DE102013019716A1 - 3D printing process with slip - Google Patents

3D printing process with slip Download PDF

Info

Publication number
DE102013019716A1
DE102013019716A1 DE102013019716.3A DE102013019716A DE102013019716A1 DE 102013019716 A1 DE102013019716 A1 DE 102013019716A1 DE 102013019716 A DE102013019716 A DE 102013019716A DE 102013019716 A1 DE102013019716 A1 DE 102013019716A1
Authority
DE
Germany
Prior art keywords
layer
energy
slurry
layer thickness
particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102013019716.3A
Other languages
German (de)
Inventor
Ingo Ederer
Daniel Günther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voxeljet AG
Original Assignee
Voxeljet AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voxeljet AG filed Critical Voxeljet AG
Priority to DE102013019716.3A priority Critical patent/DE102013019716A1/en
Priority to PCT/DE2014/000602 priority patent/WO2015078430A1/en
Priority to US15/039,211 priority patent/US20170157852A1/en
Priority to EP14833112.7A priority patent/EP3074208B1/en
Priority to CN201480064588.5A priority patent/CN105764674B/en
Priority to ES14833112T priority patent/ES2786181T3/en
Priority to KR1020167013698A priority patent/KR102310916B1/en
Publication of DE102013019716A1 publication Critical patent/DE102013019716A1/en
Priority to US17/493,078 priority patent/US20220024068A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/68Cleaning or washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/40Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material
    • B28B7/46Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material for humidifying or dehumidifying
    • B28B7/465Applying setting liquid to dry mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

Die Erfindung betrifft ein 3D-Druckverfahren, eine Vorrichtung sowie Formteile hergestellt mit diesem Verfahren.The invention relates to a 3D printing method, apparatus and moldings produced by this method.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von dreidimensionalen Modellen mittels sinterfähigem Material sowie eine Vorrichtung zum Durchführen dieses Verfahrens und damit hergestellte Formteile.The invention relates to a method for producing three-dimensional models by means of sinterable material and a device for carrying out this method and moldings produced therewith.

Verfahren zum Herstellen von dreidimensionalen Formkörpern (Formteile, Modelle, Bauteile) sind aus dem Stand der Technik bekannt. Derartige Verfahren werden auch als „Rapid Prototyping” oder „3D-Druck” bezeichnet.Methods for producing three-dimensional moldings (moldings, models, components) are known from the prior art. Such methods are also referred to as "rapid prototyping" or "3D printing".

Derartige Verfahren sind beispielsweise „Selective Laser Sintern” (SLS), Stereolithographie, „Solid Ground Curing” (SGC), „Fused Deposition Molding” (FDM) oder 3D-Binderdruckverfahren.Such methods include, for example, "Selective Laser Sintering" (SLS), Stereolithography, "Solid Ground Curing" (SGC), "Fused Deposition Molding" (FDM), or 3D Binder Printing.

In allen Verfahren wird ein Formkörper auf einer Bauebene oder in einem Bauraum auf der Grundlage von CAD Daten schichtweise aufgebaut.In all processes, a molded body is built up in layers on a building level or in a construction space based on CAD data.

Spezielle Ausgestaltungen der oben genannten Verfahren sind z. B. zu finden in der WO2012/164078 . Hier wird ein Verfahren zum Herstellen eines metallischen oder keramischen Formkörpers beschrieben, in dem eine Suspension aus metallischem oder keramischem Material eingesetzt wird. Diese Druckschrift offenbart das erfindungsgemäße Verfahren nicht und legt dieses auch nicht nahe.Special embodiments of the above methods are for. B. to be found in the WO2012 / 164078 , Here, a method for producing a metallic or ceramic shaped body is described, in which a suspension of metallic or ceramic material is used. This document does not disclose the method of the invention and does not suggest this.

Die EP 1 648 686 B1 beschreibt ein Verfahren zum selektiven Sintern von Teilchenmaterial unter Verwendung eines strahlungsabsorbierenden Materials. Diese Druckschrift offenbart das erfindungsgemäße Verfahren nicht und legt dieses auch nicht nahe.The EP 1 648 686 B1 describes a method of selectively sintering particulate material using a radiation absorbing material. This document does not disclose the method of the invention and does not suggest this.

Die bekannten Verfahren des Standes der Technik weisen verschiedene Probleme und Nachteile auf.The known methods of the prior art have various problems and disadvantages.

Beispielsweise entsteht beim schichtweisen Sintern von losen Partikel-Schüttungen ein Volumenschwund, der desto höher ausfällt, je geringer die Dichte in der Partikelschüttung ist. Üblicherweise werden mit den aus dem Stand der Technik bekannten Verfahren zum Auftragen von Partikelmaterialien in dünner Schicht auf ein Baufeld typische Dichten von weniger als 60% im Verhältnis zum Vollmaterial erreicht. D. h. wenn ein dichtes Bauteil entstehen soll, beträgt der Volumenschund mehr als 40% und damit der lineare Schwund noch mehr als 16%. Ein derartiger Schwund, zumal wenn er schichtweise auftritt, kann zu Verzug im gewünschten Formteil führen, da untere Schichten evtl. bereits vollständig geschwunden sind und sich resultierende Kräfte auf die bereits verfestigten Strukturen ergeben. Ohne Stützstrukturen können sich die verfestigten Partikelbereiche im nicht gesinterten Partikelmaterial frei bewegen und verformen. Ist der Verzug groß genug, dass Teile der gesinterten Oberfläche aus dem Baufeld ragen, kann es sein, dass die Beschichtunseinrichtung die gesinterten Bereiche beim erneuten Schichtauftrag mitreißt und kein weiterer geordneter Aufbau des Formteils stattfinden kann. Zudem können in den Bauteilen Ungenauigkeiten in der Abbildung im Vergleich zu den CAD-Daten entstehen, da es zu Verschiebungen in den einzelnen Partikelschichten beim Auftragen oder beim Verfahren der Bauebene kommen kann. Gewünscht ist auch eine hohe Packdichte in den hergestellten Formkörpern, die in bekannten Verfahren nicht immer gewährleistet ist.For example, the layered sintering of loose particle beds results in a volume shrinkage, the higher the lower the density in the particle bed. Typically, with the methods known from the prior art for applying particulate materials in a thin layer to a construction field, typical densities of less than 60% in relation to the solid material are achieved. Ie. if a dense component is to be created, the bulk volume is more than 40% and thus the linear shrinkage even more than 16%. Such a loss, especially if it occurs in layers, can lead to distortion in the desired molded part, since lower layers may have already completely disappeared and resulting forces on the already solidified structures. Without support structures, the solidified particle areas in the unsintered particulate material are free to move and deform. If the delay is large enough that parts of the sintered surface protrude from the construction field, it may be that the coating device entrains the sintered areas during the re-application of layers and no further orderly construction of the molded part can take place. In addition, in the components inaccuracies in the image in comparison to the CAD data may arise because it may cause shifts in the individual particle layers during application or in the process of the construction level. It is also desirable to have a high packing density in the moldings produced, which is not always guaranteed in known processes.

Es war deshalb eine Aufgabe der vorliegenden Erfindung ein Verfahren bereitzustellen, mit dem qualitativ hochwertige und abbildungsgenaue Formkörper herstellbar sind, weiterhin mit dem eine hohe Partikelpackung in einem Formkörper ermöglicht wird und somit eine sehr genaue Abbildung der CAD-Daten erreicht werden kann, oder zumindest die Nachteile der Verfahren des Standes der Technik vermindert oder vermieden werden können.It was therefore an object of the present invention to provide a method with which high-quality molded articles with exact shape can be produced, furthermore with which a high particle packing in a molded article is made possible and thus a very accurate mapping of the CAD data can be achieved, or at least the Disadvantages of the methods of the prior art can be reduced or avoided.

Kurze Zusammenfassung der ErfindungBrief summary of the invention

In einem Aspekt betrifft die Erfindung ein Verfahren zum Herstellen von Formkörpern, wobei mit einer geeigneten Vorrichtung ein Partikelschlicker (Partikeldispersion, Schlicker, Dispersion) schichtweise auf eine Bauebene, die vorzugsweise als Bauplattform ausgestaltet ist, vorzugsweise bei einer vorbestimmten Temperatur aufgetragen wird, um eine Materialschicht aufzubauen und selektiv ein Bindermaterial aufgebracht wird, das ein energieabsorbierendes Material umfasst und zur selektiven Verfestigung ein Energieeintrag erfolgt.In one aspect, the invention relates to a method for producing shaped bodies, wherein a particle slip (particle dispersion, slurry, dispersion) is applied in layers to a building level, which is preferably designed as a build platform, preferably at a predetermined temperature, around a layer of material and selectively apply a binder material comprising an energy absorbing material and energy input for selective solidification.

In einem weiteren Aspekt betrifft die Erfindung eine Vorrichtung zum Durchführen des Verfahrens.In a further aspect, the invention relates to an apparatus for carrying out the method.

In noch einem weiteren Aspekt betrifft die Erfindung mit dem Verfahren hergestellte Formteile.In yet another aspect, the invention relates to molded parts produced by the method.

Ausführliche Beschreibung der ErfindungDetailed description of the invention

Die Erfindung wird im Folgenden näher beschreiben, wobei einzelne Begriffe im Folgenden näher erläutert werden.The invention will be described in more detail below, wherein individual terms are explained in more detail below.

„Sinterfähiges Material” im Sinne der Erfindung ist jedes Material oder Materialgemisch (201, 202), das in partikulärer Form vorliegt und mittels Energieeintrag verfestigt werden kann. In einem ersten Verfahrensschritt kann zunächst ein Pulverkuchen hergestellt werden. Beispiele für „sinterfähiges Material” sind feinkörnige, keramische, metallische oder kunststoff-basierte Materialien. Diese Materialien sind dem Fachmann auf dem Gebiet des 3D-Druckes bekannt und müssen somit hier nicht im Detail beschrieben werden. Insbesondere geeignet in der Erfindung sind Polyamide, die vorzugsweise als sehr feine Pulver verwendet werden."Sinterable material" in the context of the invention is any material or material mixture ( 201 . 202 ), which is in particulate form and can be solidified by means of energy input. In a first process step, first a powder cake can be produced. Examples of "sinterable material" are fine-grained, ceramic, metallic or plastic-based materials. These materials are known to those skilled in the art of 3D printing and thus need not be described in detail here. Particularly suitable in the invention are polyamides, which are preferably used as very fine powders.

„Schlicker” oder „Materialdispersion” im Sinne der Erfindung besteht aus einer Trägerflüssigkeit und partikulärem Material (z. B. sinterfähiges Material (201 oder 202)), wobei das Verhältnis von partikulärem Material und Trägerflüssigkeit je nach den Materialien und den Maschinenanforderungen individuell eingestellt werden kann. Hierbei haben die Partikelgröße, die Materialeigenschaften der partikulären Materialien, die verwendete Trägerflüssigkeit und die Art des Auftragsmittels einen Einfluss auf das Mischverhältnis. Das in dem „Schlicker” enthaltene partikuläre Material kann ein einziges Material sein oder ein Gemisch aus unterschiedlichen Materialien. Vorzugsweise beinhaltet es oder besteht es aus einem zumindest teilweise schmelzbaren Material. Vorzugsweise ist es ein Metall, eine Keramik, ein Thermoplast, ein Kunststoff wie beispielsweise PMMA, der vorzugsweise sehr feinkörnig ist, oder ein Glaspulver oder eine Mischung aus mehreren der vorgenannten Materialien wie z. B. Glaspulver gemischt mit einem Polymer, wie beispielsweise PMMA. Materialgemische werden dann verwendet, wenn in einem ersten Schritt ein verfestigtes Formteil, (Grünkörper, Formteil) entstehen soll, der in einem weiteren Arbeitsschritt und vorzugsweis in einer anderen Vorrichtung einer weiteren Behandlung unterzogen wird, vorzugsweise hohen Temperaturen, um beispielsweise den Keramikanteil oder den Metallanteil in dem Grünkörper zu versintern. Der „Schlicker” wird vorzugsweise vor dem Aufragen in einer geeigneten Vorrichtung gerührt oder Schwingungen unterzogen, dass er beim Auftragen als eine im Wesentlichen gleichmäßige Dispersion vorliegt. Die Materialschicht entsteht dann dadurch, dass die Trägerflüssigkeit zumindest teilweise abläuft oder/und abdampft."Slurry" or "material dispersion" in the sense of the invention consists of a carrier liquid and particulate material (eg sinterable material (eg 201 or 202 )), wherein the ratio of particulate material and carrier liquid can be adjusted individually depending on the materials and the machine requirements. In this case, the particle size, the material properties of the particulate materials, the carrier liquid used and the type of application agent have an influence on the mixing ratio. The particulate material contained in the "slip" can be a single material or a mixture of different materials. It preferably comprises or consists of an at least partially fusible material. Preferably, it is a metal, a ceramic, a thermoplastic, a plastic such as PMMA, which is preferably very fine-grained, or a glass powder or a mixture of several of the aforementioned materials such. Glass powder mixed with a polymer such as PMMA. Material mixtures are used when, in a first step, a solidified molded part (green body, molded part) is to be produced which is subjected to further treatment in a further working step and preferably in another device, preferably high temperatures, for example the ceramic fraction or the metal fraction to sinter in the green body. The slurry is preferably agitated or vibrated in a suitable device prior to application so as to be present as a substantially uniform dispersion upon application. The material layer is then formed by the carrier liquid at least partially running off and / or evaporating.

Die „Trägerflüssigkeit” (200) im Sinne der Erfindung ist jede mit dem jeweiligen partikulären Material kombinierbare Flüssigkeit, die das partikuläre Material dispergieren kann, ohne es aufzulösen. Vorzugsweise ist die „Trägerflüssigkeit” Wasser oder ein organisches Lösungsmittel, vorzugsweise ein Alkohol.The "carrier liquid" ( 200 ) within the meaning of the invention is any liquid which can be combined with the respective particulate material and which can disperse the particulate material without dissolving it. Preferably, the "carrier liquid" is water or an organic solvent, preferably an alcohol.

„Materialschicht” im Sinne der Erfindung ist die Schicht, die mit einem Auftragsmittel (auch als Recoater bezeichnet) schichtweise auf beispielsweise die Bauebene (vorzugsweise die Bauplattform) bzw. die letzte vorhergehende Materialschicht aufgetragen wird und nach Entfernen oder Verdampfen eines Teils oder des wesentlichen Teils der Trägerflüssigkeit entsteht und die im weiteren selektiv verfestigt wird, um den herzustellenden Formkörper zu ergeben. Die Materialschicht wird in ihrer Schichtdicke mit geeigneten Mitteln individuell eingestellt. Die Schichtdicke der aufgetragenen Partikelschicht kann 1–500 μm betragen, vorzugsweise 100 μm, oder 200 μm."Material layer" in the context of the invention is the layer which is applied with a coating agent (also referred to as recoater) in layers on, for example, the building level (preferably the construction platform) or the last preceding layer of material and after removal or evaporation of a part or the essential part the carrier liquid is formed and which is further selectively solidified to give the molded article to be produced. The material layer is adjusted individually in its layer thickness by suitable means. The layer thickness of the applied particle layer can be 1-500 μm, preferably 100 μm or 200 μm.

„Bindermaterial” im Sinne der Erfindung ist ein Material, das selektiv auf jede Partikelschicht aufgebracht wird und ein Energie-absorbierendes oder Strahlung-absorbierendes Material umfasst oder aus ihm besteht. Dabei kann erfindungsgemäß das Aufbringen des „Bindermaterials” nach jedem Partikelauftrag erfolgen oder in regelmäßigen oder unregelmäßigen Abstanden, beispielsweise nach jedem zweiten, dritten, vierten, fünften oder sechsten Partikelschichtauftrag. Das „Bindermaterial” wird dabei mit geeigneten Mitteln wie einem Druckkopf (100) oder anderen geeigneten Auftragsmitteln in einer für das Verfahren geeigneten und vorteilhaften Menge gemäß des aktuellen Querschnittes des gewünschten Formkörpers aufdosiert. Im Zusammenspiel mit der Wärme- oder Energiequelle wird dabei geeignetes Energie-absorbierendes oder Strahlung-absorbierendes Material verwendet, das auch in Hinsicht auf das verwendete Partikelmaterial über die entsprechenden Eigenschaften verfügt."Binder material" in the sense of the invention is a material which is applied selectively to each particle layer and comprises or consists of an energy-absorbing or radiation-absorbing material. In this case, according to the invention, the application of the "binder material" can take place after each particle application or at regular or irregular intervals, for example after every second, third, fourth, fifth or sixth particle layer application. The "binder material" is thereby by suitable means such as a printhead ( 100 ) or other suitable application means in an appropriate and advantageous for the process amount according to the current cross-section of the desired shaped body added. In conjunction with the heat or energy source, suitable energy-absorbing or radiation-absorbing material is used which also has the appropriate properties with regard to the particulate material used.

„Energie-absorbierendes Material” im Sinne der Erfindung oder „Strahlung-absorbierendes Material” ist jegliches Material, das Energie oder Wärme aufnimmt und an das Umgebungsmaterial abgibt und so eine lokale Temperaturerhöhung bewirkt. Dadurch kann ein selektives Verfestigen erreicht werden."Energy-absorbing material" in the sense of the invention or "radiation-absorbing material" is any material that absorbs energy and heat and releases it to the surrounding material, thus causing a local temperature increase. Thereby, a selective solidification can be achieved.

Geeignete Materialien im Sinne der Erfindung sind beispielsweise IR-Absorber, insbesondere enthalten diese Russ oder/und Graphit.Suitable materials in the context of the invention are, for example, IR absorbers, in particular they contain carbon black or / and graphite.

„Auftragsvorrichtung”, „Auftragemittel” oder „Schlickerauftragsvorrichtung” oder „Dosierer” (101) im Sinne der Erfindung ist jegliche Vorrichtung mit der der Schlicker gezielt und dosierbar auftragbar ist, um eine Materialschicht zu erzeugen, die eine definierte Schichtdicke aufweist. Die „Schlickerauftragsvorrichtung” kann auch als Recoter bezeichnet werden und ist so konstruiert, dass eine einheitliche Materialschicht auf die Bauebene bzw. die in einem vorherigen Arbeitsschritt aufgebrachte Materialschicht aufgetragen werden kann."Applicator", "Applicator" or "Slip Applicator" or "Dispenser" ( 101 ) in the sense of the invention, any device with which the slurry is targeted and metered can be applied to produce a layer of material having a defined layer thickness. The "slip application device" can also be referred to as recoter and is designed so that a uniform layer of material can be applied to the construction level or the applied in a previous step material layer.

Unter „Druckvorrichtung” im Sinne der Erfindung ist ein Mittel zu verstehen, das geeignet ist, das Bindermaterial in einem definierten Bereich auf der Materialschicht in vorbestimmter Menge (Volumen) und zeitlich definiert aufzutragen.In the context of the invention, "printing device" is to be understood as meaning a device which is suitable for applying the binder material in a defined area on the material layer in a predetermined amount (volume) and in a defined time.

„Bauebene” oder „Bauplattform” (z. B. 105) im Sinne der Erfindung ist der Baubereich als Fläche, auf die der Schlicker aufgetragen wird und die Materialschicht entsteht. Der Baubereich entspricht in seiner Fläche im wesentlichen der Bauebene. Die „Bauebene” kann Teil eines Baubehälters zur Durchführung des Verfahrens im Batchverfahren sein bzw. ist in den Baubehälter einschiebbar und herausnehmbar und vorzugsweise höhenverstellbar. „Bauebene” in einem kontinuierlichen Verfahrensaufbau ist die Fläche, auf die der Schlicker horizontal oder vorzugsweise schräg, d. h. in einem Winkel kleiner 90° zu der horizontalen Bauebene aufgebracht wird."Construction level" or "Construction platform" (eg 105 ) within the meaning of the invention, the construction area as a surface on which the slurry is applied and the material layer is formed. The construction area corresponds in its area essentially to the building level. The " Construction level "can be part of a construction container for carrying out the process in a batch process or can be inserted into the construction container and removed and preferably height-adjustable. "Construction level" in a continuous process structure is the area to which the slurry is applied horizontally or preferably obliquely, ie at an angle smaller than 90 ° to the horizontal construction level.

„Energieeintrag” im Sinne der Erfindung ist das Einbringen von Wärme- oder Strahlungsenergie während des Verfahrens. Insbesondere das Einbringen von Wärme- oder Strahlungsenergie in den Bauraum insgesamt oder lokal. „Lokal” im Sinne der Erfindung bedeutet, dass eine Energiequelle wie ein IR-Strahler (401) oder gleichwirkende Vorrichtungen (z. B. eine Kombination von 400 und 401) über der obersten Materialschicht verfahren werden oder sich darüber befindet und somit die Temperatur in der obersten Materialschicht, vorzugsweise in der obersten und darunter liegenden Materialschicht über die Umgebungstemperatur angehoben wird. Der Energieeintrag bewirkt, dass die Materialschichten, auf die ein Energie-absorbierendes Bindermaterial aufgebracht wurde, sich verbinden, vorzugsweise versintern, und so den dreidimensionalen Formkörper entsprechend den Computerdaten (CAD-Daten) bilden."Energy input" within the meaning of the invention is the introduction of heat or radiation energy during the process. In particular, the introduction of heat or radiation energy in the space overall or locally. "Local" in the sense of the invention means that an energy source such as an IR emitter ( 401 ) or equivalent devices (eg a combination of 400 and 401 ) are moved over the uppermost layer of material or located above it and thus the temperature in the uppermost layer of material, preferably in the uppermost and underlying layer of material is raised above the ambient temperature. The energy input causes the material layers to which an energy-absorbing binder material has been applied to bond, preferably sinter, thus forming the three-dimensional shaped body in accordance with the computer data (CAD data).

„Energiequelle” im Sinne der Erfindung ist eine Vorrichtung, die Energie beispielsweise in Form von Wärmestrahlung (401) abgibt oder jede andere gleichwirkende Vorrichtung, die diesen Zweck erfüllt und in dem erfindungsgemäßen Verfahren somit einsetzbar ist."Energy source" in the sense of the invention is a device which converts energy, for example in the form of thermal radiation ( 401 ) or any other equivalent device that fulfills this purpose and thus can be used in the method according to the invention.

Unter „Geordnetem Abkühlen” im Sinne der Erfindung ist zu verstehen, dass der Formkörper in einer Art und Weise während des Verfahrensprozesses oder nach Abschluss des Materialschichtaufbaus in einem zeitlichen Rahmen abgekühlt wird, der auf die verwendeten Materialien so abgestimmt ist, damit das fertig gestellte Formteil bestmögliche Materialeigenschaften aufweist und hinsichtlich Materialschwund und Verzug sowie Formteilgenaugkeit bestmögliche Arbeitsergebnisse erzielt werden. Vorzugsweise wird das Formteil mit geeigneten Mitteln langsam über einen Zeitraum von einer oder mehreren Stunden abgekühlt, oder in einem Schritt schockgekühlt.By "orderly cooling" within the meaning of the invention is meant that the shaped body is cooled in a manner during the process or after completion of the material layer construction in a time frame which is adapted to the materials used so that the finished molded part has the best possible material properties and the best possible work results are achieved in terms of material shrinkage and distortion and Formteilgenaugkeit. Preferably, the molding is slowly cooled by suitable means for a period of one or more hours, or shock-cooled in one step.

Bevorzugte Aspekte der Erfindung werden im Folgenden weiter erläutert.Preferred aspects of the invention will be further explained below.

In einem bevorzugten Aspekt betrifft die Erfindung ein Verfahren zum Herstellen dreidimensionaler Formteile in einer Vorrichtung, das die folgenden Schritte in einem gegebenenfalls temperierten Bauraum umfasst (siehe auch 1):

  • a. Herstellen einer Materialschicht durch Auftragen von Schlicker mit einem Auftragsmittel auf eine Bauebene (vorzugsweise Bauplattform), gegebenenfalls in einem Bauraum, in einer vorbestimmten Schichtdicke,
  • b. Auftragen eines flüssigen Bindermaterials auf ausgewählte Bereiche der Materialschicht,
  • c. Einbringen von Energie,
  • d. Absenken der Bauebene um eine gewünschte Schichtdicke oder Anheben des Auftragsmittels und gegebenenfalls weiterer Vorrichtungsmittel um eine gewünschte Schichtdicke,
  • e. Wiederholen der Schritte a.)–d.), wobei das Bindermaterial ein Energie-absorbierendes Material enthält oder daraus besteht,
  • f. Lösen des die Formteile umgebenden Materials, um die Formteile zu gewinnen.
In a preferred aspect, the invention relates to a method for producing three-dimensional molded parts in a device which comprises the following steps in an optionally temperature-controlled installation space (see also FIG 1 ):
  • a. Producing a material layer by applying slip with a coating agent on a building level (preferably building platform), optionally in a space, in a predetermined layer thickness,
  • b. Applying a liquid binder material to selected areas of the material layer,
  • c. Introducing energy,
  • d. Lowering the construction plane by a desired layer thickness or raising the application agent and optionally further device means by a desired layer thickness,
  • e. Repeating steps a.) - d.), Wherein the binder material contains or consists of an energy-absorbing material,
  • f. Loosen the material surrounding the moldings to recover the moldings.

Das erfindungsgemäße Verfahren zeichnet sich durch eine Vielzahl von Vorteilen und positiven Effekten aus. Beispielsweise kann durch die Verwendung eines Schlickers, insbesondere von partikulärem Material in einer Dispersion, beim Auftragen und zum Erstellen einer Materialschicht vorteilhafter Weise eine gute und feste Packung der Materialschicht erreicht werden. Auch können mit dem erfindungsgemäßen Verfahren überraschender Weise feinste Partikelmaterialien zum Einsatz kommen, die in anderen bekannten Verfahren des 3D-Drucks nicht verwendbar waren. Weiterhin kann mit dem erfindungsgemäßen Verfahren in einer ersten Stufe des Verfahrens vorteilhafter Weise ein fester Pulverkuchen oder Partikelkuchen erzielt werden. Das erfindungsgemäße Verfahren erreicht so eine sehr stabile Positionierung und Lagerung der Partikel in den aufgetragenen Schichten. Somit wird eine Partikelverschiebung verhindert, was sich positiv auf die Baugenauigkeit auswirkt.The method according to the invention is distinguished by a multiplicity of advantages and positive effects. For example, by the use of a slip, in particular of particulate material in a dispersion, during the application and to create a material layer advantageously, a good and firm packing of the material layer can be achieved. Also surprisingly, the process according to the invention makes it possible to use extremely fine particulate materials which were not usable in other known methods of 3D printing. Furthermore, with the method according to the invention in a first step of the process advantageously a solid powder cake or particle cake can be achieved. The inventive method thus achieves a very stable positioning and storage of the particles in the applied layers. Thus, a particle shift is prevented, which has a positive effect on the accuracy of construction.

In einer bevorzugten erfindungsgemäßen Ausführungsform des Verfahrens umfasst der Schlicker eine Trägerflüssigkeit (200) und partikuläres Material (201, 202). Das partikuläre Material ist vorzugsweise zumindest teilweise aufschmelzbar.In a preferred embodiment of the method according to the invention, the slip comprises a carrier liquid ( 200 ) and particulate material ( 201 . 202 ). The particulate material is preferably at least partially fusible.

Vorzugsweise werden die Prozessbedingungen so gewählt, dass das Formteil durch zumindest teilweises selektives Aufschmelzen (203, 204) des Materials im Prozess entsteht.The process conditions are preferably selected such that the molded part is at least partially selectively fused ( 203 . 204 ) of the material in the process arises.

Im Schlicker kann erfindungsgemäß jede mit den anderen Komponenten kompatible Trägerflüssigkeit (200) verwendet werden, vorzugsweise wird sie ausgewählt aus der Gruppe bestehend aus Wasser oder einem organischen Lösungsmittel, vorzugsweise einem Alkohol. Das partikuläre Material ist vorzugsweise ein sinterfähiges Material (202, 203), vorzugsweise ist es ausgewählt aus der Gruppe bestehend aus einem Thermoplast, einem Polykondensat, vorzugsweise ein Polyamid (PA), aus metallischen oder/und keramischen Partikeln oder einem Gemisch davon. Die Trägerflüssigkeit (200) ist so gewählt, dass sich das partikuläre Material (202, 203) darin nicht löst.In the slip according to the invention any carrier liquid compatible with the other components ( 200 ), preferably it is selected from the group consisting of water or an organic solvent, preferably an alcohol. The particulate material is preferably a sinterable material ( 202 . 203 ), preferably it is selected from the group consisting of a thermoplastic, a polycondensate, preferably a polyamide (PA), from metallic or / and ceramic particles or a mixture thereof. The carrier liquid ( 200 ) is chosen so that the particulate material ( 202 . 203 ) does not solve it.

Dem Fachmann sind Energie-absorbierende Materialien bekannt und er wird für das Verfahren und in Hinsicht auf die übrigen Komponenten hierzu kompatible Energie-absorbierende Materialien auswählen. Vorzugsweise enthält das Energie-absorbierende Material Graphit oder Russ.Energy-absorbing materials will be known to those skilled in the art and will select compatible energy-absorbing materials for the process and with respect to the other components. Preferably, the energy-absorbing material contains graphite or soot.

Das Verfahren kann in üblichen 3D-Druckvorrichtungen durchgeführt werden, die vorzugsweise Modifikationen aufweisen wie einen Mischer (300) für den Schlicker. Der Schlicker wird mit üblichen und für dieses Material geeigneten Mitteln aufgebracht, wobei der Schlicker vorzugsweise mit einer Beschichtervorrichtung (101) aufgebracht wird.The method can be carried out in conventional 3D printing devices, which preferably have modifications, such as a mixer ( 300 ) for the slip. The slip is applied by conventional means suitable for this material, the slip preferably being treated with a coater device ( 101 ) is applied.

Die Schichtdicke der Materialschicht kann mit verschiedenen Vorrichtungsmechanismen eingestellt werden. So kann beispielsweise die Beschichtungseinheit (101) und damit verbundene Mittel um die entsprechende Schichtdicke nach oben verfahren werden. Eine andere Möglichkeit ist das Absenken der Bauebene (105). Möglich ist auch, dass ein Baubehälter verwendet wird, in dem die Bauebene (105) verfahrbar ist. Vorzugsweise wird die vorbestimmte Höhe der Materialschicht durch den Abstand der Beschichtervorrichtung (101) von der Bauebene eingestellt. Wird ein kontinuierliches Verfahren gefahren, beispielsweise indem die Materialschicht in einem Winkel zur Bauebene aufgetragen wird, ergibt sich die Schichtdicke durch den Vortrieb im Prozessbetrieb.The layer thickness of the material layer can be adjusted with different device mechanisms. For example, the coating unit ( 101 ) and associated means are moved upwards by the corresponding layer thickness. Another possibility is to lower the building level ( 105 ). It is also possible that a building container is used, in which the building level ( 105 ) is movable. Preferably, the predetermined height of the material layer is determined by the distance of the coater device ( 101 ) from the construction level. If a continuous process is run, for example by the material layer being applied at an angle to the construction level, the layer thickness results from the propulsion in process operation.

Der Bauraum oder die Umgebung des Beschichters (101) kann temperiert werden und auf eine für das Verfahren vorteilhafte Temperatur eingestellt und gehalten werden. Hierzu kann das Temperieren mit Mitteln außerhalb oder innerhalb des Bauraumes (400, 401) oder in der Umgebung des Schichtauftragsortes erfolgen, vorzugsweise wird die Bauebene beheizt oder mit IR (401) bestrahlt.The installation space or the environment of the coater ( 101 ) can be tempered and adjusted to a temperature advantageous for the process and held. For this purpose, the tempering with resources outside or inside the installation space ( 400 . 401 ) or in the vicinity of the layer order location, preferably the building level is heated or with IR ( 401 ) irradiated.

Entsprechend der verwendeten partikulären Materialien und der Trägerflüssigkeit wird die Temperatur ausgewählt und eingestellt. Vorzugsweise wird der Bauraum bzw. die Umgebungstemperatur auf eine Temperatur von 40°C bis 200°C, vorzugsweise auf 150°C bis 190°C, mehr bevorzugt auf 160°C bis 170°C, temperiert.According to the particulate materials used and the carrier liquid, the temperature is selected and adjusted. Preferably, the installation space or the ambient temperature to a temperature of 40 ° C to 200 ° C, preferably at 150 ° C to 190 ° C, more preferably at 160 ° C to 170 ° C, tempered.

Um das Formteil nach dem selektiven Auftragen des Energie-absorbierenden Bindermaterials zu sintern oder zumindest teilweise zu verschmelzen (203, 204) wird der Energieeintrag nach jedem, jedem zweiten oder nach jedem dritten bis zwölften Materialschichtaufbauschritt erfolgen.In order to sinter or at least partially fuse the molded part after the selective application of the energy-absorbing binder material ( 203 . 204 ), the energy input will occur after every, every second or every third to twelfth material layer buildup step.

Zum Energieeintrag kann jedes geeignete Mittel verwendet werden. Vorzugsweise wird der Energieeintrag in Form von elektromagnetischer Energie (401), mittels Heizstrahler im IR-A oder/und IR-B-Bereich oder mittels IR-Strahler erfolgen.For energy input, any suitable means can be used. Preferably, the energy input in the form of electromagnetic energy ( 401 ), by means of radiant heaters in the IR-A and / or IR-B range or by means of IR radiators.

Dabei werden die Verfahrensbedingungen so ausgewählt und eingestellt, dass die Temperatur in der Materialschicht, vorzugsweise in der letzten Materialschicht, auf 190°C bis 210°C, vorzugsweise auf 200°C, gebracht wird.The process conditions are selected and adjusted so that the temperature in the material layer, preferably in the last material layer, to 190 ° C to 210 ° C, preferably to 200 ° C, brought.

Nachdem der Aufbau des Formteils (102) abgeschlossen ist, wird das Formteil eingebettet in dem partikulärem Material abgekühlt. Zuletzt wird das Formteil (102) von dem nicht verfestigten Material (502) getrennt, d. h. entpackt. Dabei wird so vorgegangen, dass das hergestellte Formteil nicht beschädigt wird. Vorzugsweise wird das Entpacken des Formteils in einem Flüssigkeitsbad, durch Zugabe oder Abspritzen (500, 501) des Materialblockes (502) mit einer wässrigen Flüssigkeit (501) oder mittels anderem geeigneten Vorgehen erfolgen. Die wässrige Flüssigkeit sollte dabei in ähnlicher Weise wie die Trägerflüssigkeit für die Herstellung des Schlickers so ausgewählt werden, dass sich das partikuläre Material darin nicht löst.After the construction of the molding ( 102 ) is completed, the molding is cooled embedded in the particulate material. Finally, the molded part ( 102 ) of the unconsolidated material ( 502 ), ie unpacked. The procedure is that the molded part produced is not damaged. Preferably, the unpacking of the molding in a liquid bath, by adding or spraying ( 500 . 501 ) of the material block ( 502 ) with an aqueous liquid ( 501 ) or by other suitable means. The aqueous liquid should be selected in a similar manner as the carrier liquid for the preparation of the slurry so that the particulate material does not dissolve therein.

Das Bindermaterial wird mit dem Fachmann bekannten Vorrichtungsmitteln selektiv aufgebracht, vorzugsweise mittels einer Druckvorrichtung (100), die vorzugsweise computergesteuerte Düsen aufweist.The binder material is applied selectively with device means known to those skilled in the art, preferably by means of a printing device ( 100 ), which preferably has computer-controlled nozzles.

Es können handelsübliche Schlicker verwendet werden oder die Schlicker individuell zusammengemischt werden. Vorteilhaft wird der Schlicker in einem Behälter vorgehalten, der eine Rühreinrichtung (300) oder einen Rüttler aufweist, damit der Schlicker eine gleichmäßige Dispersion ist und somit ein gleichmäßiger Materialauftrag gewährleistet wird. Vorzugsweise wird der Schlicker kurz vor dem Auftragen aus partikulärem Material und einer Trägerflüssigkeit zusammengemischt.Commercially available slips can be used or the slips mixed individually. Advantageously, the slurry is held in a container containing a stirring device ( 300 ) or a vibrator, so that the slurry is a uniform dispersion and thus a uniform material application is ensured. Preferably, the slurry is mixed together just before application of particulate material and a carrier liquid.

Nach dem Schlickerauftrag entsteht eine Materialschicht mit vorbestimmter Schichtdicke. Dies wird vorteilhafter Weise erreicht durch Entfernen, vorzugsweise Verdampfen, der Trägerflüssigkeit, vorzugsweise in weniger als 90 Sekunden pro Materialschicht, vorzugsweise 40 bis 90 Sekunden, vorzugsweise 60 bis 80 Sekunden.After slip application, a layer of material with a predetermined layer thickness is formed. This is advantageously achieved by removing, preferably evaporating, the carrier liquid, preferably in less than 90 seconds per material layer, preferably 40 to 90 seconds, preferably 60 to 80 seconds.

Wie ausgeführt wurde können verschiedene partikuläre Materialien verwendet werden, die unterschiedliche Partikeldurchmesser aufweisen können. Vorzugsweise wird ein partikuläres Material mit einem mittleren Durchmesser von 1 bis 250 μm, vorzugsweise von 10 bis 150 μm, mehr bevorzugt von 30 bis 80 μm, verwendet.As stated, various particulate materials may be used which may have different particle diameters. Preferably, a particulate material having an average diameter of from 1 to 250 μm, preferably from 10 to 150 μm, more preferably from 30 to 80 μm, is used.

Die Schichtdicke kann individuell eingestellt werden und auch während des Aufbauprozesses variiert werden. Vorzugsweise beträgt die Schichtdicke der Materialschicht 1–500 μm, vorzugsweise 30–300 μm, mehr bevorzugt 50–150 μm. The layer thickness can be adjusted individually and also varied during the building process. The layer thickness of the material layer is preferably 1-500 μm, preferably 30-300 μm, more preferably 50-150 μm.

Das Bindermaterial wird je nach Schichtdicke und Materialzusammenstellung entsprechend und vorteilhaft dosiert. Vorzugsweise beträgt der Anteil des Bindermaterials weniger als 20 Vol.-%, vorzugsweise weniger als 10 Vol.-%, mehr bevorzugt weniger als 5 Vol.-%, noch mehr bevorzugt weniger als 2 Vol.-% bezogen auf das Gesamtvolumen des Formteils.The binder material is metered according to the layer thickness and material composition correspondingly and advantageously. Preferably, the proportion of binder material is less than 20% by volume, preferably less than 10% by volume, more preferably less than 5% by volume, even more preferably less than 2% by volume, based on the total volume of the molded part.

Vorzugsweise weist die Materialschicht nach dem Entfernen der Trägerflüssigkeit etwa 50–80% der Festkörperdichte des partikulären Materials auf.Preferably, after removal of the carrier liquid, the material layer has about 50-80% of the solid density of the particulate material.

Nach dem Entpacken des Formteils kann das Formteil weiteren Behandlungsschritten unterzogen werden. Vorzugsweise sind die weiteren Verfahrensschritte ausgewählt aus einer Wärmebehandlung und Sintern.After unpacking the molding, the molding can be subjected to further treatment steps. The further method steps are preferably selected from a heat treatment and sintering.

Das erfindungsgemäße Verfahren kann mittels einem auswechselbaren Baubehälter im Batchverfahren oder in einem kontinuierlichen Verfahren durchgeführt wird. Die 3D-Druckvorrichtung wird entsprechende dem Fachmann bekannte Vorrichtungsmerkmale aufweisen.The process according to the invention can be carried out by means of an exchangeable construction container in a batch process or in a continuous process. The 3D printing device will have corresponding device features known to those skilled in the art.

Vorzugsweise wird das Auftragen des Schlickers horizontal erfolgen (siehe 1) oder in einer bevorzugten Ausführungsform in einem Winkel kleiner 90° zu der horizontalen Bauebene (Schrägdruckverfahren). Das erfindungsgemäße Verfahren ist besonders geeignet für ein Schrägdruckverfahren und vorzugsweise in Kombination mit kontinuierlicher Verfahrensführung, da ein Schrägdruckverfahren besondere Anforderungen an die Verschiebefestigkeit der Materialschichten hat. Diese speziellen Anforderungen werden in besonders vorteilhafter Weise mit dem erfindungsgemäßen Verfahren erfüllt.Preferably, the application of the slurry will be horizontal (see 1 ) or in a preferred embodiment at an angle smaller than 90 ° to the horizontal plane (oblique printing method). The method according to the invention is particularly suitable for a skew printing method and preferably in combination with continuous method guidance, since a skew printing method has special requirements for the displacement resistance of the material layers. These special requirements are met in a particularly advantageous manner with the method according to the invention.

In einem weiteren Aspekt ist die Erfindung gerichtet auf eine Vorrichtung zum Herstellen von dreidimensionalen Formteilen mit einem wie oben beschriebenen erfindungsgemäßen Verfahren.In a further aspect, the invention is directed to an apparatus for producing three-dimensional moldings with a method according to the invention as described above.

Gleichermaßen ist ein Aspekt der Erfindung Formteile (102) hergestellt nach einem erfindungsgemäßen Verfahren.Similarly, one aspect of the invention is molded parts ( 102 ) prepared by a method according to the invention.

Ein weiterer Vorteil des erfindungsgemäßen Verfahrens ist, dass Materialien Verwendung finden können sowie Formteile hergestellt werden können, die bisher so nicht produziert werden konnten. Insbesondere ist ein Vorteil bei der Verwendung von sehr feinen Partikelmaterialien, dass vorteilhafter Weise eine sehr dichte Packung der Schicht erreicht werden kann. Dies hat Vorteile in Bezug auf die Festigkeit des schon vor dem selektiven Verfestigungsschritt erhaltenen Baukörpers an sich bzw. des Grünkörpers an sich. Weiterhin wird dadurch der Schwund beim Sintern reduziert und somit die Formkörpergenauigkeit im Vergleich zu den CAD-Daten verbessert. Insbesondere wird mit dem erfindungsgemäßen Verfahren ein geringerer Schwund als bei bekannten Verfahren erreicht und in Folge werden Verzug und Verwerfungen im Bauteil deutlich verringert oder gänzlich vermieden und somit die Bauteilqualität merklich erhöht.Another advantage of the method according to the invention is that materials can be used as well as molded parts can be produced that could not be produced so far. In particular, an advantage of using very fine particulate materials is that advantageously a very dense packing of the layer can be achieved. This has advantages in terms of the strength of the structure itself or of the green body per se obtained even before the selective solidification step. Furthermore, this reduces the shrinkage during sintering and thus improves the molding accuracy in comparison to the CAD data. In particular, the method according to the invention achieves a lower shrinkage than in the case of known methods, and consequently warpage and distortions in the component are significantly reduced or completely avoided, and thus the component quality is markedly increased.

Zudem ist es von Vorteil, dass durch die sehr feinen verwendbaren Partikelmaterialien hohe räumliche Auflösungen erzielt werden können. Dies kann sowohl mit einer feineren Druckauflösung als auch mit einer geringeren Schichtstärke genutzt werden. Die so erzeugten Bauteile weisen gegenüber Vergleichsteilen des Standes der Technik höhere Oberflächenguten auf.In addition, it is advantageous that high spatial resolutions can be achieved by the very fine usable particulate materials. This can be used both with a finer print resolution and with a lower layer thickness. The components produced in this way have higher surface finishes compared to comparable parts of the prior art.

In einer weiteren bevorzugten Ausführungsform ist die Bauebene temperiert, sodass dem Schlicker schnell die Trägerflüssigkeit entzogen wird und ein stabiler Körper (102) entsteht. Vorzugsweise wird dem aufgebrachten Schlicker durch zusätzliche Wärmeenergie weitere Trägerflüssigkeit (200) entzogen, wodurch der Pulverkuchen noch stabiler wird. Dies kann beispielsweise durch die Verwendung von IR-Bestrahlung (401) erreicht werden.In a further preferred embodiment, the building level is tempered, so that the slurry is quickly removed from the carrier liquid and a stable body ( 102 ) arises. Preferably, the applied slurry by additional heat energy further carrier liquid ( 200 ), whereby the powder cake becomes even more stable. This can be achieved, for example, by the use of IR radiation ( 401 ) can be achieved.

In einem zweiten Prozessschritt bewirkt die IR-Bestrahlung (401), dass die mit dem Bindermaterial bedruckten Bereiche verschmelzen bzw. versintern und einen Formkörper bilden, der leicht entpackt werden kann. Dieser Formkörper kann dann in bevorzugten Ausführungsformen weiteren Verfahrensschritten unterzogen werden.In a second process step, the IR irradiation ( 401 ) that the areas printed with the binder material fuse or sinter and form a shaped body that can be easily unpacked. This shaped body can then be subjected to further process steps in preferred embodiments.

Im Sinne der Erfindung sind die einzelnen oder in Kombination beschriebenen Merkmale der Erfindung alle oder in jeder möglichen Kombination miteinander kombinierbar und einzeln auswählbar und ergeben so eine Vielzahl von bevorzugten Ausführungsformen. Merkmale, die einzeln dargestellt sind, sollen nicht als isolierte bevorzugte Ausführungsformen der Erfindung verstanden werden, sondern sind im Sinne der Erfindung alle und in jeglicher Weise miteinander kombinierbar, soweit dem nicht die Ausführbarkeit entgegensteht.For the purposes of the invention, the features of the invention that are described individually or in combination are combinable and individually selectable all or in any possible combination, thus resulting in a large number of preferred embodiments. Features that are shown individually are not to be understood as isolated preferred embodiments of the invention, but are in the context of the invention all and in any way combined with each other, as far as the feasibility opposes.

Kurze Beschreibung der Figuren:Brief description of the figures:

1: Schema eines erfindungsgemäßen Verfahrensablaufes 1 : Scheme of a process sequence according to the invention

2: Illustration der Verdichtung der Partikelschüttung während eines erfindungsgemäßen Verfahrensablaufes 2 : Illustration of the compression of the particle bed during a process according to the invention

3: Schema einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens 3 : Scheme of an apparatus for carrying out the method according to the invention

4: Vorrichtungen zur Einbringung von Energie im erfindungsgemäßen Verfahren 4 : Devices for introducing energy in the method according to the invention

5: Illustration des Auslösens eines Bauteils 5 Image: Illustration of triggering a component

BezugszeichenlisteLIST OF REFERENCE NUMBERS

100100
Druckkopfprinthead
101101
SchlickerauftragseinheitSchlickerauftragseinheit
102102
Bauteilcomponent
103103
Energieenergy
104104
Abgesenkte SchichtLowered layer
105105
Bauplattformbuilding platform
200200
Dispersionsmediumdispersion medium
201201
Sinterfähige und nicht sinterfähige PartikelSinterable and non-sinterable particles
202202
Binderpartikelbinder particles
203203
Sinterbrückensintered bridges
204204
KlebebrückenMaryland bridges
300300
Rührerstirrer
301301
Pumpepump
400400
LüfterFan
401401
Strahlungsquelleradiation source
402402
Verfahreinheittraversing
500500
Spüldüserinsing nozzle
501501
LösemittelstrahlSolvent beam
502502
PartikelmaterialkuchenParticulate matter cake

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • WO 2012/164078 [0005] WO 2012/164078 [0005]
  • EP 1648686 B1 [0006] EP 1648686 B1 [0006]

Claims (10)

Verfahren zum Herstellen dreidimensionaler Formteile in einer Vorrichtung, das die Schritte umfasst: a. Herstellen einer Materialschicht durch Auftragen von Schlicker mit einem Auftragsmittel auf eine Bauebene, gegebenenfalls in einem Bauraum, in einer vorbestimmten Schichtdicke, b. Auftragen eines flüssigen Bindermaterials auf ausgewählte Bereiche der Materialschicht, c. Einbringen von Energie, d. Absenken der Bauebene um eine gewünschte Schichtdicke oder Anheben des Auftragsmittels und gegebenenfalls weiterer Vorrichtungsmittel um eine gewünschte Schichtdicke, e. Wiederholen der Schritte a.)–d.), wobei das Bindermaterial ein Energie-absorbierendes Material enthält oder daraus besteht, f. Lösen des die Formteile umgebenden Materials, um die Formteile zu gewinnen.Method for producing three-dimensional molded parts in a device comprising the steps: a. Producing a material layer by applying slip with a coating agent to a building level, optionally in a construction space, in a predetermined layer thickness, b. Applying a liquid binder material to selected areas of the material layer, c. Introducing energy, d. Lowering the construction plane by a desired layer thickness or raising the application agent and optionally further device means by a desired layer thickness, e. Repeating steps a.) - d.), wherein the binder material contains or consists of an energy-absorbing material, f. Loosen the material surrounding the moldings to recover the moldings. Verfahren nach Anspruch 1, wobei der Schlicker eine Trägerflüssigkeit und partikuläres Material umfasst, wobei das partikuläre Material ein zumindest teilweise schmelzbares Material ist oder ein solches umfasst, vorzugsweise wobei die Prozessbedingungen so gewählt werden, dass das Formteil durch zumindest teilweises selektives Aufschmelzen des schmelzbaren Materials im Schlicker im Prozess entsteht, vorzugsweise wobei die Trägerflüssigkeit ausgewählt wird aus der Gruppe bestehend aus Wasser oder einem organischen Lösungsmittel, vorzugsweise einem Alkohol und wobei das partikuläre Material ein sinterfähiges Material ist, vorzugsweise ist es ausgewählt aus der Gruppe bestehend aus einem Thermoplast, einem Polykondensat, vorzugsweise ein Polyamid (PA), aus metallischen oder/und keramischen Partikeln oder einem Gemisch davon, vorzugsweise wobei das Energie-absorbierende Material, Graphit oder Russ enthält, vorzugsweise wobei das Auftragsmittel eine Beschichtervorrichtung ist, vorzugsweise wobei die gewünschte Schichtdicke der Materialschicht während des Verfahrens konstant bleibt oder variieren kann oder bei jedem Schlickerauftrag neu gewählt wird.The method of claim 1, wherein the slurry comprises a carrier liquid and particulate material, wherein the particulate material is or includes an at least partially fusible material, preferably wherein the process conditions are selected so that the molded part is formed by at least partial selective melting of the fusible material in the slurry in the process, preferably wherein the carrier liquid is selected from the group consisting of water or an organic solvent, preferably an alcohol, and wherein the particulate material is a sinterable material, preferably it is selected from the group consisting of a thermoplastic, a polycondensate, preferably a polyamide (PA) , of metallic or / and ceramic particles or a mixture thereof, preferably wherein the energy-absorbing material contains graphite or carbon black, preferably wherein the application means is a coater, preferably wherein the desired layer thickness of the material layer remains constant or can vary during the process or is newly selected with each slip application. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Bauplattform oder/und der Bauraum temperiert wird, und vorzugsweise das Temperieren mit Mitteln außerhalb oder innerhalb des Bauraumes erfolgt, vorzugsweise wird die Bauplattform beheizt oder mit IR bestrahlt, vorzugsweise wobei die Bauplattform oder/und der Bauraum auf eine Temperatur von 40°C bis 200°C, vorzugsweise auf 150°C bis 190°C, mehr bevorzugt auf 160°C bis 170°C, temperiert wird, vorzugsweise wobei der Energieeintrag nach jedem, jedem zweiten oder nach jedem dritten bis zwölften Materialschichtaufbauschritt erfolgt, vorzugsweise wobei der Energieeintrag in Form von elektromagnetischer Energie, mittels Heizstrahler im IR-A oder/und IR-B-Bereich erfolgt oder mittels IR-Strahler oder mittels Laser erfolgt, vorzugsweise wobei die Temperatur in der Materialschicht, vorzugsweise in der letzten Materialschicht, auf 190°C bis 210°C, vorzugsweise auf 200°C, gebracht wirdMethod according to one of the preceding claims, wherein the building platform and / or the installation space is tempered, and preferably the tempering takes place with means outside or within the installation space, preferably the building platform is heated or irradiated with IR, preferably wherein the building platform and / or the installation space to a temperature of 40 ° C to 200 ° C, preferably at 150 ° C to 190 ° C, more preferably at 160 ° C to 170 ° C, tempered, preferably wherein the energy input takes place after every, every second or after every third to twelfth material layer-building step, preferably wherein the energy input in the form of electromagnetic energy, by means of radiant heater in the IR-A and / or IR-B range or by means of IR radiators or by means of laser, preferably wherein the temperature in the material layer, preferably in the last layer of material, at 190 ° C to 210 ° C, preferably at 200 ° C, brought Verfahren nach einem der vorhergehenden Ansprüche, wobei das Entpacken des Formteils in einem Flüssigkeitsbad, durch Zugabe oder Abspritzen des Materialblockes mit einer wässrigen Flüssigkeit erfolgt oder/und wobei das Bindermaterial mittels einer Druckvorrichtung aufgebracht wird oder/und wobei der Schlicker kurz vor dem Auftragen aus partikulärem Material und einer Trägerflüssigkeit zusammengemischt wird oder/und wobei die Materialschicht durch Entfernen, vorzugsweise Verdampfen, der Trägerflüssigkeit entsteht, vorzugsweise in weniger als 90 sek. pro Materialschicht, vorzugsweise 60 bis 80 Sekunden.Method according to one of the preceding claims, wherein the unpacking of the molded part takes place in a liquid bath, by adding or spraying the material block with an aqueous liquid or / and wherein the binder material is applied by means of a printing device and / or wherein the slurry is mixed together just before application of particulate material and a carrier liquid and / or wherein the material layer is formed by removal, preferably evaporation, of the carrier liquid, preferably in less than 90 seconds. per layer of material, preferably 60 to 80 seconds. Verfahren nach einem der vorhergehenden Ansprüche, wobei das partikuläre Material einen mittleren Durchmesser aufweist von 1 bis 250 μm, vorzugsweise von 10 bis 150 μm, mehr bevorzugt von 30 bis 80 μm oder/und wobei die Schichtdicke der Materialschicht 1–500 μm, vorzugsweise 30–300 μm, mehr bevorzugt 50–150 μm beträgt oder/und wobei der Anteil des Bindermaterials weniger als 20 Vol.-%, vorzugsweise weniger als 10 Vol.-%, mehr bevorzugt weniger als 5 Vol.-%, noch mehr bevorzugt weniger als 2 Vol.-% beträgt oder/und wobei die Partikelschicht nach dem Entfernen der Flüssigkeit etwa 50–80% der Festkörperdichte des partikulären Materials aufweist.Method according to one of the preceding claims, wherein the particulate material has an average diameter of 1 to 250 microns, preferably from 10 to 150 microns, more preferably from 30 to 80 microns or / and wherein the layer thickness of the material layer is 1-500 μm, preferably 30-300 μm, more preferably 50-150 μm, and / or wherein the content of binder material is less than 20% by volume, preferably less than 10% by volume, more preferably less than 5% by volume, even more preferably less than 2% by volume, and / or wherein the particle layer after removal of the liquid comprises about 50-80% of the solid density of the particulate material. Verfahren nach einem der vorhergehenden Ansprüche, wobei die weiteren Verfahrensschritte ausgewählt sind aus einer Wärmebehandlung und Sintern.Method according to one of the preceding claims, wherein the further method steps are selected from a heat treatment and sintering. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Verfahren in einem auswechselbaren Baubehälter im Batchverfahren oder in einem kontinuierlichen Verfahren durchgeführt wird.Method according to one of the preceding claims, wherein the method is carried out in a replaceable building container in a batch process or in a continuous process. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Auftragen des Schlickers horizontal erfolgt oder in einem Winkel kleiner 90° zu der horizontalen Bauplattform.Method according to one of the preceding claims, wherein the application of the slurry takes place horizontally or at an angle smaller than 90 ° to the horizontal building platform. Vorrichtung zum Herstellen von dreidimensionalen Formteilen mit einem Verfahren nach einem der Ansprüche 1 bis 8.Device for producing three-dimensional molded parts with a method according to one of claims 1 to 8. Formteil hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 8. Molded part produced by a process according to one of claims 1 to 8.
DE102013019716.3A 2013-11-27 2013-11-27 3D printing process with slip Withdrawn DE102013019716A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE102013019716.3A DE102013019716A1 (en) 2013-11-27 2013-11-27 3D printing process with slip
PCT/DE2014/000602 WO2015078430A1 (en) 2013-11-27 2014-11-26 3d printing method using slip
US15/039,211 US20170157852A1 (en) 2013-11-27 2014-11-26 3d printing method using slip
EP14833112.7A EP3074208B1 (en) 2013-11-27 2014-11-26 3d printing method using slip
CN201480064588.5A CN105764674B (en) 2013-11-27 2014-11-26 3D printing method using slip
ES14833112T ES2786181T3 (en) 2013-11-27 2014-11-26 Slip 3D printing method
KR1020167013698A KR102310916B1 (en) 2013-11-27 2014-11-26 3d printing method using slip
US17/493,078 US20220024068A1 (en) 2013-11-27 2021-10-04 3d printing method using slip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013019716.3A DE102013019716A1 (en) 2013-11-27 2013-11-27 3D printing process with slip

Publications (1)

Publication Number Publication Date
DE102013019716A1 true DE102013019716A1 (en) 2015-05-28

Family

ID=52434458

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013019716.3A Withdrawn DE102013019716A1 (en) 2013-11-27 2013-11-27 3D printing process with slip

Country Status (7)

Country Link
US (2) US20170157852A1 (en)
EP (1) EP3074208B1 (en)
KR (1) KR102310916B1 (en)
CN (1) CN105764674B (en)
DE (1) DE102013019716A1 (en)
ES (1) ES2786181T3 (en)
WO (1) WO2015078430A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944824A (en) * 2017-07-21 2020-03-31 沃克斯艾捷特股份有限公司 Process and apparatus for making 3D molded articles including a spectral converter

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10226919B2 (en) 2007-07-18 2019-03-12 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
DE102007050953A1 (en) 2007-10-23 2009-04-30 Voxeljet Technology Gmbh Device for the layered construction of models
DE102010006939A1 (en) 2010-02-04 2011-08-04 Voxeljet Technology GmbH, 86167 Device for producing three-dimensional models
DE102010013732A1 (en) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Device for producing three-dimensional models
DE102010014969A1 (en) 2010-04-14 2011-10-20 Voxeljet Technology Gmbh Device for producing three-dimensional models
DE102010015451A1 (en) 2010-04-17 2011-10-20 Voxeljet Technology Gmbh Method and device for producing three-dimensional objects
DE102010056346A1 (en) 2010-12-29 2012-07-05 Technische Universität München Method for the layered construction of models
DE102011007957A1 (en) 2011-01-05 2012-07-05 Voxeljet Technology Gmbh Device and method for constructing a layer body with at least one body limiting the construction field and adjustable in terms of its position
DE102011111498A1 (en) 2011-08-31 2013-02-28 Voxeljet Technology Gmbh Device for the layered construction of models
DE102012004213A1 (en) 2012-03-06 2013-09-12 Voxeljet Technology Gmbh Method and device for producing three-dimensional models
DE102012010272A1 (en) 2012-05-25 2013-11-28 Voxeljet Technology Gmbh Method for producing three-dimensional models with special construction platforms and drive systems
DE102012012363A1 (en) 2012-06-22 2013-12-24 Voxeljet Technology Gmbh Apparatus for building up a layer body with a storage or filling container movable along the discharge container
DE102012020000A1 (en) 2012-10-12 2014-04-17 Voxeljet Ag 3D multi-stage process
DE102013004940A1 (en) 2012-10-15 2014-04-17 Voxeljet Ag Method and device for producing three-dimensional models with tempered printhead
DE102012022859A1 (en) 2012-11-25 2014-05-28 Voxeljet Ag Construction of a 3D printing device for the production of components
DE102013003303A1 (en) 2013-02-28 2014-08-28 FluidSolids AG Process for producing a molded part with a water-soluble casting mold and material system for its production
DE102013018182A1 (en) 2013-10-30 2015-04-30 Voxeljet Ag Method and device for producing three-dimensional models with binder system
DE102013018031A1 (en) 2013-12-02 2015-06-03 Voxeljet Ag Swap body with movable side wall
DE102013020491A1 (en) 2013-12-11 2015-06-11 Voxeljet Ag 3D infiltration process
EP2886307A1 (en) 2013-12-20 2015-06-24 Voxeljet AG Device, special paper and method for the production of moulded components
DE102014004692A1 (en) * 2014-03-31 2015-10-15 Voxeljet Ag Method and apparatus for 3D printing with conditioned process control
DE102014007584A1 (en) 2014-05-26 2015-11-26 Voxeljet Ag 3D reverse printing method and apparatus
KR102288589B1 (en) 2014-08-02 2021-08-12 복셀젯 아게 Method and casting mould, in particular for use in cold casting methods
US10766246B2 (en) * 2014-12-15 2020-09-08 Hewlett-Packard Development Company, L.P. Additive manufacturing
DE102015006533A1 (en) 2014-12-22 2016-06-23 Voxeljet Ag Method and device for producing 3D molded parts with layer construction technique
DE102015003372A1 (en) 2015-03-17 2016-09-22 Voxeljet Ag Method and device for producing 3D molded parts with double recoater
GB2538289B (en) * 2015-05-14 2018-05-09 Dev Ltd Inkjet type additive manufacturing
DE102015006363A1 (en) 2015-05-20 2016-12-15 Voxeljet Ag Phenolic resin method
US10041171B2 (en) 2015-08-10 2018-08-07 Delavan Inc. Particulates for additive manufacturing techniques
DE102015011503A1 (en) 2015-09-09 2017-03-09 Voxeljet Ag Method for applying fluids
DE102015011790A1 (en) 2015-09-16 2017-03-16 Voxeljet Ag Device and method for producing three-dimensional molded parts
JP6718132B2 (en) * 2015-11-06 2020-07-08 セイコーエプソン株式会社 Method and apparatus for manufacturing three-dimensional structure
US10265771B2 (en) * 2015-11-09 2019-04-23 Delavan Inc. Additive manufacture of electrically conductive materials
DE102015015353A1 (en) 2015-12-01 2017-06-01 Voxeljet Ag Method and device for producing three-dimensional components by means of an excess quantity sensor
DE102016013610A1 (en) 2016-11-15 2018-05-17 Voxeljet Ag Intra-head printhead maintenance station for powder bed-based 3D printing
WO2018156933A1 (en) 2017-02-24 2018-08-30 Hewlett-Packard Development Company, L.P. Three-dimensional printing
US11389867B2 (en) 2017-02-24 2022-07-19 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing
CN108249961B (en) * 2018-01-19 2021-02-12 青岛科技大学 Method for preparing super-hydrophobic high-strength ceramic glaze thin layer based on 3D printing and surface coating of micron/nano particles
CN109249514A (en) * 2018-10-24 2019-01-22 盐城摩因宝新材料有限公司 Clay sculpture Method of printing, computer readable storage medium and clay sculpture printing device
US11787108B2 (en) * 2019-01-10 2023-10-17 Hewlett-Packard Development Company, L.P. Three-dimensional printing
DE102019000796A1 (en) 2019-02-05 2020-08-06 Voxeljet Ag Exchangeable process unit
DE102019007595A1 (en) 2019-11-01 2021-05-06 Voxeljet Ag 3D PRINTING PROCESS AND MOLDED PART MANUFACTURED WITH LIGNINE SULPHATE
JP2022072723A (en) * 2020-10-30 2022-05-17 セイコーエプソン株式会社 Three-dimensional molding apparatus
US20230415233A1 (en) * 2020-12-01 2023-12-28 Hewlett-Packard Development Company, L.P. Three-dimensional printing
KR102644165B1 (en) * 2021-11-30 2024-03-07 한국생산기술연구원 3d printing of ceramics using selective reaction hardening

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1648686B1 (en) 2003-07-25 2009-12-02 Loughborough University Enterprises Limited Method and apparatus for selective sintering of particulate material
WO2012164078A2 (en) 2011-06-01 2012-12-06 Bam Bundesanstalt Für Materialforschung Und- Prüfung Method for producing a moulded body and device

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3141089A (en) * 1961-05-03 1964-07-14 Comac Engineering Inc Infrared heater
GB1284722A (en) * 1968-08-10 1972-08-09 Simon Ratowsky Processing of photographic material
US5141680A (en) * 1988-04-18 1992-08-25 3D Systems, Inc. Thermal stereolighography
US5204055A (en) * 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US6596224B1 (en) * 1996-05-24 2003-07-22 Massachusetts Institute Of Technology Jetting layers of powder and the formation of fine powder beds thereby
EP1009614A4 (en) * 1997-06-13 2004-04-21 Massachusetts Inst Technology Jetting layers of powder and the formation of fine powder beds thereby
DE19727677A1 (en) * 1997-06-30 1999-01-07 Huels Chemische Werke Ag Method and device for producing three-dimensional objects
US6049160A (en) * 1998-07-13 2000-04-11 The State University Of New Jersey Rutgers Radial ceramic piezoelectric composites
US6253116B1 (en) * 1998-08-04 2001-06-26 New Jersey Institute Of Technology Method and apparatus for rapid freezing prototyping
WO2001038061A1 (en) * 1999-10-26 2001-05-31 University Of Southern California Process of making a three-dimensional object
US6534176B2 (en) * 1999-12-10 2003-03-18 Asahi Glass Company, Limited Scaly silica particles and hardenable composition containing them
US6881516B2 (en) * 2002-09-30 2005-04-19 Medtronic, Inc. Contoured battery for implantable medical devices and method of manufacture
DE102004008168B4 (en) * 2004-02-19 2015-12-10 Voxeljet Ag Method and device for applying fluids and use of the device
DE102004012682A1 (en) * 2004-03-16 2005-10-06 Degussa Ag Process for the production of three-dimensional objects by means of laser technology and application of an absorber by inkjet method
WO2005090448A1 (en) * 2004-03-21 2005-09-29 Toyota Motorsport Gmbh Powders for rapid prototyping and methods for the production thereof
DE102004020452A1 (en) * 2004-04-27 2005-12-01 Degussa Ag Method for producing three-dimensional objects by means of electromagnetic radiation and applying an absorber by inkjet method
US20060163774A1 (en) * 2005-01-25 2006-07-27 Norbert Abels Methods for shaping green bodies and articles made by such methods
US7357629B2 (en) * 2005-03-23 2008-04-15 3D Systems, Inc. Apparatus and method for aligning a removable build chamber within a process chamber
US7790096B2 (en) * 2005-03-31 2010-09-07 3D Systems, Inc. Thermal management system for a removable build chamber for use with a laser sintering system
DE102005022308B4 (en) * 2005-05-13 2007-03-22 Eos Gmbh Electro Optical Systems Apparatus and method for manufacturing a three-dimensional object with a heated powder coating material build-up material
WO2007114895A2 (en) * 2006-04-06 2007-10-11 Z Corporation Production of three-dimensional objects by use of electromagnetic radiation
DE102006023484A1 (en) * 2006-05-18 2007-11-22 Eos Gmbh Electro Optical Systems Apparatus and method for layering a three-dimensional object from a powdery building material
US8221671B2 (en) * 2007-01-17 2012-07-17 3D Systems, Inc. Imager and method for consistent repeatable alignment in a solid imaging apparatus
SE0701934L (en) * 2007-08-27 2009-02-28 Sintermask Technologies Ab Toner composition, developer comprising the toner composition and process for preparing a volume body
US20090283501A1 (en) * 2008-05-15 2009-11-19 General Electric Company Preheating using a laser beam
US8245757B2 (en) * 2009-02-02 2012-08-21 Stratasys, Inc. Inorganic ionic support materials for digital manufacturing systems
US20110122381A1 (en) * 2009-11-25 2011-05-26 Kevin Hickerson Imaging Assembly
US9168697B2 (en) * 2012-08-16 2015-10-27 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1648686B1 (en) 2003-07-25 2009-12-02 Loughborough University Enterprises Limited Method and apparatus for selective sintering of particulate material
WO2012164078A2 (en) 2011-06-01 2012-12-06 Bam Bundesanstalt Für Materialforschung Und- Prüfung Method for producing a moulded body and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944824A (en) * 2017-07-21 2020-03-31 沃克斯艾捷特股份有限公司 Process and apparatus for making 3D molded articles including a spectral converter

Also Published As

Publication number Publication date
CN105764674B (en) 2020-05-08
EP3074208A1 (en) 2016-10-05
ES2786181T3 (en) 2020-10-09
US20170157852A1 (en) 2017-06-08
WO2015078430A1 (en) 2015-06-04
KR20160091329A (en) 2016-08-02
CN105764674A (en) 2016-07-13
EP3074208B1 (en) 2020-02-12
US20220024068A1 (en) 2022-01-27
KR102310916B1 (en) 2021-10-08

Similar Documents

Publication Publication Date Title
EP3074208B1 (en) 3d printing method using slip
DE102008022946B4 (en) Apparatus and method for applying powders or pastes
EP3022008B1 (en) Method for manufacturing a component and optical irradiation device
EP2714354B1 (en) Method for producing a moulded body and device
DE102013003303A1 (en) Process for producing a molded part with a water-soluble casting mold and material system for its production
DE102015016464A1 (en) Method and device for producing 3D molded parts with layer construction technique and controllable powder roller
WO2005090055A1 (en) Method and device for producing three-dimensional objects using laser technology and for applying an absorber using an ink jet method
DE102011117005B4 (en) Process for producing a ceramic shaped body
EP3423217A1 (en) Method for additively manufacturing a component, and an additively manufactured component
DE102015014964A1 (en) Method and apparatus for 3D printing with narrow wavelength spectrum
DE102007016656A1 (en) PAEK powder, in particular for use in a process for producing a three-dimensional object in layers, and method for its production
DE102016209933A1 (en) Apparatus and method for generatively producing a three-dimensional object
DE102016203556A1 (en) Method and device for generatively producing a three-dimensional object
DE102013224693A1 (en) Method for the accelerated production of objects by means of generative production
EP3687763A1 (en) 3d-printed shaped parts made from more than one silicone material
DE102017009742A1 (en) 3D PRINTING METHOD AND SOLUBLE FORMING MANUFACTURED THEREFOR, IN PARTICULAR FOR USE IN COLD-CASTING AND LAMINATING PROCESSES
DE102018120089A1 (en) Ceramic slurry composition and method of use
DE102010046580A1 (en) Device for producing, repairing and / or replacing a component by means of a powder which can be hardened by energy radiation, and a method and a component produced according to the method
DE102018004545A1 (en) Process for the construction of plastic components
DE102021105991A1 (en) Process for the production of a three-dimensional component
EP4188680A1 (en) Method for producing a 3d shaped article, and device using a sieve plate
DE102016207283A1 (en) Method and system for additive production of a component
DE102014109706A1 (en) Construction and use of a geometrically densely packed powder layer
EP3854570B1 (en) Method for producing a three-dimensional moulded part
DE102021213790A1 (en) Process and device for the production of a component using additive manufacturing processes by building up in layers

Legal Events

Date Code Title Description
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: B29C0067000000

Ipc: B29C0064106000

R012 Request for examination validly filed
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: B29C0064106000

Ipc: B29C0064165000

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee