic priority