DE102013114786A1 - Verfahren und Vorrichtung zur Biogasgewinnung - Google Patents

Verfahren und Vorrichtung zur Biogasgewinnung Download PDF

Info

Publication number
DE102013114786A1
DE102013114786A1 DE102013114786.0A DE102013114786A DE102013114786A1 DE 102013114786 A1 DE102013114786 A1 DE 102013114786A1 DE 102013114786 A DE102013114786 A DE 102013114786A DE 102013114786 A1 DE102013114786 A1 DE 102013114786A1
Authority
DE
Germany
Prior art keywords
fermentation
substrate
fermentation tank
nitrogen
biogas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102013114786.0A
Other languages
English (en)
Inventor
Alfons Himmelstoß
Roland Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AEV ENERGY GmbH
Original Assignee
AEV ENERGY GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AEV ENERGY GmbH filed Critical AEV ENERGY GmbH
Priority to DE102013114786.0A priority Critical patent/DE102013114786A1/de
Priority to PCT/DE2014/100462 priority patent/WO2015096832A1/de
Priority to EP14838913.3A priority patent/EP3087171A1/de
Publication of DE102013114786A1 publication Critical patent/DE102013114786A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/26Conditioning fluids entering or exiting the reaction vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/16Screw conveyor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/22Settling tanks; Sedimentation by gravity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/24Heat exchange systems, e.g. heat jackets or outer envelopes inside the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/04Phase separators; Separation of non fermentable material; Fractionation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/12Purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Biogaserzeugung und eine Biogasanlage (1) zur Nassvergärung unter Einsatz von stickstoffreichem, störstoffbeladenem Eingangssubstrat (3) mit einer Ammonium-Stickstoffkonzentration von mehr als 5 kg NH4-N/m3, wobei eine erste Prozessstufe (2) zur Störstoffabscheidung und eine zweite Prozessstufe (12) der kontinuierlichen Essigsäure- und Methanbildung bei einer im Wesentlichen stabilen Temperatur im psychrophilen Bereich vorgesehen sind. Die Erfindung betrifft weiterhin einen Gärbehälter (5, 10, 18) einer Biogasanlage (1), wobei der Gärbehälter (5, 10, 18) eine vertikal angeordnete, mit einem rotatorischen Antrieb versehene Schnecke (25) aufweist, die in einem beidseitig offenen Rohr (26) läuft und das Rohr (26) im Wesentlichen ausfüllt, wobei das Rohr (26) von unterhalb des Substratniveaus bis oberhalb des Boden (22) des Gärbehälters (5, 10, 18) reicht und mit dem Gärbehälter (5, 10, 18) fest verbunden ist.

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Biogasgewinnung durch die Vergärung von protein- und stickstoffreichem, störstoffhaltigem Eingangssubstrat. Es hat sich gezeigt, dass derartige Substrate in mehrfacher Hinsicht problematisch für die Vergärung in einer Biogasanlage sind. Der hohe Stickstoffgehalt, als Ammoniumstickstoff vorliegend, führt zu einer Hemmung der Methanbildung. Dieses Problem verschärft sich insbesondere dann, wenn wegen des hohen Trockensubstanzgehalts zusätzliche Flüssigkeit zur Vergärung zugegeben werden muss, um den Prozess ordnungsgemäß führen und das Substrat rühren zu können. Eine Zugabe von Frischwasser verbietet sich sowohl wegen der hierfür anfallenden Kosten, als auch wegen der starken Zunahme des Volumens des Gärprodukts und der damit verbundenen Aufwendungen für dessen Lagerung und Transport. Deshalb wird in der Praxis eine Separation des Gärprodukts in eine trockensubstanzreiche und eine trockensubstanzarme Fraktion vorgenommen. Die trockensubstanzarme Fraktion wird dann als Prozessflüssigkeiten dem Prozess wieder zugeführt und am Beginn des Gärprozesses, beispielsweise in einer Vorgrube, dem Eingangssubstrat zugemischt. Das hat jedoch zur Folge, dass die Prozessflüssigkeit immer stärker mit Ammonium angereichert wird, was dann zu der oben erwähnten Hemmung führt.
  • Eine Lösung hierfür bietet die Druckschrift DE 10 2007 059 084 A1 , nach der der Gehalt an Ammoniumstickstoff im Gärsubstrat dadurch kontrolliert werden soll, dass zusätzlich stickstoffarme Substrate zugegeben werden und weiterhin die Prozessflüssigkeit mittels eines Umkehrosmoseverfahrens von dem Ammoniumstickstoff teilweise befreit wird. Hierzu ist aber stets ein weiteres Substrat, beispielsweise Bioabfall, erforderlich. Zudem stellt die Umkehrosmose ein teures und wartungsintensives Verfahren dar.
  • Ein anderes Verfahren, das nach dem Stand der Technik vielfach zur Absenkung des Stickstoffgehalts in der Prozessflüssigkeit Einsatz findet, ist die NH3-Strippung. Exemplarisch sei hier die Druckschrift DD 271 896 A5 genannt. Doch dieses Verfahren ist ebenfalls aufwändig und teuer.
  • Weiterhin werden die im Substrat gebundenen Mineralstoffe während der Vergärung frei und sinken zum Boden des Gärbehälters. Dort bilden sie ein Sediment, dessen Schicht immer weiter anwächst, bis es die Funktion der Anlage stört und insbesondere Rühraggregate und Öffnungen für den Flüssigkeitsaustausch zwischen den Anlagenkomponenten behindert. Dann ist es erforderlich, die Sedimentschicht, die teilweise sehr hart wird, in anderen Fällen einen Schlamm bildet, zu beseitigen. Diese Aufgabe ist zudem gefährlich, da der Sedimentschlamm auch bei vollständigem Entleeren der Anlage weiterhin Biogas abgibt, das lebensgefährlich ist, wenn es giftige Bestandteile aufweist.
  • Ein weiteres Problem bei der Verarbeitung von Eingangssubstrat mit hohem Trockensubstanzgehalt oder zähflüssigen Schlachthofabfällen zeigt sich insbesondere am Beginn des Prozesses, wenn der Trockensubstanzgehalt noch nicht durch die Zugabe von Prozessflüssigkeit eingestellt wurde. In dem Moment ist es besonders schwierig, das Substrat zu rühren, da sehr viel Rührenergie eingebracht werden muss, ohne dass dabei sichergestellt werden kann, dass in einigem Abstand vom Rührwerk immer noch ein Rühreffekt auftritt. Das führt insbesondere dazu, dass sich Totzonen im entsprechenden Behälter bilden, in denen das Substrat altert und sich festsetzt. Demgemäß vermindert sich der praktisch nutzbare Behälterinhalt oder es kommt sogar zu Funktionsstörungen.
  • Eine Lösung hierfür bietet die Druckschrift DE 20 2007 017 166 U1 , wonach Substrat mit hohem Trockensubstanzgehalt zunächst mittels einer Schnecke eingebracht und in dem Gärbehälter durch eine frei im Gärbehälter angeordnete seelenlose Schnecke gerührt wird. Allerdings ist auch durch diese Schnecke ein sicheres Umwälzen des Gärsubstrats nicht gesichert, da diese allein in dem von der Schnecke überstrichenen Bereich wirkt. Zudem handelt es sich bei der aufgezeigten Lösung um eine sehr kleine Biogasanlage. Eine Skalierung in den großtechnischen Bereich scheint nicht möglich.
  • Die nach dem Stand der Technik bekannten Lösungen sind nicht geeignet, die Vergärung von Substraten mit hohem Stickstoff- und Feststoffgehalt zum Zweck der Biogaserzeugung zu ermöglichen.
  • Der Erfindung liegt daher die Aufgabe zu Grunde, ein Verfahren und eine Vorrichtung zur Biogaserzeugung anzubieten, mit der stickstoff- und feststoffreiche Substrate kostengünstig vergoren werden können, wobei der Prozess stabil und sicher ablaufen und ein hochwertiges Biogas erzeugt werden soll.
  • Die Aufgabe der Erfindung wird gelöst durch ein Verfahren zur Biogaserzeugung in Nassvergärung unter Einsatz von stickstoffreichem, störstoffbeladenem Substrat einer Ammonium-Stickstoffkonzentration von mehr als 5 kg NH4-N/m3, eine erste Prozessstufe zur Störstoffabscheidung in einem Gärbehälter und eine zweite Prozessstufe der kontinuierlichen Essigsäure- und Methanbildung aus einem Gärsubstrat bei einer im Wesentlichen stabilen Temperatur im psychrophilen Bereich in einem Gärbehälter vorgesehen sind.
  • Die erfindungsgemäße Verfahrensführung führt dazu, dass ein verminderter Gehalt an Ammoniak (NH3) im Gärsubstrat vorliegt. Ammoniak führt zu einer Hemmung der Aktivität der an der Methanbildung beteiligten Mikroorganismen. Insbesondere kommt es neben der Prozesshemmung zu einem geringeren CSB-Abbau, geringerer Biogasproduktion, Geruchsbildung und geringerer Biogasqualität. Besonders bei der Vergärung von eiweißhaltigen Substraten, z.B. Schlachthofabfällen, wird durch die Aktivität proteolytischer Bakterien Ammoniumstickstoff freigesetzt, was zu den vorgenannten Wirkungen führen kann. Inwieweit jedoch tatsächlich hemmendes Ammoniak (NH3) im Prozess zur Wirkung gelangt, hängt stark von der Prozesstemperatur und dem pH-Wert, seinerseits temperaturabhängig, ab. Dabei nimmt die Hemmwirkung bei höheren Temperaturen und höheren pH-Werten zu, da sich das Ammonium-Ammoniak-Gleichgewicht zugunsten des Ammoniaks verschiebt. Zudem steigt auch der pH-Wert mit steigernder Temperatur an. Mit der zweiten Prozessstufe, der Essigsäure- und Methanbildung, bei einer im Wesentlichen stabilen Temperatur im psychrophilen Bereich wird eine Verschiebung des Ammonium-Ammoniak-Gleichgewichts in der Weise erreicht, dass wenig Ammoniak im Gärsubstrat vorliegt. Hierzu trägt auch der durch die niedrige Temperatur hervorgerufenen niedrige pH-Wert bei.
  • Es kann sich bei dem Gärbehälter, der erfindungsgemäß zur Durchführung der ersten und der zweiten Prozessstufe vorgesehen ist, um ein und denselben Gärbehälter handeln oder aber um unterschiedliche Gärbehälter in denen eine oder mehrere der vorgesehenen Prozessstufen ablaufen. Alternativ zu einer getrennten Prozessführung in unterschiedlichen Gärbehältern ist es somit auch vorgesehen, die erste und die zweite Prozessstufe gemeinsam in einem Gärbehälter ablaufen zu lassen. Dieser wird bei einer im Wesentlichen stabilen Temperatur im psychrophilen Bereich betrieben und umfasst in der bevorzugten Ausgestaltung alle Merkmale beider Gärbehälter der Variante mit getrennt ablaufenden Prozessstufen.
  • Ein störstoffbeladenes Substrat ist dadurch charakterisiert, dass zur Sedimentierung neigende Feststoffpartikel ausfallen. Dies erfolgt vielfach aber erst während des Abbaus der Substrate, weil die Störstoffe in das Substrat fest eingebunden sind. Erst beim beginnenden Abbau, vor allem der Hydrolyse, bei der langkettige Verbindungen aufgebrochen werden, fallen sie Störstoffe aus und setzten sich im Gärbehälter ab. Sehr häufig tritt das Problem bei Hühnerkot auf, der durch die Fütterung der Tiere Mineralstoffe aufweist. Beispielsweise diese mineralischen Stoffe sind dann als Störstoffe anzusehen. Sie fallen bei einer Prozessführung nach dem Stand der Technik erst im Laufe der Vergärung aus und stören den Prozess durch den Aufbau von Schlammschichten oder auch teilweise sehr harter, nur schwer entfernbarer und stetig wachsender Sedimentschichten. In Schlachthofabfällen hingegen können beispielsweise Knochen enthalten sein, die ebenfalls den Prozess in der Biogasanlage zu stören vermögen, wenn auch auf andere Weise. Sie können sich in Schiebern und Pumpen festsetzen und deren Funktion behindern.
  • Der Einsatz von Substraten mit hohem Trockensubstanzgehalt von mehr als 10 % ist ebenfalls möglich.
  • Besonders günstig ist es, wenn die erste Prozessstufe bei einer im Wesentlichen stabilen Temperatur im mesophilen oder thermophilen Bereich einem ersten Gärbehälter und die zweite Prozessstufe von der ersten Prozessstufe räumlich getrennt in einem zweiten Gärbehälter abläuft. Durch die hohe Temperatur, bei der die erste Prozessstufe abläuft, wird die Störstoffabscheidung beschleunigt, so dass besonders viele Störstoffe innerhalb kurzer Zeit abgeschieden werden können. So entsteht ein pumpfähiges Material, das Pumpen, Schieber und andere Aggregate nicht beeinträchtigt. Zudem wird der Ausfall von sedimentierenden Störstoffen in den nachfolgenden Prozessstufen stark vermindert. Abgesehen von der Störstoffabscheidung in der ersten Prozessstufe kann diese zugleich auch dazu genutzt werden, die erste Phase der Biogasbildung, als Hydrolyse bezeichnet, ablaufen zu lassen. Dieser Prozess befördert außerdem die Abscheidung von Störstoffen, da mit fortschreitender Hydrolysierung die Viskosität des Gärsubstrats sinkt und damit Störstoffe bereits in dieser Phase leichter ausfallen und nach unten absinken.
  • Besonders wichtig zur Verwirklichung der erfindungsgemäßen Vorteile sind hingegen die Methanbildung und der hierzu erforderliche Abbau der organischen Masse bei im Vergleich zu Biogasanlagen nach dem Stand der Technik sehr niedrigen Temperaturen. Bei diesen geringen Temperaturen bleibt der pH-Wert niedrig und damit auch die Ammoniumbildung gering. Zudem bleibt mehr Kohlendioxid im Substrat gelöst. In dessen Folge steigt der Methangehalt im gebildeten Biogas an.
  • Durch die niedrigen Temperaturen beim Methanbildungsprozess kann damit Gärsubstrat verarbeitet werden, für das ein vergleichsweise hoher Gehalt an Stickstoff charakteristisch ist und der sonst zu Prozessstörungen führen würde. Es muss also, um den Gärprozess stabil und ohne Hemmung ablaufen zu lassen, weniger Prozessflüssigkeit zur Verdünnung zugeführt werden und auch sonstige Maßnahmen zur Verminderung des Ammoniumgehalts können unterbleiben. Dadurch wird ein hochwertiges, energiereiches Biogas erzeugt und zugleich verringern sich die Kosten der Verfahrensführung. Biogas mit hohem Methangehalt lässt sich besonders günstig zur Einspeisung als Biomethan in eine Erdgasleitung verwenden, da der Aufwand zur Aufbereitung auf Erdgasqualität entsprechend geringer ist und weniger Kohlendioxid abgeschieden werden muss.
  • Die vorgenannten Vorteile verwirklicht auch die Verfahrensvariante, bei der beide Prozessstufen in einem einzigen Gärbehälter parallel ablaufen und der bei niedriger Temperatur (psychrophil) betrieben wird.
  • Vorteilhafter Weise läuft die erste Prozessstufe bei einer im Wesentlichen stabilen Temperatur zwischen 35 und 55 °C ab und die zweite Phase bei einer im Wesentlichen stabilen Temperatur zwischen 15 und 25 °C. Besonders günstig erscheint dabei für die erste Prozessstufe eine Temperatur in dem Bereich zwischen 45 und 50 °C.
  • Es hat sich zudem als günstig erwiesen, wenn während der ersten Prozessstufe der Austrag sedimentierender oder sedimentierter Störstoffe vorgesehen ist. Damit werden diese aus dem Prozess entfernt, ehe das Gärsubstrat durch Pumpen, Schieber, Rohrleitungen und andere Anlagenteile geführt wird. Der Austrag kann durch übliche Elemente, wie sie nach dem Stand der Technik bekannt sind, erfolgen. Dies sind beispielsweise ein Störstoffablass an einer Vertiefung im Boden des Gärbehälters oder eine Fördereinrichtung, beispielsweise eine Förderschnecke, um die abgesetzten Störstoffe nach außen zu befördern.
  • Vorteilhaft ist es, wenn die Störstoffe aus wenigstens einer streifenförmigen Vertiefung mit radialer Ausrichtung im Boden des Gärbehälters ausgetragen werden, in der sich die Störstoffe sammeln, wenn diese aus dem Gärsubstrat ausfallen, darin absinken und das Gärsubstrat durch ein oder mehrere Rührwerke in eine Rotation um die Vertikalachse des Gärbehälters versetzt wird. Die streifenförmigen Vertiefungen bilden einen Ruhezone, in die die beim Rühren, beispielsweise durch Tauchmotorrührwerke, entstehende Strömung nicht hineingelangt, so dass sich dort die Störstoff in Ruhe absetzen könne, ohne immer wieder aufgewirbelt zu werden. Die vorgeschlagene Lösung bietet vor allem auch Vorteile gegenüber der nach dem Stand der Technik bekannten Lösung mit einem im Gärbehälter installierten Bodenräumer, der unzugänglich für eine Wartung und Kontrolle ist und in der Praxis regelmäßig nach verhältnismäßig kurzer Betriebszeit ausfällt.
  • Besonders günstig ist es dabei, wenn der Austrag mittels einer Austragsschnecke erfolgt, die von der Vertiefung aus durch eine Wand des Gärbehälters nach außen ragt. Eine Austragsschnecke erfasst die Störstoffe sicher und arbeitet energiesparend und wartungsarm. Die Führung der Schnecke durch die Wand führt weiterhin dazu, dass der Aufbau der Behälterdecke unabhängig von einer Durchführung durch die Schnecke gewählt werden kann. Insbesondere kann auch ein integriertes Gaslager mit Foliendach vorgesehen werden, bei dem eine Durchführung und Abdichtung schwierig oder unmöglich ist.
  • Weiter Vorteile ergeben sich, wenn die erste Prozessstufe zur Störstoffabscheidung in einem Störstoffabscheider ausgeführt wird. Dieser ist durch seinen Aufbau bedingt besonders geeignet, Störstoffe abzuscheiden. Aus dem Stand der Technik sind Störstoffabscheider beispielsweise aus der Bioabfallaufbereitung zur Vorbehandlung des Bioabfalls bekannt. Dort sind Störstoffe abzuscheiden, damit der Bioabfall in einer Biogasanlage verarbeitet werden kann. Hierzu wird der Bioabfall in der Regel mit Flüssigkeit aufgeschlämmt.
  • Ein Störstoffabscheider, wie er nach der vorliegenden Erfindung vorgesehen ist, kann aber besonders vorteilhaft mit einer Schnecke ausgestattet sein, wie sie zum Rühren eines Gärbehälters nach der Erfindung vorgeschlagen wird. Dabei entfällt das Aufschlämmen, da auch Substrate mit hohem Trockensubstanzgehalt verarbeitet werden können.
  • Vorteile resultieren weiterhin aus einer Separation des ausgegorenen Gärsubstrats in eine trockensubstanzreiche und eine trockensubstanzarme Fraktion. So kann die trockensubstanzreiche Fraktion bei vermindertem Transportaufwand als Dünger abgegeben oder auch einer Kompostierung zugeführt werden. Demgegenüber wird die trockensubstanzarme Fraktion direkt als Prozessflüssigkeit zur Biogasanlage zurückgeführt, um besonders vorteilhafter Weise mit dem trockensubstanzreichen Substrat vermischt zu werden, was beispielsweise in einer Vorgrube erfolgen kann. In diesem Fall ist eine Rückführung der trockensubstanzarmen Fraktion als Prozessflüssigkeit zur Verwendung bei der ersten Prozessstufe vorgesehen.
  • Besonders günstig ist es, wenn bei der Rückführung der trockensubstanzarmen Fraktion mittels eines Stickstoffreaktors eine Verringerung des Gehalts an Ammoniumstickstoff in der Prozessflüssigkeit erfolgt. Dabei kann der Stickstoffreaktor an jeder Stelle zwischen dem Separator und der Vorgrube bzw. der ersten Prozessstufe angeordnet sein. Der Vorteil liegt vor allem in der Gewinnung einer stickstoffarmen Prozessflüssigkeit, so dass das eingangs erwähnte Problem einer immer stärkeren Anreicherung von Stickstoff in der Prozessflüssigkeit vermieden wird und eine hierdurch verursachte Hemmung der Biogasbildung ausgeschlossen werden kann.
  • Damit ist der Einsatz von rückgeführter Prozessflüssigkeit im Prozess nicht dadurch limitiert, dass eine zu hohe Fracht an Ammoniumstickstoff eingetragen wird, wobei der Ammoniak (NH3) zu einer Hemmung der Aktivität der an der Methanbildung beteiligten Mikroorganismen führen würde. Insbesondere kommt es neben der Prozesshemmung zu einem geringeren CSB-Abbau, geringerer Biogasproduktion, Geruchsbildung und geringerer Biogasqualität. Besonders bei der Vergärung von eiweißhaltigen Substraten, z.B. Schlachthofabfällen, wird durch die Aktivität proteolytischer Bakterien Ammoniumstickstoff freigesetzt, was zu den vorgenannten Wirkungen führen kann. Inwieweit jedoch tatsächlich hemmendes Ammoniak (NH3) im Prozess zur Wirkung gelangt, hängt stark von der Prozesstemperatur und dem pH-Wert, seinerseits temperaturabhängig, ab. Dabei nimmt die Hemmwirkung bei höheren Temperaturen und höheren pH-Werten zu, da sich das Ammonim-Ammoniak-Gleichgewicht zugunsten des Ammoniaks verschiebt. Zudem steigt auch der pH-Wert mit steigernder Temperatur an.
  • Es hat sich als vorteilhaft erwiesen wenn der Stickstoffreaktor diskontinuierlich mit den nachfolgend angegebenen Prozessschritten betrieben wird:
    • • Beschickung mit der trockensubstanzarmen Fraktion aus der Separation und deren Belüftung, wobei dieses Material durch Belüftung mit Sauerstoff angereichert wird;
    • • Belüftung und Nitrifikation mit Beheizung oder Kühlung, je nach Substrattemperatur und Umgebungsbedingungen, also von Beheizung für den Prozess der Stickstoffentfernung zu kaltem Substrat oder Kühlung von für den Prozess der Stickstoffentfernung zu warmem Substrat
    • • Rühren ohne Belüftung zur Denitrifikation,
    • • Absetzen von sinkfähigen Feststoffen, um eine Separation im Sinne einer Fest-Flüssig-Trennung zu erreichen, und
    • • Entnahme der behandelten Prozessflüssigkeit, insbesondere zur Rückführung zu einer Vorgrube oder den ersten Gärbehälter, wo die Prozessflüssigkeit dazu dient, den Trockensubstanzgehalt des Gärsubstrats einzustellen.
  • Es hat sich hierbei vor allen Dingen gezeigt, dass der Einsatz einer einfachen Kläranlage mit vorstehend beschriebenem Ablauf der Prozessschritte sehr kostengünstig arbeiten kann, da die nach dem Stand der Technik vorgesehenen Verfahren zur Entfernung des Stickstoffs aus dem Substrat allein beim Betrieb etwa doppelt so hohe Kosten verursachen. Es hat sich weiterhin als günstig erwiesen, wenn zwei Stickstoffreaktoren parallel betrieben werden, indem jeweils in einem der beiden Stickstoffreaktoren die Prozessschritte ablaufen, der andere währenddessen entleert und hierauf neu befüllt wird. Dann kann die Stickstoffentfernung quasikontinuierlich arbeiten.
  • Alternativ ist vorgesehen, dass der Stickstoffreaktor kontinuierlich betrieben wird und in diesem die Prozessschritte gleichzeitig und örtlich getrennt an unterschiedlichen Orten im Stickstoffreaktor ablaufen. Somit sieht die Erfindung auch einen vollständig kontinuierlichen Betrieb vor. Dazu ist ein langgestreckter Behälter als erfindungsgemäßer Stickstoffreaktor vorgesehen, der von der trockensubstanzarmen Fraktion durchströmt wird. An den vorgesehenen Stationen in dem Stickstoffreaktor werden, ebenso wie bei der diskontinuierlichen Variante, die entsprechenden Prozessschritte realisiert.
  • Besonders günstig ist es, wenn während der Prozessphase des Rührens ohne Belüftung eine Kohlenstoffquelle zugesetzt wird. Diese ist vorteilhaft, da bei der im Fall der nachgeschalteten Denitrifikation bereits erfolgten Nitrifikation im Vorfeld schon der größte Teil des in der feststoffarmen Fraktion befindlichen Kohlenstoffs abgebaut wird. Damit die Denitrifikation dennoch erfolgen kann, wird die externe Zugabe einer Kohlenstoffquelle nötig, die den Bakterien als Nahrungsquelle dient. Dieser Nährstoff muss gezielt dosiert werden, wobei zumeist der im Wasser befindliche Nitratgehalt eine geeignete Regelgröße ist.
  • Vorteile ergeben sich weiterhin bei der Entnahme der behandelten Prozessflüssigkeit, wenn dabei stickstoffarmes Permeat getrennt von einem Belebtschlamm entnommen wird, wobei das Permeat einer Vorgrube zum Anmischen des Eingangssubstrats oder einem Störstoffabscheider zugeführt wird und der Belebtschlamm wenigstens einem der Gärbehälter oder dem Störstoffabscheider zugeführt wird. So wird neben der Gewinnung von hochwertiger Prozessflüssigkeit zusätzliches Gärsubstrats für die Biogaserzeugung geschaffen und die Biogasproduktion gesteigert. Der Belebtschlamm führt außerdem zu einer schnelleren Aktivierung der frisch eingebrachten Substrate, so dass eine noch schneller Freisetzung von Störstoffen erfolgt.
  • Besonders bevorzugt ist ein Verfahrensschritt, bei dem das Gärsubstrat der ersten Prozessstufe der Störstoffabtrennung durch eine vertikal angeordnete, mit einem rotatorischen Antrieb versehene Schnecke umgewälzt wird, wobei die Schnecke in einem beidseitig offenen Rohr läuft und das Rohr im Wesentlichen ausfüllt. Das Rohr reicht von unterhalb des Gärsubstratniveaus bis oberhalb des Bodens des Gärbehälters und ist mit dem Gärbehälter fest verbunden. Durch das Schneckenrührwerk können auch hochviskose Gärsubstrate mit hohem Gehalt an Trockensubstanz sicher und unter verhältnismäßig geringem Energieeinsatz gerührt bzw. umgewälzt werden, ohne dass Totzonen im Gärbehälter entstehen, in denen ein Gärsubstrat permanent verbleibt, ohne umgewälzt zu werden. Das Schneckenrührwerk presst nämlich zwangsweise das Gärsubstrat durch das Rohr. Wird das Gärsubstrat unten aus dem Rohr herausgedrückt, steigt der Druck im unteren Teil des Gärbehälters an, so dass es wiederum in dem Zwischenraum zwischen Rohr und Außenwand des Gärbehälters nach oben geschoben wird, um wieder zu der Schnecke zu gelangen.
  • Für die Schnecke ist Links- und Rechtslauf vorgesehen. Das führt beispielsweise dazu, dass sich diese bei einer Blockierung durch einen zu großen Störstoff selbsttätig wieder freiarbeiten kann.
  • Die Erfindung wird weiterhin gelöst durch eine Biogasanlage zur Nassvergärung von stickstoffreichem, störstoffbeladenem Eingangssubstrat bei dem zur Sedimentierung neigende Feststoffpartikel ausfallen, mit einer Ammonium-Stickstoffkonzentration von mehr als 5 kg NH4-N/m3, wobei wenigstens ein Gärbehälter zur Durchführung einer ersten Prozessstufe der Störstoffabtrennung aus dem Gärsubstrat und zur Durchführung einer zweiten Prozessstufe der Essigsäurebildung und der Methanbildung zum Betrieb bei einer im Wesentlichen stabilen Temperatur im psychrophilen Bereich und eine Austragvorrichtung zum Austrag sedimentierender oder sedimentierter Störstoffe vorgesehen sind. Es ist, entsprechend der Darstellung zum erfindungsgemäßen Verfahren, ein oder mehrere Gärbehälter vorgesehen, so dass die erste und die zweite Prozessstufe einem Gärbehälter oder verteilt auf mehrere Gärbehälter ablaufen. Der erste Gärbehälter ist insbesondere geeignet, in diesem die Hydrolysephase, die Vorversäuerung des Gärsubstrats unter Abbau langkettiger Kohlenwasserstoffe, und/oder den Störstoffausfall und Austrag ablaufen zu lassen. Gärsubstrat mit hohem Trockensubstanzgehalt von mehr als 10 % kann gut verarbeitet werden.
  • Vorteilhaft ist es, wenn wenigstens eine streifenförmige Vertiefung mit radialer Ausrichtung im Boden des Gärbehälters vorgesehen ist, in die die Austragvorrichtung in der Weise hineinragt, dass angesammelte Störstoffe aufnehmbar sind. Wie oben bei der Beschreibung des erfindungsgemäßen Verfahrens dargestellt, lassen sich hierdurch besonders günstig Störstoffe austragen, indem auf teure und störanfällige technische Einrichtungen verzichtet werden kann.
  • Wenn für die Biogasanlage ein gesonderter Störstoffabscheider vorgesehen ist, können Störstoffe besonders effizient aus dem Gärsubstrat entfernt werden. Dieser ist bevorzugt mit einer erfindungsgemäßen Schnecke ausgestattet, mit der das Gärsubstrat sicher und energiesparend umgewälzt wird, auch wenn es eine hohe Viskosität aufweist.
  • Vorteilhaft ist es weiterhin, wenn ein erster Gärbehälter zum Betrieb bei einer im Wesentlichen stabilen Temperatur im mesophilen oder thermophilen Bereich zur Durchführung der ersten Prozessstufe und ein zweiter Gärbehälter zur Durchführung der zweiten Prozessstufe vorgesehen sind. Durch die Trennung der Prozessstufen ist die erste Prozessstufe besonders effizient durchführbar, da durch die mesophile oder thermophile Temperatur ein schnellerer Abbau des Gärsubstrats in der Weise erfolgt, dass Störstoffe schnell freigesetzt und abgeschieden werden können.
  • Zudem hat es sich als günstig erwiesen, wenn ein Separator zur Separation des ausgegorenen Gärsubstrats in eine trockensubstanzreiche Fraktion und eine trockensubstanzarme Fraktion und eine Einrichtung zur Rückführung der trockensubstanzarmen Fraktion als Prozessflüssigkeit zur Verwendung in dem ersten Gärbehälter vorgesehen sind. Wenn es auch möglich ist, einen Gärrest unmittelbar als Prozessflüssigkeit einzusetzen, vor allem wenn dieser dünnflüssig und arm an Trockensubstanz ist, so resultieren aus einer Separation Vorteile. Die Kapazität der Anlage wird besser genutzt, da Trockensubstanz nur in geringem Umfang doppelt durch die Anlage geführt wird. Zudem kann separierte Trockensubstanz als Dünger ausgebracht oder weiterverarbeitet, z.B. getrocknet werden.
  • Besonders günstig ist es jedoch, wenn die Einrichtung zur Rückführung der trockensubstanzarmen Fraktion einen Stickstoffreaktor aufweist, der den Stickstoffgehalt in der Prozessflüssigkeit senkt. Damit ist deren Einsatz im Prozess nicht dadurch limitiert, dass eine zu hohe Fracht an Ammoniumstickstoff eingetragen wird, wobei der Ammoniak (NH3) zu einer Hemmung der Aktivität der an der Methanbildung beteiligten Mikroorganismen führen würde, wie eingangs bei der Beschreibung des erfindungsgemäßen Verfahrens beschrieben. Es ergeben sich also diesbezüglich Vorteile in zweifacher Hinsicht, neben der günstigen Verfahrensführung, die die nachteilige Wirkung des Ammoniaks vermeidet, wird zusätzlich der Eintrag weiteren Ammoniumstickstoffs vermieden, indem dieser aus der Prozessflüssigkeit entfernt bzw. sein Gehalt gesenkt wird.
  • Die Erfindung wird weiterhin gelöst durch einen Gärbehälter zur Durchführung einer Prozessstufe der Störstoffabtrennung aus dem Gärsubstrat, wobei der Gärbehälter eine vertikal angeordnete, mit einem rotatorischen Antrieb versehene Schnecke aufweist, die in einem beidseitig offenen Rohr läuft und das Rohr im Wesentlichen ausfüllt. Das Rohr reicht von unterhalb des Substratniveaus bis oberhalb des Bodens des Gärbehälters und ist mit dem Gärbehälter fest verbunden. Schnecke und Rohr bilden zusammen ein Schneckenrührwerk, das die erfindungsgemäßen Vorteile verwirklicht, wie vorstehend zum erfindungsgemäßen Verfahren beschrieben.
  • Besonders günstig ist es, wenn die Schnecke, zusammen mit dem Rohr, zentral im Gärbehälter angeordnet ist. Dann kann das nach oben zurückströmende Gärsubstrat allseitig in gleicher Menge wieder zum Eingang der Schnecke geführt werden. Diese Anordnung ist besonders vorteilhaft, wenn das Rohr doppelwandig ausgeführt ist, zwischen den beiden Wänden ein Wärmeträgermedium zirkuliert und das Rohr damit der Beheizung des Gärsubstrats dient. Das Wärmeträgermedium kann dabei zwischen den beiden Wänden des Rohres frei zirkulieren, in Rohrschlangen geführt werden oder auf andere geeignete Weise eingebracht werden. Mit einer solchen Art der Beheizung sind zahlreiche Vorteile verbunden. Zunächst bietet diese Lösung eine sehr große Heizfläche, so dass der Wärmeübergang in das Gärsubstrat allein hierdurch sehr gut ist. Weiterhin bildet sich durch die Zwangsführung des Gärsubstrats mittels Schneckenrührwerk keine Grenzschicht an der Rohrwand aus und das Substrat wird bei sehr gutem Wärmeübergang optimal aufgewärmt. Ein weiterer Vorteil besteht darin, dass durch das ständige Vorbeiführen des Gärsubstrats am Rohr, vor allem in dessen Innerem, im Wirkungsbereich der Schnecke, aber auch an der äußeren Wand des Rohrs, die Oberfläche stetig von anhaftendem Gärsubstrat befreit wird. Dadurch kann mit höherer Vorlauftemperatur geheizt werden, ohne dass ein Anbacken von Gärsubstrat, wie dies bei herkömmlichen Heizungen bei Biogasanlagen häufig der Fall ist, zu befürchten wäre.
  • Als vorteilhaft hat es sich erwiesen, wenn der Boden des Gärbehälters trichterförmig ausgebildet ist und im Zentrum des Trichters eine Einrichtung zum Austrag von sedimentierenden oder sedimentierten Stoffen vorgesehen ist. In dem Fall sammeln sich die Störstoffe im Zentrum und können von dort mit einer geeigneten Einrichtung aus dem Gärbehälter entfernt werden.
  • Dabei ist es besonders günstig, wenn die Einrichtung zum Austrag von sedimentierenden oder sedimentierten Stoffen als Störstoffablass ausführt ist. Ein solcher Störstoffablass ist kostengünstiger und weniger verschleißanfällig als andere Einrichtungen, beispielsweise Austragsschnecken. Der Störstoffablass muss nur regelmäßig betätigt werden, damit sich die Sedimente nicht verhärten.
  • Weitere Einzelheiten und Vorteile der Erfindung sind den nachfolgend dargestellten Ausführungsbeispielen zu entnehmen. Es zeigen:
  • 1: schematisch eine Ausführungsform einer erfindungsgemäßen Biogaserzeugung mit einer ersten Prozessstufe zur Störstoffabscheidung;
  • 2: schematisch eine weitere Ausführungsform einer erfindungsgemäßen Biogasanlage zu Durchführung des erfindungsgemäßen Verfahrens zu Biogasbildung;
  • 3: schematisch ein Detail der erfindungsgemäßen Biogasanlage im Schnitt;
  • 4: schematisch eine weitere Ausführungsform einer erfindungsgemäßen Biogasanlage zu Durchführung des erfindungsgemäßen Verfahrens zu Biogasbildung;
  • 5: schematisch eine Schnittdarstellung einer Ausführungsform eines erfindungsgemäßen Gärbehälters mit Schneckenrührwerk;
  • 6: schematisch eine Draufsicht des Gärbehälters mit Schneckenrührwerk;
  • 7: schematisch eine Darstellung einer Ausführungsform des erfindungsgemäßen Verfahrens bzw. der hierfür erforderlichen Vorrichtung zur Stickstoffentfernung aus dem bereits vergorenen Gärsubstrat;
  • 8: schematisch diskontinuierliche Prozessschritte einer Vorrichtung zur Stickstoffentfernung als Verfahrensschaubild;
  • 9: schematisch kontinuierliche Prozessschritte einer Vorrichtung zur Stickstoffentfernung als Verfahrensschaubild;
  • 10: den Temperatureinfluss auf die Gasbildung im Biogasprozess in einem Diagramm;
  • 11: den Einfluss des pH-Wertes im Bereich 5 bis 12 auf das Verhältnis der Konzentrationen von Ammonium (NH4) und Ammoniak (NH3) im Biogasprozess in einem Diagramm;
  • 12: den Einfluss des pH-Wertes im Bereich 6 bis 8 auf das Verhältnis der Konzentrationen von Ammonium-Stickstoff (NH4-N) und undissoziiertem Ammoniak (NH3) im Biogasprozess in einem Diagramm und
  • 13: den Einfluss von Ammoniak (NH3) auf die Hemmung des Biogasprozesses in einem Diagramm.
  • 1 zeigt schematisch einen Verfahrensablauf einer erfindungsgemäßen Biogaserzeugung 1 mit einer ersten Prozessstufe 2 zur Störstoffabscheidung. In dieser ersten Prozessstufe 2 werden die vorgesehenen Eingangssubstrate 3, die viel Protein und/ oder viel Stickstoff enthalten, behandelt. Dabei handelt es sich insbesondere um Hühnertrockenkot, Fleisch, Schlachtabfälle, Innereien, Blut, Broiler- bzw. Hähnchenmist, Entenmist, Putenmist oder Geflügelmist. Dabei werden aus dem Eingangssubstrat 3 Störstoffe 4 wie zum Beispiel Sand oder Knochen abgeschieden, wobei sich auch eine Hydrolyse oder Vorversäuerung in dieser ersten Prozessstufe 2 vollziehen kann.
  • Die erste Prozessstufe 2 läuft in einem ersten Gärbehälter 5 ab, der bevorzugt einen integrierten Gasspeicher 6 für Biogas 11 aufweist. Die vorgesehene mittlere Verweilzeit des Gärsubstrats 7 in diesem Gärbehälter 5 beträgt in der bevorzugten Ausgestaltung etwa zehn Tage. Andere Verweilzeiten, die kürzer oder länger dauern, sind vorgesehen.
  • Die Abscheidung der Störstoffe 4 erfolgt in der Weise, dass das Gärsubstrat auf eine mesophile oder thermophile Temperatur aufgeheizt wird und bei dieser hohen Temperatur das Gärsubstrat 7 dünnflüssiger wird und die schwereren Störstoffe 4 leichter zum Boden 8, insbesondere in eine Vertiefung 45 sinken können. Zudem werden bei der Hydrolyse oder Vorversäuerung bereits langkettige Kohlenwasserstoffe aufgebrochen, wodurch sich die Fließfähigkeit des Gärsubstrats 7 erhöht und die Viskosität sinkt. Auch dieser Vorgang trägt dazu bei, dass Störstoffe 4 schneller zum Boden 8 des Gärbehälters 5 sinken.
  • Die Störstoffabscheidung wird in dieser ersten Prozessstufe 2 beschleunigt, indem erhöhte Temperaturen, zwischen 30 und 65 °C, bevorzugt zwischen 35 und 55 °C, besonders bevorzugt zwischen 45 und 50 °C, für den Prozessablauf stabil eingestellt werden. Die Pumpfähigkeit des Gärsubstrats 7 wird erhöht. Die zum Boden 8 bzw. in die Vertiefung 45 gesunkenen Störstoffe 4 werden durch eine Austragvorrichtung 9 entfernt.
  • Das störstoffarme Gärsubstrat 7 wird dann in einen zweiten Gärbehälter 10 gepumpt, in dem die Essigsäurephase und die Methanisierung erfolgen. Dies sind die letzten Stufen der Biogaserzeugung, da hierbei insbesondere das energiereiche Gas Methan als wichtiger Bestandteil des Biogases 11 entsteht.
  • Für ein qualitativ hochwertiges Biogas 11 ist es interessant, dass der Methangehalt hoch ist im Vergleich zu dem zweiten wichtigen Bestandteil, dem Kohlendioxid. Der Anteil an Kohlendioxid in Biogas 11 korreliert mit der Prozesstemperatur, so dass bei niedriger Prozesstemperatur der Kohlendioxidgehalt niedrig und der Methangehalt entsprechend hoch ist (vgl. 7). Ein solcher Prozess zur Biogasbildung wird als psychrophiler Prozess bezeichnet und läuft bei etwa 15 bis 25 °C ab.
  • Es hat sich weiterhin überraschend gezeigt, dass durch die niedrige Temperatur auch der Ammoniumgehalt im Gärsubstrat 7 sinkt. Weiterhin ist bei niedriger Temperatur die Löslichkeit für Kohlendioxid im Gärsubstrat 7 verbessert, was zusätzlich den Gehalt an Kohlendioxid im gebildeten Biogas 11 vermindert und außerdem den pH-Wert absenkt. Das hat zur Folge, dass bedingt durch die niedrigen Temperaturen mit höheren Stickstoffkonzentration im Gärsubstrat 7 gearbeitet werden kann und weniger Prozessflüssigkeit zugeführt werden muss, die ansonsten zur Verdünnung und damit Absenkung des Stickstoffgehaltes im Gärsubstrat 7 erforderlich wäre.
  • Nach der zweiten Prozessstufe 12 wird das vergorene Gärsubstrat 19 einer Separation 13 zugeführt und in eine trockensubstanzreiche Fraktion 14 und eine trockensubstanzarme Fraktion 15 getrennt. Die trockensubstanzarme Fraktion 15 wird als Prozessflüssigkeit 32 mit Hilfe einer Einrichtung 43 zur Rückführung der Prozessflüssigkeit 32 zum Beginn des Biogasprozesses geführt. Zu Einzelheiten hierzu vergleiche 5 und die zugehörige Beschreibung.
  • Das bei der Methanisierung entstehende Biogas 11 wird, gegebenenfalls nach entsprechender Gasreinigung 16, in einem Blockheizkraftwerk 17 in Kraft-Wärme-Kopplung genutzt. Andere Nutzungen, beispielsweise zur Einspeisung in das Gasnetz als Biomethan oder zur Nutzung in Kraftfahrzeugen, sind vorgesehen. Auch das wasserstoffreiche Gas aus der ersten Prozessstufe 2 kann bei entsprechender Eignung und/ oder Aufbereitung genutzt werden.
  • Prozessflüssigkeit 32 und/oder trockensubstanzarmer Gärrest 47, beispielsweise aus der Vergärung von Gülle oder flüssigem Bioabfall, wird dem ersten Gärbehälter 5 zugeführt, um dort den Trockensubstanzgehalt des Gärsubstrat 7 zu senken und/oder den Biogasprozess durch Zugabe aktiven Materials schneller zu starten und mit höherer Effektivität ablaufen zu lassen. Entsprechendes gilt für eine Zuführung von Prozessflüssigkeit 32 und/oder trockensubstanzarmem Gärrest 47 zum Gärbehälter 10, wo ebenfalls ein für den Biogasprozess optimaler Trockensubstanzgehalt eingestellt werden kann und der Biogasprozess eine höhere Effektivität erfährt.
  • 2 zeigt schematisch eine weitere Ausführungsform einer erfindungsgemäßen Biogasanlage 1 zu Durchführung des erfindungsgemäßen Verfahrens zu Biogasbildung. Dabei wird der gesamte Prozess von der Störstoffabscheidung bis zur Biogasbildung in einem einzelnen Gärbehälter 18 vorgenommen, in dem alle Prozessstufen gleichzeitig ablaufen.
  • Dieser Gärbehälter 18 wird psychrophil, bei niedriger Temperatur, beispielsweise im Wesentlichen konstant zwischen 15 und 25 °C, betrieben, so dass ebenso ein niedriger Ammoniakgehalt vorliegt (siehe dazu 11, 12 und 13 sowie die zugehörige Beschreibung). Wie auch bei der Essigsäurebildung und Methanisierung bleibt mehr Kohlendioxid als Kohlensäure im Gärsubstrat 7 gebunden und der Prozess führt bei (zusätzlich säurebedingt) niedrigem pH-Wert zur Bildung eines hochwertigen Biogases 11 mit hohem Methananteil. Dieses Gas wird ebenfalls einer Nutzung, wie vorstehend beschrieben, zugeführt. Das vergorene Gärsubstrat 19 wird wiederum einer Nachbehandlung zugeführt, wie näher in 7 bzw. auch 8 und 9 beschrieben.
  • 3 zeigt den Schnitt A-A durch den Gärbehälter 18 mit Blick auf den Boden 8. Dort ist die Vertiefung 45 eingebracht, in der, wie vorstehend beschrieben, sich Störstoffe absetzen. In die Vertiefung 45 ragt die Austragvorrichtung 9 hinein und transportiert die Störstoffe durch die Behälterwand hindurch nach draußen. Der Durchbruch in der Behälterwand ist unproblematisch, da die Austragvorrichtung 9 dennoch über den Flüssigkeitsspiegel hinausragt und somit keine Leckage auftreten kann. Zudem wird ein Durchbruch im Dachbereich vermieden, der zu einer Festlegung auf eine feste Abdeckung führen würde, so dass in einem solchen Fall kein Foliendach als integrierter Gasspeicher einsetzbar wäre.
  • 4 zeigt schematisch eine weitere Ausführungsform einer erfindungsgemäßen Biogasanlage zu Durchführung des erfindungsgemäßen Verfahrens zu Biogasbildung, bei der ein speziell ausgebildeter Störstoffabscheider 46 zum Einsatz kommt. Dieser ist bevorzugt mit einer erfindungsgemäßen Schnecke ausgestattet, um das störstoffarme dicke, in der Regel höherviskose Eingangssubstrat 3 im Wesentlichen vollständig und unter verhältnismäßig geringem Energieeinsatz rühren zu können. Der Störstoffabscheider 46 gibt den Störstoff 4 ab und leitet entsprechend vorbehandelte des Gärsubstrats 7 an den Gärbehälter 18.
  • Im Gärbehälter 18 wird das Gärsubstrat 7 bei niedriger Temperatur, in einem psychrofilen Prozess vergoren und dabei Biogas 11 produziert, das in einem Blockheizkraftwerk 17 (Kraft-Wärme-Kopplung mit Erzeugung von elektrischem Strom) verwertet wird. Andere Verwertungen nach dem Stand der Technik sind vorgesehen.
  • Weiterhin ist ein Endlager 48 vorgesehen, in das das vergorene Gärsubstrat 19 eingebracht wird. Dort kann sich das Gärsubstrats abkühlen, beruhigen und eine Menge Restgas abgeben, bevor es in den Separator 13 in eine feste und eine flüssige Phase, also die trockensubstanzreiche Fraktion 14 und die trockensubstanzarme Fraktion 15 getrennt wird.
  • Letztere wird in den Stickstoffreaktor 30 geleitet, wo wie nachstehend dargestellt (vgl. 7, 8 und 9 sowie zugehörige Beschreibung) ein Stickstoffabbau erfolgt und eine stickstoffarme Prozessflüssigkeit 32 sowie ein Belebtschlamm 33 abgegeben werden.
  • Der Belebtschlamm 33 wird dem Störstoffabscheidung 46 und/oder direkt dem Gärbehälter 18 zugeführt. In beiden Fällen sorgt er für eine schnelle Aktivierung von Vorrecht zugeführtem eingangs Substrat, so dass die Biogasproduktion und der anaerobe Abbau der Biomasse schnell einsetzen. Das führt bei dem Störstoffabscheider 46 dazu, dass in kürzerer Zeit mehr Störstoffe durch den schnell einsetzenden Abbau abgeschieden werden können und bei dem Gärbehälter 18 wird ein höherer Umsatz der Biomasse und eine insgesamt höhere Effektivität des biologischen Teils der Biogasanlage erreicht. Unverzüglich Weiterhin ist in dem dargestellten Ausführungsbeispiel eine Vorgrube 44 vorgesehen, in der Eingangssubstrat 3‘, das keiner Störstoffabscheidung bedarf, eingesetzt und mit Prozessflüssigkeit 32 angemischt werden kann. Danach kann dieses vorbehandelte Eingangssubstrat 3‘ unmittelbar in den Gärbehälter 18 eingeführt werden. Das störstoffarme Eingangssubstrat 3‘ kann zusätzlich dem Störstoffabscheider 46 zugeführt werden, um eine optimale Mischung zu erhalten.
  • 5 zeigt schematisch eine Ausführungsform eines erfindungsgemäßen Gärbehälters 5, 10, 18 mit Schneckenrührwerk 20. Dieser ist besonders vorteilhaft bei der ersten Prozessstufe einsetzbar, da höherviskose Eingangssubstrate 3 oder Gärsubstrate 7 mit hohem Trockensubstanzgehalt zwangsweise und damit sicher gerührt werden können. Zudem ist eine sehr einfache und funktionssichere Möglichkeit der Abtrennung von Störstoffen vorgesehen. Diese besteht in einem Störstoffablass 21, der sich in der Spitze eines trichterförmig nach unten zulaufenden Bodens 22 befindet. Dort können regelmäßig die Störstoffe, noch ehe es zu einer Sedimentierung und Verhärtung gekommen ist, auf einfache Weise abgelassen werden.
  • Das Rühren selbst erfolgt mittels einer zentral im Gärbehälter 5, 10, 18 mit Schneckenrührwerk 20 angeordneten Antriebswelle 23, die bevorzugt von oben durch einen Getriebemotor 24 angetrieben wird, so wie bei Zentralrührwerken nach dem Stand der Technik bekannt. Die vom Getriebemotor 24 in Drehung versetzte Antriebswelle 23 bewegt eine Schnecke 25 die in einem Rohr 26 läuft, dass durch Befestigungen 27 mit der Wand des Gärbehälters 5, 10, 18 fest verbunden ist.
  • In diesem Rohr 26 wird das Eingangssubstrat 3 oder das Gärsubstrat 7 durch die Schnecke 25 nach unten gedrückt, wo die Störstoffe ausfallen können. Wenn im unteren Bereich des Gärbehälters 5, 10, 18 der Druck entsprechend ansteigt, wird das Eingangssubstrat 3 oder das Gärsubstrat 7 in den Bereich zwischen der inneren Wand des Gärbehälters 5, 10, 18 und der äußeren Wand des Rohres 26 gedrückt und gelangt dort wieder nach oben im Gärbehälter 5, 10, 18, wo es erneut von der Schnecke 25 erfasst wird. Dadurch ist gewährleistet, dass in dem Gärbehälter 5, 10, 18 keinerlei unberührte Totzone entsteht, ausgenommen im Bereich des Störstoffablasses 21, wo dieses aber zum Zweck des Absetzens von Störstoffen erwünscht ist.
  • In der dargestellten, besonders bevorzugten Ausführungsform ist das Rohr 26 doppelwandig ausgeführt, so dass es auch als Heizung dienen kann, wenn im Inneren 28, zwischen beiden Wänden, ein Wärmeträgerfluid zirkuliert. Da das Eingangssubstrat 3 oder das Gärsubstrat 7 ständig innen und außen am Rohr 26 vorbeigeführt wird, ist ein sehr guter Wärmeübergang gesichert.
  • Zudem führt das zwangsweise entlanggeführte Eingangssubstrat 3 oder das Gärsubstrat 7 an dem Rohr 26 dazu, dass kein festgebackenes, trockenes Eingangssubstrat 3 oder Gärsubstrat 7 an den Oberflächen des Rohres 26, den Heizflächen, den Wärmeübergang vermindern kann. Stattdessen wird das Rohr 26 zumindest innen durch die Schnecke 25, aber auch außen durch das vorbeigedrückte Eingangssubstrat 3 oder Gärsubstrat 7 immer wieder von etwaigen Ablagerungen befreit. Hierdurch lassen sich auch höhere Vorlauftemperaturen in der Heizung realisieren, die anderenfalls zum vorgenannten Festbacken führen würden. Damit ist ein schnelles und effektives Aufheizen auch sehr kalter Eingangssubstrate 3 oder Gärsubstrate 7 leicht möglich.
  • 6 zeigt nochmals den Gärbehälter 5, 10, 18 mit Schneckenrührwerk 20, jedoch in der Draufsicht. Dabei ist zu erkennen, wie das Rohr 26 mit der Schnecke 25 im Zentrum nur an drei Punkten durch Befestigungen 27 mit dem Außenmantel des Gärbehälters 5, 10, 18 verbunden ist. Dadurch wird der zum Rückströmen des Eingangssubstrats 3 oder des Gärsubstrats 7 zwischen Rohr und innerer Wand des Gärbehälters 5, 10, 18 nutzbare Querschnitt nicht behindert.
  • Das Rohr 26 ist wiederum doppelwandig ausgeführt, damit zwischen beide Wände des Rohrs 26 das Wärmeträgermedium, beispielsweise in einer Heizschlange oder frei zirkulierend, eingebracht werden kann.
  • Das in 7 gezeigte Schema dient der Beschreibung einer Ausführungsform des erfindungsgemäßen Verfahrens bzw. die hierfür erforderliche Vorrichtung zur Stickstoffentfernung 29 aus dem bereits vergorenen Gärsubstrat 19, wie es die Biogasanlage 1 zum Ende der vorgesehenen Verweilzeit verlässt.
  • Hierzu wird das vergorene Gärsubstrat 19 zunächst einer Separation 13 unterzogen, um eine trockensubstanzreiche Fraktion 14 und eine trockensubstanzarme Fraktion 15 zu erhalten. Das kann in einem Pressschneckenseparator, einem Trommelseparator, einem Dekanter, einer Ultrafiltration, nach dem Membranverfahren, in einer Zentrifuge, durch Flotation oder einem weiteren nach dem Stand der Technik bekannten Verfahren zur Separation oder einer Kombination von zwei oder mehreren derartigen Verfahren erfolgen. Die trockensubstanzarme Fraktion 15 kann ein Fugat, ein Permeat oder Presswasser sein. Dieses gelangt in den Stickstoffreaktor 30, wo die nachfolgend beschriebenen Prozessschritte ablaufen (vgl. 8).
  • Nach der vorgesehen Reaktionszeit verlässt ein stickstoffarmes Permeat 31 den im Stickstoffreaktor 30 ablaufenden Prozess, das in der bevorzugten Ausführungsform und Verwendung einer Vorgrube 44 zum Anmischen von Eingangssubstrat 3 bzw. zu Beginn des Biogasprozesses 1 als Prozessflüssigkeit 32 zugeführt wird. Als zweites Produkt neben dem Permeat 31 verlässt Belebtschlamm 33 den Stickstoffreaktor 30, der direkt dem Gärbehälter 10, in dem der Prozess der Biogasbildung abläuft, als zusätzliche Biomasse zuführbar ist. Die Rückführung der Permeats 31 erfolgt mittels einer Einrichtung 43 zur Rückführung der Prozessflüssigkeit 32.
  • 8 zeigt die Prozessschritte, wie sie in einer Vorrichtung zur Stickstoffentfernung 29 gemäß Beschreibung und Darstellung in 7 ablaufen. Im ersten Prozessschritt 34 wird der Stickstoffreaktor 29 mit der zu behandelnden trockensubstanzarme Fraktion 15, auch als Fugat bezeichnet, beschickt und dabei belüftet. Dabei kann eine Belüftung nach dem Stand der Technik erfolgen und beispielsweise ein Jetbelüfter, ein Membranbelüfter, aber auch ein Tauchtropfkörper oder ein Pumpe-Venturi-Injektor zum Einsatz kommen.
  • Im zweiten Prozessschritt 35 wird die Belüftung fortgesetzt, so dass die Nitrifikation einsetzt. Dabei wird NH4 +-Ammonium zu Stickstoffoxid (NO3 ) umgesetzt. Dieser Prozessschritt kann entweder unter Beheizung oder unter Kühlung ablaufen.
  • Bei dem darauffolgenden, dem dritten Prozessschritt 36 wird gerührt, jedoch ohne weiter zu belüften. In einer besonders bevorzugten Ausführungsform erfolgt der Zusatz einer Kohlenstoffquelle. Hierzu kann beispielsweise Gülle, ausgegorenes Gärsubstrats oder Alkohol eingesetzt werden. In diesem Prozessschritt erfolgt die Umsetzung von Stickstoffoxid (NO3 ) zu molekularem Stickstoff N2.
  • Es folgen in der bevorzugten Ausgestaltung im vierten Prozessschritt 37 das Absetzen der den Belebtschlamm 33 bildenden Stoffe sowie nachher die separate Entnahme von Prozessflüssigkeit 32 und Belebtschlamm 33 wie oben in der Beschreibung zu 7 angeführt.
  • Inhalt von 9 ist die Darstellung der Prozessschritte gemäß 8 gilt nach der Erfindung gleichermaßen für die Variante der kontinuierlichen Prozessführung, bei der alle Prozessschritte gleichzeitig, jedoch an unterschiedlichen Orten in einem langgestreckten Stickstoffreaktor als wesentlichem Bestandteil der Vorrichtung zur Stickstoffentfernung ablaufen. So laufen die Prozessschritte 34, 35, 36, 37 an unterschiedlichen Orten, jedoch ohne voneinander getrennt zu sein, in der Vorrichtung zur Stickstoffentfernung 29 ab. Am Ablauf wird die Prozessflüssigkeiten 32 getrennt von dem Belebtschlamm 33, der sich in diesem Bereich absetzt, abgeführt.
  • Einige Vorteile des erfindungsgemäßen Verfahrens werden mit dem Diagramm in 10, das den Temperatureinfluss auf den Biogasprozess zeigt, verdeutlicht. In dem Diagramm, das die erzeugte Gasmenge 38 (Gasmenge insgesamt 39 und Methan 40 gesondert) über der Verweilzeit 41 zeigt, ist zu erkennen, dass der Methangehalt im Biogas steigt und dementsprechend der Kohlendioxidgehalt im Biogas sinkt, wenn die Vergärung bei niedriger Temperatur abläuft.
  • 11 zeigt in einem Diagramm, wie sich die Temperatur und der pH-Wert auf das Konzentrationsgleichgewicht zwischen Ammonium und Ammoniak auswirken, wobei ein sehr großer pH-Wert-Bereich von 5 bis 12 dargestellt wird. Es zeigt sich hierbei das ab einem pH-Wert zwischen 7 und 8 der Ammoniakgehalt stark zunimmt. Dies erfolgt zudem umso eher, je höher die Temperatur ist. Den im Biogasprozess interessierenden pH-Wert-Bereich zeigt die nachfolgende Figur im Detail.
  • 12 zeigt in einem Diagramm, wie sich der pH-Wert des Substrats in einem Biogasprozess auf das Verhältnis zwischen Ammonium und Ammoniak auswirkt. So liegt der Ammoniakanteil bei einem pH-Wert von 7 deutlich unter einem Prozent, während er bei einem pH-Wert von 8 schon an die 10 % heranreicht.
  • 13 zeigt in einem Diagramm, wie sich der Gehalt an Ammoniumstickstoff auf den Biogasprozess auswirkt und diesen hemmt. Darüber hinaus wird an zwei unterschiedlichen Temperaturen gezeigt, wie stark der Temperatureinfluss darüber hinaus ist. So beträgt die Hemmung bei einem Gehalt von 100 mg Ammonium pro Liter Substrat 75 % bei einer Temperatur von 30 °C. Liegt die Temperatur nur wenig darüber, nämlich 38 °C, dann ist die zuvor angegebene Hemmung bereits erreicht, wenn die Ammoniumkonzentration nur 60 mg/l beträgt. Und ein Gehalt von 100 mg Ammonium pro Liter Substrat führt bei dieser Temperatur schon zu einer fast vollständigen Hemmung des Biogasprozesses. Somit zeigt sich, dass nicht nur ein verminderter Ammoniumgehalt dazu beiträgt, dass der Biogasprozess ungehemmt ablaufen kann, sondern in starkem Maße auch eine möglichst niedrige Temperatur.
  • Bezugszeichenliste
  • 1
    Biogaserzeugung, Biogasanlage
    2
    erste Prozessstufe
    3
    Eingangssubstrat
    3‘
    Eingangssubstrat, störstoffarm
    4
    Störstoff
    5
    erster Gärbehälter
    6
    Gasspeicher
    7
    Gärsubstrat
    8
    Boden
    9
    Austragvorrichtung, Austrag von Störstoffen
    10
    zweiter Gärbehälter
    11
    Biogas
    12
    zweite Prozessstufe
    13
    Separation, Separator
    14
    trockensubstanzreiche Fraktion
    15
    trockensubstanzarme Fraktion
    16
    Gasreinigung
    17
    Blockheizkraftwerk
    18
    einzelner Gärbehälter
    19
    vergorenes Gärsubstrat
    20
    Schneckenrührwerk
    21
    Störstoffablass
    22
    Boden
    23
    Antriebswelle
    24
    Getriebemotor
    25
    Schnecke
    26
    Rohr
    27
    Befestigung
    28
    Inneres des doppelwandigen Rohrs
    29
    Vorrichtung zur Stickstoffentfernung
    30
    Stickstoffreaktor
    31
    Permeat
    32
    Prozessflüssigkeit
    33
    Belebtschlamm
    34
    erster Prozessschritt Stickstoffentfernung
    35
    zweiter Prozessschritt Stickstoffentfernung
    36
    dritter Prozessschritt Stickstoffentfernung
    37
    vierter Prozessschritt Stickstoffentfernung
    38
    Gasmenge
    39
    Gasmenge insgesamt
    40
    Methan
    41
    Verweilzeit
    42
    Kohlenstoffquelle
    43
    Einrichtung zur Rückführung der Prozessflüssigkeit
    44
    Vorgrube
    45
    Vertiefung
    46
    Störstoffabscheider
    47
    trockensubstanzarmer Gärrest
    48
    Endlager
    49
    Konzentration an NH3 in mol-% / Konzentration an NH4 + in mol-%
    50
    pH-Wert
    51
    undissoziiertes NH3 in % / NH4-N in %
    52
    Hemmung in %
    53
    mg/l NH3-N
    54
    Temperatur
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102007059084 A1 [0002]
    • DD 271896 A5 [0003]
    • DE 202007017166 U1 [0006]

Claims (28)

  1. Verfahren zur Biogaserzeugung im Nassvergärung unter Einsatz von stickstoffreichem, störstoffbeladenem Eingangssubstrat (3), bei dem zur Sedimentierung neigende Feststoffpartikel ausfallen, mit einer Ammonium-Stickstoffkonzentration von mehr als 5 kg NH4-N/m3, dadurch gekennzeichnet, dass eine erste Prozessstufe (2) zur Störstoffabscheidung in einem Gärbehälter (5, 18) und eine zweite Prozessstufe (12) der kontinuierlichen Essigsäure- und Methanbildung aus einem Gärsubstrat (7) bei einer im Wesentlichen stabilen Temperatur im psychrophilen Bereich in einem Gärbehälter (10, 18) vorgesehen sind.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die erste Prozessstufe (2) bei einer im Wesentlichen stabilen Temperatur im mesophilen oder thermophilen Bereich einem ersten Gärbehälter (5) und die zweite Prozessstufe (12) von der ersten Prozessstufe (2) räumlich getrennt in einem zweiten Gärbehälter (10) abläuft.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die erste Prozessstufe (2) bei einer im Wesentlichen stabilen Temperatur zwischen 35 und 55 °C abläuft und die zweite Prozessstufe (12) bei einer im Wesentlichen stabilen Temperatur zwischen 15 und 25 °C.
  4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass während der ersten Prozessstufe (2) der Austrag (9) sedimentierender oder sedimentierter Störstoffe aus dem Gärbehälter (5, 10, 18) vorgesehen ist.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Störstoffe aus wenigstens einer streifenförmigen Vertiefung (45) mit radialer Ausrichtung im Boden des Gärbehälters (5, 10, 18) ausgetragen werden, in der sich die Störstoffe sammeln, wenn diese aus dem Gärsubstrat (7) ausfallen, darin absinken und das Gärsubstrat (7) durch ein oder mehrere Rührwerke in eine Rotation um die Vertikalachse des Gärbehälters (5, 10, 18) versetzt wird.
  6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Austrag (9) mittels einer Austragsschnecke erfolgt, die von der Vertiefung (45) aus durch eine Wand des Gärbehälters (5, 10, 18) nach außen ragt.
  7. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die erste Prozessstufe (2) zur Störstoffabscheidung in einem Störstoffabscheider (46) ausgeführt wird.
  8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass eine Separation (13) des ausgegorenen Gärsubstrats (19) in eine trockensubstanzreiche Fraktion (14) und eine trockensubstanzarme Fraktion (15) vorgesehen ist.
  9. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass eine Rückführung der trockensubstanzarmen Fraktion (15) als Prozessflüssigkeit (32) oder von trockensubstanzarmem vergorenem Gärsubstrat (19) zur Verwendung bei der ersten Prozessstufe (2) und/ oder der zweiten Prozessstufe (12) vorgesehen ist.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass bei der Rückführung eine Verringerung des Stickstoffgehalts in der trockensubstanzarmen Fraktion (15) mittels eines Stickstoffreaktors (30) erfolgt.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der Stickstoffreaktor (30) diskontinuierlich betrieben wird und in diesem die Prozessschritte • erster Prozessschritt (34) Befüllung mit der trockensubstanzarmen Fraktion (15) und Belüftung, • zweiter Prozessschritt (35) Belüftung und Nitrifikation mit Beheizung von für den Prozess der Stickstoffentfernung zu kaltem Substrat oder Kühlung von für den Prozess der Stickstoffentfernung zu warmem Substrat, • dritter Prozessschritt (36) Rühren ohne Belüftung zur Denitrifikation, • vierter Prozessschritt (37) Absetzen von sinkfähigen Feststoffen und • Entnahme der konditionierten Prozessflüssigkeit (32) nacheinander ablaufen.
  12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der Stickstoffreaktor (30) kontinuierlich betrieben wird und in diesem die Prozessschritte • erster Prozessschritt (34) Befüllung mit der trockensubstanzarmen Fraktion (15) und Belüftung, • zweiter Prozessschritt (35) Belüftung und Nitrifikation mit Beheizung von für den Prozess der Stickstoffentfernung zu kaltem Substrat oder Kühlung von für den Prozess der Stickstoffentfernung zu warmem Substrat, • dritter Prozessschritt (36) Rühren ohne Belüftung zur Denitrifikation, • vierter Prozessschritt (37) Absetzen von sinkfähigen Feststoffen und • Entnahme der konditionierten Prozessflüssigkeit (32) zugleich und örtlich getrennt ablaufen.
  13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass während des dritten Prozessschrittes (36) des Rührens ohne Belüftung eine Kohlenstoffquelle (42) zugesetzt wird.
  14. Verfahren nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass bei der Entnahme der behandelten Prozessflüssigkeit (32) stickstoffarmes Permeat (31) getrennt von einem Belebtschlamm (33) entnommen wird, wobei das Permeat (31) einer Vorgrube (44) zum Anmischen des Eingangssubstrats (3) oder einem Störstoffabscheider (46) zugeführt wird und der Belebtschlamm (33) wenigstens einem der Gärbehälter (5, 10, 18) oder dem Störstoffabscheider (46) zugeführt wird.
  15. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Gärsubstrat (7) der ersten Prozessstufe (2) der Störstoffabtrennung durch eine vertikal angeordnete, mit einem rotatorischen Antrieb versehene Schnecke (25) umgewälzt wird, wobei die Schnecke (25) in einem beidseitig offenen Rohr (26) läuft und das Rohr (26) im Wesentlichen ausfüllt, wobei das Rohr (26) von unterhalb des Gärsubstratniveaus bis oberhalb des Bodens des Gärbehälters (5, 10, 18) oder des Störstoffabscheiders (46) reicht und mit dem Gärbehälter (5, 10, 18) oder oder dem Störstoffabscheider (46) fest verbunden ist.
  16. Biogasanlage (1) zur Nassvergärung von stickstoffreichem, störstoffbeladenem Eingangssubstrat (3), bei dem zur Sedimentierung neigende Feststoffpartikel ausfallen, mit einer Ammonium-Stickstoffkonzentration von mehr als 5 kg NH4-N/m3, dadurch gekennzeichnet, dass wenigstens ein Gärbehälter (5, 10, 18) zur Durchführung einer ersten Prozessstufe (2) der Störstoffabtrennung aus dem Gärsubstrat (7) und zur Durchführung einer zweiten Prozessstufe (12) der Essigsäurebildung und der Methanbildung zum Betrieb bei einer im Wesentlichen stabilen Temperatur im psychrophilen Bereich und eine Austragvorrichtung (9) zum Austrag sedimentierender oder sedimentierter Störstoffe vorgesehen sind.
  17. Biogasanlage nach Anspruch 16, dadurch gekennzeichnet, dass wenigstens eine streifenförmige Vertiefung (45) mit radialer Ausrichtung im Boden des Gärbehälters (5, 10, 18) vorgesehen ist, in die die Austragvorrichtung (9) in der Weise hineinragt, dass angesammelte Störstoffe aufnehmbar sind.
  18. Biogasanlage nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass ein Störstoffabscheider (46) vorgesehen ist.
  19. Biogasanlage nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, dass ein erster Gärbehälter (5) zum Betrieb bei einer im Wesentlichen stabilen Temperatur im mesophilen oder thermophilen Bereich zur Durchführung der ersten Prozessstufe (2) und ein zweiter Gärbehälter (10) zur Durchführung der zweiten Prozessstufe (12) vorgesehen sind.
  20. Biogasanlage nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, dass weiterhin ein Separator (13) zur Separation des ausgegorenen Gärsubstrats in eine trockensubstanzreiche Fraktion (14) und eine trockensubstanzarme Fraktion (15) und eine Einrichtung (43) zur Rückführung der trockensubstanzarmen Fraktion (15) als Prozessflüssigkeit (32) zur Verwendung in dem ersten Gärbehälter (5) vorgesehen sind.
  21. Biogasanlage nach Anspruch 20, dadurch gekennzeichnet, dass die Einrichtung (43) zur Rückführung der trockensubstanzarmen Fraktion (15) einen Stickstoffreaktor (30) aufweist.
  22. Gärbehälter (5, 10, 18) für eine Biogasanlage (1), dadurch gekennzeichnet, dass der Gärbehälter (5, 10, 18) wenigstens eine vertikal angeordnete, mit einem rotatorischen Antrieb versehene Schnecke (25) aufweist, die in einem beidseitig offenen Rohr (26) drehbar gelagert ist und das Rohr (26) im Wesentlichen ausfüllt, wobei das Rohr (26) im Wesentlichen von unterhalb des Substratniveaus bis oberhalb des Boden (22) des Gärbehälters (5, 10, 18) reicht und mit dem Gärbehälter (5, 10, 18) fest verbunden ist.
  23. Gärbehälter nach Anspruch 22, dadurch gekennzeichnet, dass die mit dem rotatorischen Antrieb versehene Schnecke (25) in dem ersten Gärbehälter (5) zur Durchführung der ersten Prozessstufe (2) der Störstoffabtrennung aus dem Gärsubstrat (7) oder in dem Störstoffabscheider (46) angeordnet ist.
  24. Gärbehälter nach Anspruch 22 oder 23, dadurch gekennzeichnet, dass die Schnecke (25) zentral in dem Gärbehälter (5, 10, 18) oder in dem Störstoffabscheider (46) angeordnet ist.
  25. Gärbehälter nach Anspruch 22 oder 23, dadurch gekennzeichnet, dass eine oder mehrere Schnecken (25) dezentral in dem Gärbehälter (5, 10, 18) oder in dem Störstoffabscheider (46) angeordnet ist.
  26. Gärbehälter nach einem der Ansprüche 22 bis 25, dadurch gekennzeichnet, dass das Rohr (26) als Gärsubstratheizung doppelwandig ausgeführt ist und zwischen den Wänden ein Wärmeträgermedium zirkuliert.
  27. Gärbehälter nach einem der Ansprüche 22 bis 26, dadurch gekennzeichnet, dass der Boden (22) des Gärbehälters (5, 10, 18) trichterförmig ausgebildet ist und im Zentrum des Trichters eine Austragvorrichtung (9) zum Austrag von sedimentierenden oder sedimentierten Stoffen aufweist.
  28. Gärbehälter nach einem der Ansprüche 22 bis 27, dadurch gekennzeichnet, dass die Austragvorrichtung (9) als Störstoffablass (21) ausführt ist.
DE102013114786.0A 2013-12-23 2013-12-23 Verfahren und Vorrichtung zur Biogasgewinnung Pending DE102013114786A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102013114786.0A DE102013114786A1 (de) 2013-12-23 2013-12-23 Verfahren und Vorrichtung zur Biogasgewinnung
PCT/DE2014/100462 WO2015096832A1 (de) 2013-12-23 2014-12-22 Verfahren und vorrichtung zur biogasgewinnung
EP14838913.3A EP3087171A1 (de) 2013-12-23 2014-12-22 Verfahren und vorrichtung zur biogasgewinnung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013114786.0A DE102013114786A1 (de) 2013-12-23 2013-12-23 Verfahren und Vorrichtung zur Biogasgewinnung

Publications (1)

Publication Number Publication Date
DE102013114786A1 true DE102013114786A1 (de) 2015-06-25

Family

ID=52589197

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013114786.0A Pending DE102013114786A1 (de) 2013-12-23 2013-12-23 Verfahren und Vorrichtung zur Biogasgewinnung

Country Status (3)

Country Link
EP (1) EP3087171A1 (de)
DE (1) DE102013114786A1 (de)
WO (1) WO2015096832A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3354718A1 (de) * 2017-01-30 2018-08-01 HERBST Umwelttechnik GmbH Verfahren und vorrichtung zum erzeugen von biogas
EP3608300A1 (de) * 2018-08-06 2020-02-12 AEV Energy GmbH Verfahren zur reduzierung des nährstoffgehalts von gülle und geflügelkot
EP3611250A4 (de) * 2017-04-26 2021-01-13 Shanghai Beiqi New Energy Technology Co., Ltd. Fermentationsanlage verwendet für organische stoffe und verfahren dafür
EP3831920A1 (de) * 2019-12-03 2021-06-09 SUEZ Groupe Anlage und verfahren zur kontrolle des nh3-gehalts in einem anaeroben medium
WO2024046730A1 (de) * 2022-08-31 2024-03-07 Hitachi Zosen Inova Schmack GmbH Verfahren und anlage zur verringerung des ammoniak-/ammonium-gehalts im substrat von fermentern
US11981949B1 (en) * 2023-06-21 2024-05-14 King Faisal University Jute filters to reduce ammonia inhibition effects of chicken manure for biogas production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105997B (zh) * 2021-04-14 2022-07-01 河北省农业科技发展中心 能够抽取沼液的厌氧发酵装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD271896A5 (de) 1987-07-16 1989-09-20 Vogelbusch Gesellschaft M. B. H.,At Verfahren zur aufbereitung von ammoniak und/oder sonstige geruchsaktive substanzen sowie feststoffe enthaltenden, organisch belasteten abwaessern, sowie z. b. guelle oder dergleichen
US5863434A (en) * 1994-12-14 1999-01-26 University Of Ottawa/Universite D'ottawa Psychrophilic anaerobic treatment of waste in a sequencing semibatch/batch bioreactor
CA2138091C (en) * 1994-12-14 2001-04-10 Daniel I. Masse Anaerobic treatment of waste at ambient temperatures
EP1362635A1 (de) * 2002-05-15 2003-11-19 U.T.S. Umwelt-Technik-Süd GmbH Rühreinrichtung für einen Fermenter einer Biogasanlage
US20040172878A1 (en) * 2001-07-12 2004-09-09 Adam Krylowicz Method and system of generating methane and electrical energy and thermal
DE202007017166U1 (de) 2007-12-08 2008-03-20 Fischer, Max Kompakt-Biogasanlage
DE102007059084A1 (de) 2007-12-07 2009-06-10 Rückert, Claus Verfahren zur Erzeugung von Biogas
US20130309740A1 (en) * 2011-11-22 2013-11-21 Washington State University Research Foundation Two-Stage Anaerobic Digestion Systems Wherein One of the Stages Comprises a Two-Phase System

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2459283A1 (fr) * 1979-06-18 1981-01-09 Ducellier Gilbert Dispositif d'insufflation d'air et de circulation de liquide pour gazogene de fermentation methanique
ATE32347T1 (de) * 1984-07-28 1988-02-15 Heinz Harrendorf Verfahren und vorrichtung zur anaeroben behandlung von organischen substraten zur erzeugung von biogas.
DE19621914C1 (de) * 1996-05-31 1997-08-07 Uts Umwelt Technik Sued Gmbh Fermenter
US6391203B1 (en) * 2000-11-22 2002-05-21 Alexander G. Fassbender Enhanced biogas production from nitrogen bearing feed stocks
DE102005063228B4 (de) * 2005-12-23 2010-01-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anaerobe Reinigung von Abwasser
DE102007024378B4 (de) * 2007-05-23 2009-06-04 Beck, Jürgen, Dr. Fermenter zur Erzeugung von Biogas aus pumpbarem organischen Material
MX2008002240A (es) * 2008-02-15 2009-08-17 Mauricio Rico Martinez Optimizacion energetica de una planta del tipo aerobio anoxico, facultativo, anaerobio, utilizando burbuja fina, sin produccion de lodos.
EP2342346B1 (de) * 2008-09-24 2013-08-14 Hyperthermics Holding AS Thermotoga zur Behandlung von Biomasse
US8497105B2 (en) * 2009-06-26 2013-07-30 Cobalt Technologies, Inc. Integrated system and process for bioproduct production
DE102011015611B4 (de) * 2011-03-30 2014-12-11 Hochschule Magdeburg-Stendal (Fh) Verfahren zur Erzeugung von Biogas aus organischen Substraten
DE202011107055U1 (de) * 2011-10-21 2013-01-25 Thomas Kainz Rührwerk für einen Fermenterbehälter, Fermenterbehälter mit einem derartigen Rührwerk sowie Biogasanlage

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD271896A5 (de) 1987-07-16 1989-09-20 Vogelbusch Gesellschaft M. B. H.,At Verfahren zur aufbereitung von ammoniak und/oder sonstige geruchsaktive substanzen sowie feststoffe enthaltenden, organisch belasteten abwaessern, sowie z. b. guelle oder dergleichen
US5863434A (en) * 1994-12-14 1999-01-26 University Of Ottawa/Universite D'ottawa Psychrophilic anaerobic treatment of waste in a sequencing semibatch/batch bioreactor
CA2138091C (en) * 1994-12-14 2001-04-10 Daniel I. Masse Anaerobic treatment of waste at ambient temperatures
US20040172878A1 (en) * 2001-07-12 2004-09-09 Adam Krylowicz Method and system of generating methane and electrical energy and thermal
EP1362635A1 (de) * 2002-05-15 2003-11-19 U.T.S. Umwelt-Technik-Süd GmbH Rühreinrichtung für einen Fermenter einer Biogasanlage
DE102007059084A1 (de) 2007-12-07 2009-06-10 Rückert, Claus Verfahren zur Erzeugung von Biogas
DE202007017166U1 (de) 2007-12-08 2008-03-20 Fischer, Max Kompakt-Biogasanlage
US20130309740A1 (en) * 2011-11-22 2013-11-21 Washington State University Research Foundation Two-Stage Anaerobic Digestion Systems Wherein One of the Stages Comprises a Two-Phase System

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3354718A1 (de) * 2017-01-30 2018-08-01 HERBST Umwelttechnik GmbH Verfahren und vorrichtung zum erzeugen von biogas
WO2018138368A1 (de) * 2017-01-30 2018-08-02 Herbst Umwelttechnik Gmbh Verfahren und vorrichtung zum erzeugen von biogas
CN110291184A (zh) * 2017-01-30 2019-09-27 赫伯斯特环境工程有限公司 用于制备沼气的方法和装置
US11312932B2 (en) 2017-01-30 2022-04-26 Herbst Umwelttechnik Gmbh Method and device for producing biogas
EP3611250A4 (de) * 2017-04-26 2021-01-13 Shanghai Beiqi New Energy Technology Co., Ltd. Fermentationsanlage verwendet für organische stoffe und verfahren dafür
EP3608300A1 (de) * 2018-08-06 2020-02-12 AEV Energy GmbH Verfahren zur reduzierung des nährstoffgehalts von gülle und geflügelkot
EP3831920A1 (de) * 2019-12-03 2021-06-09 SUEZ Groupe Anlage und verfahren zur kontrolle des nh3-gehalts in einem anaeroben medium
WO2021110588A1 (en) 2019-12-03 2021-06-10 Suez Groupe Installation and method for controlling nh3 content in an anaerobic medium
WO2024046730A1 (de) * 2022-08-31 2024-03-07 Hitachi Zosen Inova Schmack GmbH Verfahren und anlage zur verringerung des ammoniak-/ammonium-gehalts im substrat von fermentern
WO2024046558A1 (de) * 2022-08-31 2024-03-07 Hitachi Zosen Inova Schmack GmbH Verfahren und anlage zur verringerung des ammoniak-/ammonium-gehalts im substrat von fermentern
US11981949B1 (en) * 2023-06-21 2024-05-14 King Faisal University Jute filters to reduce ammonia inhibition effects of chicken manure for biogas production

Also Published As

Publication number Publication date
EP3087171A1 (de) 2016-11-02
WO2015096832A1 (de) 2015-07-02

Similar Documents

Publication Publication Date Title
DE102013114786A1 (de) Verfahren und Vorrichtung zur Biogasgewinnung
DE102008050349B4 (de) Verfahren zur Ausfällung von Phosphor aus phosphatbelastetem Abwasser
AT506582B1 (de) Verfahren zur herstellung von biogas
DE19624268C2 (de) Verfahren und Vorrichtung zur Verwertung organischer Abfälle
DE102006005066B3 (de) Vorrichtung und Verfahren zur Erzeugung von Biogas aus organischen Stoffen
DE102007035910B4 (de) Verfahren und Vorrichtung zur Rückgewinnung von Magnesiumammoniumphosphat bei der Klärschlammbehandlung
EP0335825A1 (de) Verfahren und Vorrichtung zur zweistufigen anaeroben Aufbereitung flüssiger Substrate
WO2014090377A2 (de) Verfahren und einrichtung zur trennung der dickphase von der dünnphase bei schwebkörper enthaltenden flüssigkeiten
DE102013003592A1 (de) Verfahren und Einrichtung zur Trennung der Dickphase von der Dünnphase bei Schwebkörper enthaltenden Flüssigkeiten
DE102007049479A1 (de) Verfahren und Vorrichtung zur Biogasgewinnung
DE10306988A1 (de) Verfahren und Vorrichtung zur kontinuierlichen Vergärung von Biomasse
EP3165598B1 (de) Verfahren zum betreiben einer biogasanlage
DE102013007076B4 (de) Verfahren und Anlage zur Gewinnung von konzentriertem, mineralischem Dünger aus Ausgangsstoffen mit organischem Anteil
EP2336292A1 (de) Vorrichtung und Verfahren zur Vergärung von niederviskosen Materialien
DE102006054104A1 (de) Verfahren zur Aufbereitung von Gärresten und Vorrichtung zur Gewinnung von Dünger
DE102007056916A1 (de) Anlage und Verfahren zur Herstellung von Biogas
DE102010033442A1 (de) Verfahren zur Aufkonzentration von Mikroorganismen in wässrigen Substraten
DE102018120117A1 (de) Verfahren, Anlage und System zur Gärrestaufbereitung
DE202009017869U1 (de) Vorrichtung zum Trennen von gasförmigen, flüssigen und festen Stoffen in einem Bioreaktor
CN112955409A (zh) 用于处理有机原料的方法和设备
EP3636599B1 (de) Verfahren zum betreiben eines druckwasserfilters und anlage mit druckwasserfilter
EP3608300B1 (de) Verfahren zur reduzierung des nährstoffgehalts von gülle und geflügelkot
DE10253024B4 (de) Verfahren zur mikrobiellen aeroben Konversion von biogenen organischen Frisch- und/oder Abfallmaterialien
EP3553162A1 (de) Verfahren, anlage und system zur gärrestaufbereitung
DE102017109733B4 (de) Verfahren zum Betreiben einer Bioreaktoranlage

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication