DE102012214119A1 - Formierungsvorrichtung mit Multiphasen-Architektur und zugehöriges Verfahren zur Formierung von Batteriezellen einer Batterie - Google Patents

Formierungsvorrichtung mit Multiphasen-Architektur und zugehöriges Verfahren zur Formierung von Batteriezellen einer Batterie Download PDF

Info

Publication number
DE102012214119A1
DE102012214119A1 DE102012214119.7A DE102012214119A DE102012214119A1 DE 102012214119 A1 DE102012214119 A1 DE 102012214119A1 DE 102012214119 A DE102012214119 A DE 102012214119A DE 102012214119 A1 DE102012214119 A1 DE 102012214119A1
Authority
DE
Germany
Prior art keywords
battery cell
forming
forming device
converter
currents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102012214119.7A
Other languages
English (en)
Inventor
Holger Fink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Samsung SDI Co Ltd
Original Assignee
Robert Bosch GmbH
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH, Samsung SDI Co Ltd filed Critical Robert Bosch GmbH
Priority to DE102012214119.7A priority Critical patent/DE102012214119A1/de
Priority to PCT/EP2013/065081 priority patent/WO2014023543A1/de
Publication of DE102012214119A1 publication Critical patent/DE102012214119A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Es wird eine Formierungsvorrichtung (10) bereitgestellt, die dazu ausgebildet ist, zur Formierung mindestens einer Batteriezelle (21) einer Batterie Formierungsströme zu einer Aktivierung elektrochemischer Prozesse in die Batteriezelle (21) einzuprägen. Dabei umfasst die Formierungsvorrichtung (10) einen bidirektionalen Multiphasen-Gleichspannungswandler (11), wobei der Multiphasen-Gleichspannungswandler (11) eine derartig hohe Anzahl (n) von miteinander parallel verbindbaren bidirektionalen Gleichspannungswandlern (12, 13), insbesondere von bidirektionalen Tiefsetzstellern (12, 13), umfasst und die Formierungsvorrichtung (10) weiter dazu ausgebildet ist, die Gleichspannungswandler (12, 13) jeweils derartig zu takten, dass mittels der Formierungsvorrichtung (10) blockförmige Formierungsströme, die jeweils einen Stromrippel aufweisen, deren Amplitude einen vorbestimmten Schwellenwert unterschreitet, während mindestens eines vorgegebenen Ladevorganges und mindestens eines vorgegebenen Entladevorganges erzeugbar und in die Batteriezelle (21) einprägbar sind und/oder Formierungsströme, die Wechselströme, die jeweils eine Stromänderungsgeschwindigkeit aufweisen, die einen vorbestimmten Schwellenwert überschreiten, umfassen, erzeugbar und in die Batteriezelle, insbesondere zur Durchführung einer Impedanzspektroskopie der Batteriezelle (21), einprägbar sind.

Description

  • Die vorliegende Erfindung betrifft eine Formierungsvorrichtung, die dazu ausgebildet ist, zur Formierung mindestens einer Batteriezelle einer Batterie Formierungsströme zu einer Aktivierung elektrochemischer Prozesse in der Batteriezelle einzuprägen. Ferner betrifft die Erfindung ein Verfahren zur Formierung mindestens einer Batteriezelle einer Batterie. Auch betrifft die Erfindung ein Fahrzeug mit einer Batterie und einer erfindungsgemäßen Formierungsvorrichtung zur Formierung mindestens einer Batteriezelle der Batterie.
  • Stand der Technik
  • Bei der Fertigung von Lithium-Ionen-Batteriezellen ist der sogenannte Formierungsprozess besonders wichtig. Während eines Formierungsprozesses wird zum einen jede einzelne Batteriezelle aktiviert und zum anderen soll über einen Voralterungsprozess eine definierte Ausbildung und Stabilisierung der Festelektrolytschicht (Solid Elektrolyte Interface SEI) erzielt werden. Diese Korrosionsschicht, die sich bei Lithium-Ionen-Batterien auf der Anode ausbildet, bestimmt das Alterungsverhalten der Batteriezellen maßgeblich. Der Formierungs- und Voralterungsvorgang dauert bei heutigen Fertigungen von Zellen mit großen Zellenergien, beispielsweise von 60 Ah-Zellen, circa 10 bis 14 Tage. Aus dem Stand der Technik ist es bekannt, bei der Formierung von Batteriezellen Formierungsvorrichtungen einzusetzen, die als Leistungsendstufen bezeichnet werden und deren Prinzipschaltbild in der 1 dargestellt wird.
  • In der 1 ist eine aus dem Stand der Technik bekannte Formierungsvorrichtung beziehungsweise Leistungsendstufe oder Formierendstufe 10 dargestellt, die mit einer Serienschaltung 20 mehrerer zu formierender Batteriezellen 21 einer Batterie verbunden ist. Dabei kann auch nur eine einzelne zu formierende Batteriezelle 21 vorhanden sein.
  • Die Formierungsvorrichtung 10 umfasst einen Gleichspannungszwischenkreis 50, in dem ein Zwischenkreiskondensator 60 angeordnet ist, der an einem Anschluss mit einem ersten Eingang 51 und einem ersten Ausgang 53 des Gleichspannungszwischenkreises 50 und an dem anderen Anschluss mit einem zweiten Eingang 52 und einem zweiten Ausgang 54 des Gleichspannungszwischenkreises 50 verbunden ist.
  • Die Formierungsvorrichtung 10 umfasst einen ersten Leistungshalbleiter (oberer Leistungshalbleiter in der 1) 30 und einen zweiten Leistungshalbleiter (unterer Leistungshalbleiter in der 1) 40, die in Reihe miteinander verschaltet sind.
  • Parallel zu dem ersten Leistungshalbleiter 30 ist eine Diode 31 geschaltet, deren Sperrrichtung in die Durchlassrichtung des ersten Leistungshalbleiters 30 verläuft. Der erste Leistungshalbleiter 30 ist an einem Anschluss mit dem zweiten Leistungshalbleiter 40 und an seinem anderen Anschluss mit einem ersten Ausgang 53 des Gleichspannungszwischenkreises 50 verbunden.
  • Die zwei Anschlüsse der Batteriezellenserienschaltung 20 sind jeweils mit einem Anschluss des zweiten Leistungshalbleiters 40 verbunden. Parallel zu dem zweiten Leistungshalbleiter 30 ist eine Diode 41 geschaltet, deren Sperrrichtung in die Durchlassrichtung des zweiten Leistungshalbleiters 40 verläuft. Der zweite Leistungshalbleiter 40 ist an einem Anschluss ferner mit dem ersten Leistungshalbleiter 30, dessen Durchlassrichtung in die Durchlassrichtung des Leistungshalbleiters 40 verläuft, verbunden. Der zweite Leistungshalbleiter 40 ist an seinem anderen Anschluss, der nicht mit dem ersten Leistungshalbleiterschalter 30 verbunden ist, mit dem zweiten Ausgang 54 des Gleichspannungszwischenkreises 50 verbunden.
  • Mittels eines Versorgungsnetzes kann elektrische Energie in den Gleichspannungszwischenkreis 20 eingespeist werden, die dann für die Formierung der Batteriezellen 21 der Batteriezellenserienschaltung 20 bereitgestellt wird.
  • Die Leistungsendstufe (Formierendstufe) 10 basiert auf dem Einsatz der zwei jeweils im linearen Betrieb arbeitenden Leistungshalbleiter 30, 40. Der in der 1 dargestellte erste Leistungshalbleiter 30 wird für Ladeströme aktiviert. Der zweite Leistungshalbleiter 40 wird für Entladeströme aktiviert. Da die Leistungshalbleiter 30, 40 im aktiven Bereich arbeiten, entsteht eine erhebliche Verlustwärme, die mit aufwändigen Maßnahmen zur Kühlung der Leistungselektronik abgeführt werden muss. Bei Entladevorgängen der mindestens einen Batteriezelle 21 kann die elektrische Energie nicht in das Versorgungsnetz zurückgespeist werden und wird daher bei dem in der 1 dargestellten Konzept für die Formierendstufe 10 komplett in Verlustwärme umgewandelt. Ein wesentlicher Vorteil der heute eingesetzten Formierendstufen ist der sehr glatte Verlauf der Lade- und Entladeströme. Bei der Formierung der Batteriezellen 21 kann mit der in der 1 dargestellten Formierendstufe 10 entweder eine einzelne Batteriezelle 21 oder bei entsprechender Auslegung der maximalen Ausgangsspannung der Formierendstufe können auch mehrere Batteriezellen 21 in Serienschaltung gleichzeitig formiert werden.
  • Weiterhin ist aus der DE 10 2010 027 854 A1 eine Einrichtung zur wechselweisen Auf- und Entladung von Akkumulatoren bekannt, die Energiequellen zur Bereitstellung eines Ladestroms für mindestens einen aufzuladenden Akkumulator, mindestens eine Energiesenke, welcher der Entladestrom mindestens eines zu entladenden Akkumulators zuführbar ist, und eine Steuereinheit zur Steuerung der Lade- und Entladevorgänge umfasst. Dabei handelt sich bei der Energiesenke oder den Energiesenken um aufzuladende Akkumulatoren, wobei die Akkumulatoren der Einrichtung mittels einer durch die Steuereinrichtung gesteuerten Lade- und Entladeeinheit im Wechsel als Energiequelle und Energiesenke betrieben werden. Hierfür umfasst die Lade- und Entladeeinheit einen Spannungswandler, über welchen von einem als Energiequelle arbeitenden Akkumulator eine Ausgangsspannung bereitgestellt wird, welche die Nennspannung des oder der jeweils durch ihn aufzuladenden, als Energiesenke arbeitenden Akkumulatoren übersteigt. Die beim wechselnden Auf- und Entladen der Akkumulatoren auftretenden Energieverluste werden, gesteuert von der Steuereinheit, mittels der netzgekoppelten Energiequelle kompensiert.
  • Des Weiteren ist aus demselben Dokument bekannt, dass mehrere Lade- und Entladeeinheiten in einer die Lade- und Entladeeinheiten aufnehmenden Verbundeinheit zusammengefasst sein können, und dass sich die Einrichtung für die wechselweise Auf- und Entladung im Rahmen einer Formierung von Akkumulatoren eignet.
  • Offenbarung der Erfindung
  • Erfindungsgemäß wird eine Formierungsvorrichtung bereitgestellt, die dazu ausgebildet ist, zur Formierung mindestens einer Batteriezelle einer Batterie Formierungsströme zu einer Aktivierung elektrochemischer Prozessen in die Batteriezelle einzuprägen. Dabei umfasst die Formierungsvorrichtung einen bidirektionalen Multiphasen-Gleichspannungswandler, wobei der Multiphasen-Gleichspannungswandler eine derartig hohe Anzahl von miteinander parallel verbindbaren bidirektionalen Gleichspannungswandlern, insbesondere von bidirektionalen Tiefsetzstellern, umfasst und die Formierungsvorrichtung weiter dazu ausgebildet ist, die Gleichspannungswandler derartig jeweils zu takten, dass mittels der Formierungsvorrichtung Formierungsströme, die jeweils einen gewünschten Stromverlauf aufweisen, erzeugbar und in die Batteriezelle einprägbar sind. Die Formierungsströme können dabei blockförmige Formierungsströme umfassen, die jeweils einen Stromrippel aufweisen, dessen Größe beziehungsweise Amplitude einen vorbestimmten Schwellenwert unterschreitet, und während mindestens eines vorgegebenen Ladevorganges und mindestens eines vorgegebenen Entladevorganges in die Batteriezelle einzuprägen sind. Auch können die Formierungsströme Wechselströme umfassen, die jeweils eine Stromänderungsgeschwindigkeit aufweisen, die einen vorbestimmten Schwellenwert überschreitet, und die in die Batteriezelle, insbesondere zur Durchführung einer Impedanzspektroskopie der Batteriezelle, einzuprägen sind. Unter Stromrippel kann die Restwelligkeit bzw. im Falle von Gleichstrom der überlagerte Wechselstromanteil verstanden werden.
  • Erfindungsgemäß wird ferner ein Verfahren zur Formierung mindestens einer Batteriezelle einer Batterie bereitgestellt, bei dem Formierungsströme zu einer Aktivierung elektrochemischer Prozesse mittels einer Formierungsvorrichtung in die Batteriezelle eingeprägt werden. Dabei werden mittels eines in der Formierungsvorrichtung angeordneten Multiphasen-Gleichspannungswandlers, der eine geeignete Anzahl von parallel miteinander verbundenen bidirektionalen Gleichspannungswandlern, insbesondere bidirektionale Tiefsetzsteller, die geeignet getaktet werden, umfasst, Formierungsströme erzeugt, die jeweils einen gewünschten Stromverlauf aufweisen, und die in die Batteriezelle eingeprägt werden. Dabei können die Formierungsströme als blockförmige Formierungsströme, die jeweils einen Stromrippel aufweisen, der einen vorbestimmten Schwellenwert unterschreitet, erzeugt und während mindestens eines vorgegebenen Ladevorganges und mindestens eines vorgegebenen Entladevorganges in die Batteriezelle eingeprägt werden. Auch können die Formierungsströme als Wechselströme, die jeweils eine Stromänderungsgeschwindigkeit aufweisen, die einen vorbestimmten Schwellenwert überschreiten, erzeugt und in die Batteriezelle eingeprägt werden, insbesondere zur Durchführung einer Impedanzspektroskopie der Batteriezelle.
  • Mittels der Verwendung eines erfindungsgemäßen Multiphasen-Gleichspannungswandlers, der eine geeignete Anzahl von bidirektionalen Gleichspannungswandlern umfasst, die bevorzugt jeweils als Tiefsetzsteller ausgebildet sind, wird bei geeigneter Taktung der Gleichspannungswandler eine Formierungsvorrichtung mit einem gegenüber dem Stand der Technik deutlich aufgeweiteten Dynamikbereich realisiert. Dadurch können zum einen die blockförmigen Ströme bei der Formierung mit einem Stromrippel von geringer Amplitude beziehungsweise mit einem geringen Wechselanteil dargestellt werden und zum anderen kann die maximal mögliche Stromänderungsgeschwindigkeit erhöht werden. Wegen der höheren Dynamik, die aufgrund des aufgeweiteten Dynamikbereichs ermöglicht wird, kann die erfindungsgemäße Formierungsvorrichtung Wechselströme mit hochfrequenten sinusförmigen Stromverläufen zu deutlich höheren Frequenzen hin realisieren. Dadurch wird es insbesondere ermöglicht, Impedanzspektroskopien bis hin zu sehr hohen Frequenzen durchzuführen.
  • Bei einer besonderen vorteilhaften Ausführungsform der Erfindung ist die erfindungsgemäße Formierungsvorrichtung weiter dazu ausgebildet, die Gleichspannungswandler jeweils mittels eines einzelnen zentralen Taktes zu takten und/oder die Gleichspannungswandler jeweils gegeneinander versetzt zu takten. Auch kann die erfindungsgemäße Formierungsvorrichtung dazu ausgebildet sein, die Gleichspannungswandler jeweils mittels einer Pulsweitenmodulation zu takten und/oder die Gleichspannungswandler jeweils mittels einer Pulsweitenmodulation, die für alle Gleichspannungswandler dieselbe Impulsperiodendauer aufweist, um eine vorbestimmte Zeit gegeneinander versetzt zu takten. Insbesondere beträgt die vorbestimmte Zeit nur einen Bruchteil der Impulsperiodendauer, der sich durch die Teilung der Impulsperiodendauer durch die Anzahl der Gleichspannungswandler ergibt.
  • Bei einer weiteren besonders bevorzugten Formierungsvorrichtung umfassen die Gleichspannungswandler jeweils eine Glättungsdrossel. Insbesondere weist jede Glättungsdrossel eine Induktivität auf, deren Größe einen vorbestimmten Schwellenwert unterschreitet.
  • Mit anderen Worten, der bidirektionale Multiphasen-Gleichspannungswandler ist bevorzugt als bidirektionaler Multiphasen-Tiefsetzsteller ausgebildet, der aus zwei oder mehreren parallel geschalteten Tiefsetzstellern aufgebaut ist. Diese Tiefsetzsteller werden sinnvollerweise über einen zentralen Takt und mit einer um 1/n der Impulsperiodendauer versetzt realisierten Pulsweitenmodulation betrieben, wobei n die Anzahl der im bidirektionalen Multiphasen-Tiefsetzsteller vorhandenen Tiefsetzsteller ist. Dadurch gelingt es, eine sehr gute Glättung der Ausgangsströme der Formierungsvorrichtung auch beim Einsatz von Drosseln mit sehr kleinen Induktivitäten zu erzielen und eine sehr hohe Dynamik, das heißt, sehr hohe Stromänderungsgeschwindigkeiten der Ausgangsströme der Formierungsvorrichtung, zu realisieren.
  • Je höher die Anzahl der versetzt getakteten Tiefsetzsteller ist, desto höhere Anforderungen können an die Stromänderungsgeschwindigkeiten bei gleichzeitigem Realisieren von Gleichströmen mit sehr geringen beziehungsweise sehr kleinen Stromrippeln gestellt werden. Allerdings steigt der Aufwand für die Realisierung des Multiphasen-Wandlers mit zunehmender Anzahl der Tiefsetzsteller an, so dass in Abhängigkeit von den Anforderungen, die an die Dynamik und die Genauigkeit der Formierungsvorrichtungen gestellt werden, ein Optimum des diesbezüglichen Realisierungsaufwands im Bereich von zwei bis sechs Phasen erreicht wird.
  • Bei einer sehr vorteilhaften Ausführungsform der Erfindung umfassen die Gleichspannungswandler jeweils einen ersten Leistungshalbleiter, insbesondere einen ersten MOSFET-Transistor, und einen zweiten Leistungshalbleiter, insbesondere einen zweiten MOSFET-Transistor. Dabei ist die Formierungsvorrichtung dazu ausgebildet, die blockförmigen Formierungsströme während des Ladevorganges mittels der ersten Leistungshalbleiter und während des Entladevorganges mittels der zweiten Leistungshalbleiter zu leiten und in die Batteriezelle einzuprägen.
  • Vorzugsweise ist die Formierungsvorrichtung weiter dazu ausgebildet, die Leistungshalbleiter derartig anzusteuern, dass die Leistungshalbleiter während der Erzeugung der Formierungsströme im Schaltbetrieb arbeiten und die während des Entladevorganges der Batteriezelle entnommene elektrische Energie in ein Versorgungsnetz zur Versorgung der Batteriezelle zurückgespeist wird.
  • Dadurch, dass die Leistungshalbleiter der Formierungsvorrichtung im Schaltbetrieb arbeiten, reduziert sich die in der Formierungsendstufe entstehende Verlustleistung erheblich. Das gilt insbesondere für hohe Lade- und Entladeströme. Die Formierungsendstufe wird ohne nennenswerten Zusatzaufwand rückspeisefähig ausgelegt. Dadurch kann die elektrische Energie, die bei den Entladevorgängen der zu formierenden Batteriezellen entnommen wird, in das Versorgungsnetz zurückgespeist werden.
  • Ferner kann die erfindungsgemäße Formierungsvorrichtung einen Gleichspannungszwischenkreis und eine Einspeiseeinrichtung zur Einspeisung von elektrischer Energie in den Gleichspannungszwischenkreis umfassen, wobei der Multiphasen-Gleichspannungswandler eingangsseitig mit dem Gleichspannungszwischenkreis und ausgangsseitig mit der Batteriezelle verbindbar ist. Dabei ist die Einspeiseeinrichtung rückspeisefähig ausgelegt.
  • Somit werden erfindungsgemäß insbesondere rückspeisefähige Formierungsvorrichtungen bei der Formierung von Batteriezellen eingesetzt, deren Leistungsschalter oder Leistungshalbleiter im Schaltbetrieb arbeiten. Dadurch kann die Verlustleistung in solchen Formierendstufen massiv reduziert werden und die Energie, die bei den Entladevorgängen während der Formierung und Voralterung entsteht und herkömmlich bislang in Verlustwärme umgewandelt wird, ins Versorgungsnetz zurückgespeist werden. Ferner können mittels der erfindungsgemäßen Formierungsvorrichtungen hochfrequente Ströme in die zu formierenden Batteriezellen eingeprägt werden, um zum Beispiel Impedanzspektroskopien durchführen zu können. Erfindungsgemäß wird insbesondere eine rückspeisefähige Leistungselektronik für Formierungsendstufen bereitgestellt, welche zum einen hohe Anforderungen an die Dynamik der Ausgangsströme der Formierungsendstufen und gleichzeitig hohe Anforderungen an die Genauigkeit der Ausgangsströme der Formierungsvorrichtung realisiert. Die hohen Anforderungen an die Dynamik beruhen auf der Notwendigkeit, Ausgangsströme, insbesondere sinusförmige Ausgangsströme, die hohe Stromänderungsgeschwindigkeiten beziehungsweise hohe Maximalfrequenzen aufweisen, zu erzeugen. Die hohen Anforderungen an die Genauigkeit der Ausgangsströme, wie beispielsweise der blockförmigen Ströme während der Formierung von Batteriezellen, beruhen insbesondere auf der Notwendigkeit, Ausgangsströme mit keinen Wechselanteilen bei konstanten Stromsollwertewegen zu erzeugen.
  • Erfindungsgemäß werden eine Formierungsvorrichtung und ein Verfahren zur Formierung mindestens einer Batteriezelle, insbesondere einer Lithium-Ionen-Batterie bereitgestellt.
  • Nach einem Aspekt der Erfindung wird ferner eine Batterie zur Verfügung gestellt, die mit der erfindungsgemäßen Formierungsvorrichtung ausgestattet ist.
  • Ein weiterer Aspekt der Erfindung betrifft ein Fahrzeug mit einer Batterie, die mit der erfindungsgemäßen Formierungsvorrichtung zur Formierung mindestens einer Batteriezelle der Batterie formiert wurde.
  • Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben und in der Beschreibung beschrieben.
  • Zeichnungen
  • Ausführungsbeispiele der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert. Es zeigen:
  • 1 eine aus dem Stand der Technik bekannte Formierungsvorrichtung, und
  • 2 eine Formierungsvorrichtung nach einer bevorzugten Ausführungsform der Erfindung, wobei die Formierungsvorrichtung einen bidirektionalen Multiphasen-Tiefsetzsteller umfasst.
  • Ausführungsformen der Erfindung
  • 2 zeigt eine Formierungsvorrichtung 10 nach einer bevorzugten Ausführungsform der Erfindung.
  • Die Formierungsvorrichtung 10 ist mit einer Serienschaltung 20 mehrerer zu formierender Batteriezellen 21 einer Batterie verbunden. Dabei kann auch eine einzelne zu formierende Batteriezelle 21 vorhanden sein. Zur Vereinfachung der Darstellung wurde nur eine einzige Batteriezelle, mit dem Bezugszeichen 21 versehen, angeordnet.
  • Die Formierungsvorrichtung 10 umfasst auch einen Gleichspannungszwischenkreis 50, in dem ein Zwischenkreiskondensator 60 angeordnet ist, der an einem Anschluss mit einem ersten Eingang 51 und einem ersten Ausgang 53 des Gleichspannungszwischenkreises 50 und an dem anderen Anschluss mit einem zweiten Eingang 52 und einem zweiten Ausgang 54 des Gleichspannungszwischenkreises 50 verbunden ist.
  • Die Formierungsvorrichtung 10 umfasst ferner einen bidirektionalen Multiphasen-Tiefsetzsteller 11, der eingangsseitig mit den Ausgängen 53, 54 des Gleichspannungszwischenkreises 50 und ausgangsseitig mit den Anschlüssen der Batteriezellenserienschaltung 20 verbunden ist.
  • Der Multiphasen-Tiefsetzsteller 11 ist aus einer vorbestimmten Anzahl n von parallel miteinander geschalteten bidirektionalen Tiefsetzstellern ausgebildet. Zur Vereinfachung der Darstellung wurden in der 2 nur der erste Tiefsetzsteller 12 und der n-te und letzte Tiefsetzsteller 13 eingezeichnet und mit Bezugszeichen versehen. Die drei horizontal eingezeichneten Punkte und die drei vertikal eingezeichneten Punkte symbolisieren die sonstigen, nicht eingezeichneten und in dem Multiphasen-Tiefsetzsteller 11 angeordneten Tiefsetzsteller.
  • Die Tiefsetzsteller 12, 13 umfassen jeweils einen ersten Leistungshalbleiter (obere Leistungshalbleiter in der 2) 30, 35 und einen zweiten Leistungshalbleiter (untere Leistungshalbleiter in der 2) 40, 45. Der erste Leistungshalbleiter 30, 35 eines jeden Tiefsetzstellers 12, 13 ist jeweils mit dem entsprechenden zweiten Leistungshalbleiter 40, 45 desselben Tiefsetzstellers 12, 13 in Reihe geschaltet.
  • Parallel zu den ersten Leistungshalbleitern 30, 35 ist jeweils eine Diode 31, 36 geschaltet, deren Sperrrichtung in Durchlassrichtung des entsprechenden ersten Leistungshalbleiters 30, 35 verläuft. Der erste Leistungshalbleiter 30, 35 eines jeden Tiefsetzstellers 12, 13 ist an einem Anschluss jeweils mit dem entsprechenden zweiten Leistungshalbleiter 40, 45 desselben Tiefsetzstellers 12, 13 und an seinem anderen Anschluss jeweils mit dem ersten Ausgang 53 des Gleichspannungszwischenkreises 50 verbunden.
  • Parallel zu den zweiten Leistungshalbleitern 40, 45 ist jeweils eine Diode 41, 46 geschaltet, deren Sperrrichtung in Durchlassrichtung des entsprechenden zweiten Leistungshalbleiters 40, 45 verläuft. Der zweite Leistungshalbleiter 40, 45 eines jeden Tiefsetzstellers 12, 13 ist an einem Anschluss jeweils mit dem entsprechenden ersten Leistungshalbleiter 30, 35 desselben Tiefsetzstellers 12, 13 und jeweils über eine in demselben Tiefsetzsteller 12, 13 angeordnete Glättungsdrossel 70, 71 mit einem ersten Anschluss 22 der Batteriezellenserienschaltung 20 verbunden. Die Durchlassrichtungen der ersten Leistungshalbleiter 30, 35 und der zweiten Leistungshalbleiter 40, 45 verlaufen immer entlang derselben Richtung. Der zweite Leistungshalbleiter 40, 45 eines jeden Tiefsetzstellers 12, 13 ist an seinem anderen Anschluss, der nicht mit dem entsprechenden ersten Leistungshalbleiterschalter 30, 35 desselben Tiefsetzstellers 12, 13 verbunden ist, jeweils mit dem zweiten Ausgang 54 des Gleichspannungszwischenkreises 50 und mit einem zweiten Anschluss 23 der Batteriezellenserienschaltung 20 verbunden.
  • In dem Stromfluss der Glättungsdrossel 70, 71 eines jeden Tiefsetzstellers ist jeweils ein Stromsensor 90, 91 angeordnet, der dazu ausgebildet ist, den durch die entsprechende Glättungsdrossel 70, 71 fließenden Strom zu messen.
  • Die Anschlüsse 22, 23 der zu formierenden Batteriezellenreihenschaltung 20 sind jeweils über eine Sendeleitung mit einer Spannungserfassungsvorrichtung 100 verbunden.
  • Zwischen den Eingängen 51, 52 des Gleichspannungszwischenkreises 50 ist eine mit einem Versorgungsnetz (nicht dargestellt) verbindbare Einspeiseeinrichtung 80 angeschlossen, mittels der elektrische Energie von dem Versorgungsnetz in den Gleichspannungszwischenkreis 50 eingespeist und für die Formierung der Batteriezellen 21 der Batteriezellenserienschaltung 20 bereitgestellt werden kann.
  • Alle eingesetzten Leistungsschalter (ein- und ausschaltbare Halbleiterventile) 30, 35, 40, 45 arbeiten während der Formierung der Batteriezellen 21 beziehungsweise während der Einprägung von Formierungsströmen in die Batteriezellen 21 im Schaltbetrieb, und die Einspeiseeinrichtung 80 ist rückspeisefähig ausgelegt. Die ersten Leistungshalbleiter 30, 35 werden jeweils für Ladeströme, die zweiten Leistungshalbleiter 40, 45 für Entladeströme eingesetzt. Dadurch wird während der Formierung der Batteriezellen 21 beziehungsweise während der Einprägung von Formierungsströmen in die Batteriezellen 21 die Entstehung von Verlustwärme vermieden und die elektrische Energie, die während der Entladevorgänge der Batteriezellen 21 entnommen wird, wird in die Einspeiseeinrichtung 80 zurückgespeist.
  • 2 zeigt eine Formierendstufe 10 mit einer Multiphasen-Architektur (Multiphasen-Tiefsetzsteller) 11, bei der die Leistungshalbleiter 30, 35, 40, 45 jeweils im geschalteten Betrieb arbeiten. Die Formierendstufe 10 ist derartig ausgebildet, dass sie geeignet ist für die Energierückspeisung in das Versorgungsnetz zur Versorgung der Batteriezellen mit elektrischer Energie, für die Einprägung von hochgenauen Gleichströmen in die Batteriezellen 21, und für die Realisierung von Ausgangsströmen mit einem hohen Dynamikbereich.
  • Aus dem Stand der Technik sind zwar solche Formierendstufen für Batteriezellen, insbesondere für Lithium-Ionen-Batteriezellen, bekannt, die so ausgelegt werden, dass sie blockförmige Strom- beziehungsweise Spannungsprofile, die abschnittsweise konstant sind, für das Laden und das Entladen der Batteriezellen realisieren können. Diese aus dem Stand der Technik bekannten Formierendstufen werden jedoch derzeit nicht so ausgelegt, dass sie hochfrequente Strom- und Spannungsprofile bis in den Bereich mehrerer 10 KHz Grundfrequenz realisieren können.
  • Mittels der erfindungsgemäßen Formierendstufen, insbesondere mittels der Formierendstufen 10 nach der bevorzugten Ausführungsform der Erfindung, werden Strom- und Spannungsprofile bis in den Bereich mehrerer 10 KHz Grundfrequenz ohne großen Zusatzaufwand mittels des Einsatzes geeigneter Schaltungstopologien, Ansteuerschaltungen für die Leistungshalbleiter 30, 35, 40, 45 sowie geeigneter Signalelektronik 90, 91, 100 zur Erfassung der Istwerte der Batteriezellspannungen und der Batteriezellströme realisiert.
  • Die Formierendstufen 10 nach der bevorzugten Ausführungsform der Erfindung sind jeweils dazu ausgebildet, mittels einer Multiphasen-Architektur 11 einen Zwei-Quadrantenbetrieb zu realisieren. Die Leistungshalbleiter 30, 35, 40, 45 arbeiten dabei, im Gegensatz zum Stand der Technik, im geschalteten Betrieb. Dadurch kann die Verlustleistung in den Halbleiterschalter 30, 35, 40, 45 massiv reduziert werden und die Formierendstufen 10 können in einfacher Weise rückspeisefähig ausgelegt werden, das heißt, dass die bei Entladevorgängen der zu formierenden Batteriezellen 21 entstehende elektrische Energie in das Versorgungsnetz zurückgespeist wird. Dazu muss die Einspeiseeinrichtung 80 für die Versorgung des Gleichspannungszwischenkreises 50 rückspeisefähig ausgelegt werden.
  • Das in der 2 dargestellte Schaltungskonzept basiert auf dem Einsatz des bidirektionalen Multiphasen-Tiefsetzstellers 11, der aus zwei oder mehreren parallel geschalteten Tiefsetzstellern 12, 13 aufgebaut ist. Diese Tiefsetzsteller 12, 13 werden sinnvollerweise über einen zentralen Takt und mit einer um 1/n der Impulsperiodendauer versetzt realisierten Pulsweitenmodulation betrieben, wobei n, wie oben schon erwähnt worden ist, die Anzahl der im bidirektionalen Multiphasen-Tiefsetzsteller 11 vorhandenen Tiefsetzsteller 12, 13 ist. Dadurch können mittels der Formierungsvorrichtung 10, auch beim Einsatz von Drosseln 70, 71 mit sehr kleinen Induktivitäten, blockförmige Ströme mit einem sehr glatten Verlauf erzeugt und zur Formierung der Batteriezellen in diese zu formierenden Batteriezellen 21 eingeprägt werden. Dadurch wird gleichzeitig auch eine sehr hohe Dynamik der Formierungsvorrichtung 10 realisiert, das heißt, dass mittels der Formierungsvorrichtung 10 Formierungsströme mit sehr hohen Stromänderungsgeschwindigkeiten erzeugt und in die Batteriezellen 21, insbesondere zur Durchführung einer Impedanzspektroskopie der Batteriezellen 21, eingeprägt werden können.
  • Je höher die Anzahl der versetzt getakteten Tiefsetzsteller 12, 13 ist, desto höhere Anforderungen können an die Stromänderungsgeschwindigkeiten der in die Batteriezellen 21 einzuprägenden hochfrequenten Formierungsströme gestellt werden, bei gleichzeitiger Realisierung von blockförmigen Formierungsströmen mit sehr glattem Verlauf, die in die Batteriezellen 21 zu deren Formierung einzuprägen sind. Dabei steigt der Aufwand für die Realisierung des bidirektionalen Multiphasen-Tiefsetzstellers 11 mit zunehmender Anzahl der eingesetzten Tiefsetzsteller 12, 13. Je nach den Anforderungen, die an die Dynamik und an die Genauigkeit der Formierungsvorrichtungen 10 gestellt werden, wird ein Optimum des Realisierungsaufwands bei einem Multiphasen-Tiefsetzsteller 11 erreicht, der zwei bis sechs parallel geschaltete Tiefsetzsteller 12, 13 umfasst.
  • Alle in der Formierungsvorrichtung 10 eingesetzten Leistungshalbleiter 30, 35, 40, 45 sind bevorzugt MOSFET-Transistoren, da diese aufgrund der geringen Ausgangsspannung der Formierungsvorrichtung 10 für den hier vorliegenden Anwendungsfall besonders geeignet sind. MOSFET-Transistoren können typischerweise ohne Schwierigkeiten hochfrequent getaktet werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102010027854 A1 [0010]

Claims (11)

  1. Formierungsvorrichtung (10), die dazu ausgebildet ist, zur Formierung mindestens einer Batteriezelle (21) einer Batterie Formierungsströme zur Aktivierung elektrochemischer Prozesse in die Batteriezelle (21) einzuprägen, dadurch gekennzeichnet, dass die Formierungsvorrichtung (10) einen bidirektionalen Multiphasen-Gleichspannungswandler (11) umfasst, wobei der Multiphasen-Gleichspannungswandler (11) eine derartig hohe Anzahl (n) von miteinander parallel verbindbaren bidirektionalen Gleichspannungswandlern (12, 13), insbesondere von bidirektionalen Tiefsetzstellern (12, 13), umfasst und die Formierungsvorrichtung (10) weiter dazu ausgebildet ist, die Gleichspannungswandler (12, 13) jeweils derartig zu takten, dass mittels der Formierungsvorrichtung (10) blockförmige Formierungsströme, die jeweils einen Stromrippel aufweisen, der einen vorbestimmten Schwellenwert unterschreitet, während mindestens eines vorgegebenen Ladevorganges und mindestens eines vorgegebenen Entladevorganges erzeugbar und in die Batteriezelle (21) einprägbar sind und/oder Formierungsströme, die Wechselströme, die jeweils eine Stromänderungsgeschwindigkeit aufweisen, die einen vorbestimmten Schwellenwert überschreiten, umfassen, erzeugbar und in die Batteriezelle (21), insbesondere zur Durchführung einer Impedanzspektroskopie der Batteriezelle (21), einprägbar sind.
  2. Formierungsvorrichtung (10) nach Anspruch 1, wobei die Formierungsvorrichtung (10) weiter dazu ausgebildet ist, die Gleichspannungswandler (12, 13) mittels eines einzelnen zentralen Taktes jeweils zu takten und/oder die Gleichspannungswandler (12, 13) jeweils gegeneinander versetzt zu takten und/oder die Gleichspannungswandler (12, 13) jeweils mittels einer Pulsweitenmodulation zu takten und/oder die Gleichspannungswandler (12, 13) jeweils mittels einer Pulsweitenmodulation, die für alle Gleichspannungswandler (12, 13) dieselbe Impulsperiodendauer aufweist, um eine vorbestimmte Zeit jeweils gegeneinander versetzt zu takten, wobei die vorbestimmte Zeit insbesondere einen Bruchteil der Impulsperiodendauer beträgt, der sich durch die Teilung der Impulsperiodendauer durch die Anzahl (n) der Gleichspannungswandler ergibt.
  3. Formierungsvorrichtung (10) nach einem der Ansprüche 1 oder 2, wobei die Gleichspannungswandler (12, 13) jeweils eine Glättungsdrossel (70, 71) umfassen, wobei jede Glättungsdrossel (70, 71) insbesondere eine Induktivität, deren Höhe einen vorbestimmten Schwellenwert unterschreitet, aufweist.
  4. Formierungsvorrichtung (10) nach einem der vorangehenden Ansprüche, wobei die Gleichspannungswandler (12, 13) jeweils einen ersten Leistungshalbleiter (30, 35), insbesondere einen ersten MOSFET-Transistor, und einen zweiten Leistungshalbleiter (40, 45), insbesondere einen zweiten MOSFET-Transistor, umfassen, wobei die Formierungsvorrichtung (10) dazu ausgebildet ist, die blockförmigen Formierungsströme während des Ladevorganges mittels der ersten Leistungshalbleiter (30, 35) und während des Entladevorganges mittels der zweiten Leistungshalbleiter (40, 45) zu leiten und in die Batteriezelle (21) einzuprägen.
  5. Formierungsvorrichtung (10) nach Anspruch 4, wobei die Formierungsvorrichtung (10) weiter dazu ausgebildet ist, die Leistungshalbleiter (30, 35, 40, 45) derartig anzusteuern, dass die Leistungshalbleiter (30, 35, 40, 45) während der Erzeugung der Formierungsströme im Schaltbetrieb arbeiten, und die während des Entladevorganges der Batteriezelle (21) entnommene elektrische Energie in ein Versorgungsnetz zur Versorgung der Batteriezelle (21) zurückzuspeisen.
  6. Verfahren zur Formierung mindestens einer Batteriezelle (21) einer Batterie, bei dem Formierungsströme zu einer Aktivierung elektrochemischer Prozesse mittels einer Formierungsvorrichtung (10) in die Batteriezelle (21) eingeprägt werden, dadurch gekennzeichnet, dass mittels eines in der Formierungsvorrichtung (10) angeordneten Multiphasen-Gleichspannungswandlers (11), der eine geeignete Anzahl (n) von parallel miteinander verbundenen bidirektionalen Gleichspannungswandlern (11), wie bidirektionale Tiefsetzsteller (11), die geeignet getaktet werden, umfasst, blockförmige Formierungsströme, die jeweils einen Stromrippel aufweisen, der einen vorbestimmten Schwellenwert unterschreitet, während mindestens eines vorgegebenen Ladevorganges und mindestens eines vorgegebenen Entladevorganges erzeugt und in die Batteriezelle (21) eingeprägt werden und/oder Formierungsströme, die Wechselströme, die jeweils eine Stromänderungsgeschwindigkeit aufweisen, die einen vorbestimmten Schwellenwert überschreiten, umfassen, erzeugt und in die Batteriezelle (21), insbesondere zur Durchführung einer Impedanzspektroskopie der Batteriezelle (21), eingeprägt werden.
  7. Verfahren nach Anspruch 6, wobei die die Gleichspannungswandler (12, 13) jeweils mittels eines einzelnen zentralen Taktes getaktet werden und/oder die Gleichspannungswandler (12, 13) jeweils gegeneinander versetzt getaktet werden und/oder die Gleichspannungswandler (12, 13) jeweils mittels einer Pulsweitenmodulation getaktet werden und/oder die Gleichspannungswandler (12, 13) jeweils mittels einer Pulsweitenmodulation, die für alle Gleichspannungswandler (12, 13) dieselbe Impulsperiodendauer aufweist, um eine vorbestimmte Zeit jeweils gegeneinander versetzt getaktet werden, wobei die vorbestimmte Zeit insbesondere einen Bruchteil der Impulsperiodendauer beträgt, der sich durch die Teilung der Impulsperiodendauer durch die Anzahl (n) der Gleichspannungswandler (12, 13) ergibt.
  8. Verfahren nach Anspruch 6 oder 7, wobei bidirektionale Gleichspannungswandler (12, 13) verwendet werden, die jeweils einen ersten Leistungshalbleiter (30, 35) und einem zweiten Leistungshalbleiter (40, 45), insbesondere mit einem ersten und einem zweiten MOSFET-Transistor, umfassen, und wobei die blockförmigen Formierungsströme mittels der geeignet angeordneten ersten Leistungshalbleiter (30, 35) während des Ladevorganges und mittels der geeignet angeordneten zweiten Leistungshalbleiter (40, 45) während des Entladevorganges geleitet und in die Batteriezelle (21) eingeprägt werden.
  9. Verfahren nach einem der Ansprüche 6 bis 8, wobei die Formierungsströme mittels der Formierungsvorrichtung (10), deren Leistungshalbleiter (30, 35, 40, 45) im Schaltbetrieb arbeiten, erzeugt werden und die während des Entladevorganges der Batteriezelle (21) entnommene elektrische Energie in ein Versorgungsnetz zur Versorgung der Batteriezelle (21) zurückgespeist wird.
  10. Batterie, die eine Formierungsvorrichtung (10) nach einem der Ansprüche 1 bis 5 zur Formierung mindestens einer Batteriezelle (21) der Batterie aufweist.
  11. Kraftfahrzeug mit einer Batterie nach Anspruch 10, wobei die Batterie in einem Antriebssystem des Kraftfahrzeugs angeordnet ist.
DE102012214119.7A 2012-08-09 2012-08-09 Formierungsvorrichtung mit Multiphasen-Architektur und zugehöriges Verfahren zur Formierung von Batteriezellen einer Batterie Withdrawn DE102012214119A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102012214119.7A DE102012214119A1 (de) 2012-08-09 2012-08-09 Formierungsvorrichtung mit Multiphasen-Architektur und zugehöriges Verfahren zur Formierung von Batteriezellen einer Batterie
PCT/EP2013/065081 WO2014023543A1 (de) 2012-08-09 2013-07-17 Formierungsvorrichtung mit multiphasen-architektur und zugehöriges verfahren zur formierung von batteriezellen einer batterie

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012214119.7A DE102012214119A1 (de) 2012-08-09 2012-08-09 Formierungsvorrichtung mit Multiphasen-Architektur und zugehöriges Verfahren zur Formierung von Batteriezellen einer Batterie

Publications (1)

Publication Number Publication Date
DE102012214119A1 true DE102012214119A1 (de) 2014-02-13

Family

ID=48808335

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012214119.7A Withdrawn DE102012214119A1 (de) 2012-08-09 2012-08-09 Formierungsvorrichtung mit Multiphasen-Architektur und zugehöriges Verfahren zur Formierung von Batteriezellen einer Batterie

Country Status (2)

Country Link
DE (1) DE102012214119A1 (de)
WO (1) WO2014023543A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753133A (zh) * 2015-03-06 2015-07-01 深圳市巨兆数码有限公司 蜂窝式智能电源存储供应***
DE102015211110A1 (de) 2015-06-17 2016-12-22 Robert Bosch Gmbh Aktivmaterial für eine Kathode einer Batteriezelle, Kathode und Batteriezelle
DE102015217745A1 (de) 2015-09-16 2017-03-16 Robert Bosch Gmbh Aktivmaterial für eine positive Elektrode einer Batteriezelle, positive Elektrode und Batteriezelle
DE102015217743A1 (de) 2015-09-16 2017-03-16 Robert Bosch Gmbh Aktivmaterial für eine positive Elektrode einer Batteriezelle, positive Elektrode und Batteriezelle
DE102015217749A1 (de) 2015-09-16 2017-03-16 Robert Bosch Gmbh Beschichtetes Kathodenaktivmaterial für eine Batteriezelle
DE102015217747A1 (de) 2015-09-16 2017-03-16 Robert Bosch Gmbh Aktivmaterial für eine positive Elektrode einer Batteriezelle, postitive Elektrode und Batteriezelle
DE102016223246A1 (de) 2016-11-24 2018-05-24 Robert Bosch Gmbh Aktivmaterial für eine positive Elektrode einer Batteriezelle, positive Elektrode und Batteriezelle
US10393817B2 (en) 2015-03-23 2019-08-27 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for determining a reference energy profile and device for forming a battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021005544A1 (de) 2021-11-09 2021-12-23 Daimler Ag Verfahren zur Alterung von Batterieeinzelzellen nach der Formierung
CN114497780A (zh) * 2022-02-14 2022-05-13 广州小鹏汽车科技有限公司 锂离子电芯化成方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027854A1 (de) 2010-04-16 2011-10-20 Fuelcon Ag Einrichtung und Verfahren zur wechselweisen Auf- und Entladung von Akkumulatoren

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233710A (ja) * 1996-02-26 1997-09-05 Sansha Electric Mfg Co Ltd 蓄電池化成用充放電装置
US20020122973A1 (en) * 2001-03-02 2002-09-05 Delphi Technologies, Inc. Method of preparation of lithium battery
JP4800402B2 (ja) * 2009-03-18 2011-10-26 株式会社豊田中央研究所 車両搭載用マルチフェーズコンバータ
DE102009035466A1 (de) * 2009-07-31 2011-02-03 Daimler Ag Formierung von Einzelzellen
AT11605U3 (de) * 2010-08-26 2011-09-15 Avl List Gmbh Anlage zur formierung von lithium-ionen-zellen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027854A1 (de) 2010-04-16 2011-10-20 Fuelcon Ag Einrichtung und Verfahren zur wechselweisen Auf- und Entladung von Akkumulatoren

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753133A (zh) * 2015-03-06 2015-07-01 深圳市巨兆数码有限公司 蜂窝式智能电源存储供应***
US10393817B2 (en) 2015-03-23 2019-08-27 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for determining a reference energy profile and device for forming a battery
US10020506B2 (en) 2015-06-17 2018-07-10 Robert Bosch Gmbh Active material for a cathode of a battery cell, cathode, and battery cell
DE102015211110A1 (de) 2015-06-17 2016-12-22 Robert Bosch Gmbh Aktivmaterial für eine Kathode einer Batteriezelle, Kathode und Batteriezelle
US10686212B2 (en) 2015-09-16 2020-06-16 Robert Bosch Gmbh Coated cathode active material for a battery cell
DE102015217747A1 (de) 2015-09-16 2017-03-16 Robert Bosch Gmbh Aktivmaterial für eine positive Elektrode einer Batteriezelle, postitive Elektrode und Batteriezelle
WO2017045941A1 (de) 2015-09-16 2017-03-23 Robert Bosch Gmbh Aktivmaterial für eine positive elektrode einer batteriezelle, positive elektrode und batteriezelle
WO2017045945A1 (de) 2015-09-16 2017-03-23 Robert Bosch Gmbh Aktivmaterial für eine positive elektrode einer batteriezelle, postitive elektrode und batteriezelle
DE102015217749A1 (de) 2015-09-16 2017-03-16 Robert Bosch Gmbh Beschichtetes Kathodenaktivmaterial für eine Batteriezelle
DE102015217743A1 (de) 2015-09-16 2017-03-16 Robert Bosch Gmbh Aktivmaterial für eine positive Elektrode einer Batteriezelle, positive Elektrode und Batteriezelle
DE102015217745A1 (de) 2015-09-16 2017-03-16 Robert Bosch Gmbh Aktivmaterial für eine positive Elektrode einer Batteriezelle, positive Elektrode und Batteriezelle
US10763502B2 (en) 2015-09-16 2020-09-01 Robert Bosch Gmbh Active material for a positive electrode of a battery cell, positive electrode, and battery cell
US10790502B2 (en) 2015-09-16 2020-09-29 Robert Bosch Gmbh Active material for a positive electrode of a battery cell, positive electrode, and battery cell
US10833319B2 (en) 2015-09-16 2020-11-10 Robert Bosch Gmbh Active material for a positive electrode of a battery cell, positive electrode, and battery cell
DE102016223246A1 (de) 2016-11-24 2018-05-24 Robert Bosch Gmbh Aktivmaterial für eine positive Elektrode einer Batteriezelle, positive Elektrode und Batteriezelle
WO2018095646A1 (de) 2016-11-24 2018-05-31 Robert Bosch Gmbh Aktivmaterial für eine positive elektrode einer batteriezelle, positive elektrode und batteriezelle

Also Published As

Publication number Publication date
WO2014023543A1 (de) 2014-02-13

Similar Documents

Publication Publication Date Title
DE102012214119A1 (de) Formierungsvorrichtung mit Multiphasen-Architektur und zugehöriges Verfahren zur Formierung von Batteriezellen einer Batterie
DE102012205395A1 (de) Batteriesystem, Verfahren zum Laden von Batteriemodulen, sowie Verfahren zum Balancieren von Batteriemodulen
EP2721685A1 (de) Batteriesystem und verfahren zum bereitstellen einer zwischenspannung
DE102011089312A1 (de) System und Verfahren zum Laden der Energiespeicherzellen einer Energiespeichereinrichtung
WO2013143805A2 (de) Batteriesystem, kraftfahrzeug mit batteriesystem und verfahren zur inbetriebnahme eines batteriesystems
DE102010041040A1 (de) Energieversorgungsnetz und Verfahren zum Laden mindestens einer als Energiespeicher für einen Gleichspannungszwischenkreis dienenden Energiespeicherzelle in einem Energieversorgungsnetz
DE102011089297A1 (de) Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Ansteuern einer Energiespeichereinrichtung
EP2842214B1 (de) Verfahren zum laden von energiespeicherzellen einer energiespeichereinrichtung und aufladbare energiespeichereinrichtung
DE102014212933B3 (de) Vorrichtung und Verfahren zum Ladezustandsausgleich für ein Batteriesystem
DE102012009219A1 (de) Batteriemodul, elektrisches Energiesystem in einem Kraftfahrzeug und Verfahren zum Betreiben eines Batteriemoduls
DE102021005548A1 (de) Gleichspannungswandler und Komponentenanordnung für ein elektrisches Hochvoltbordnetz eines Fahrzeugs
DE102018001032A1 (de) Motorantriebsvorrichtung
DE102014212935A1 (de) Vorrichtung zum Bereitstellen einer elektrischen Spannung mit seriellem Stack-Umrichter sowie Antriebsanordnung
WO2015062900A1 (de) Ladeschaltung für eine energiespeichereinrichtung und verfahren zum laden einer energiespeichereinrichtung
DE102015225574A1 (de) Verfahren und Vorrichtung zum Laden einer Batterie
DE102013205562A1 (de) Energiespeichereinrichtung und System mit einer Energiespeichereinrichtung
DE102013208324A1 (de) Energiespeichervorrichtung und Verfahren zum Betrieb einer Energiespeichervorrichtung
DE102012214097A1 (de) Formierungsvorrichtung und Verfahren zur Formierung von Batteriezellen einer Batterie
DE102017221621A1 (de) Vorrichtung zur redundanten Energieversorgung zumindest eines Verbrauchers eines Kraftfahrzeugs aus einem Bordnetz, Bordnetz sowie Kraftfahrzeug
DE102017215295A1 (de) Vorrichtung zum Elektropolieren eines zumindest eine Lithium-Ionen-Zelle aufweisenden Energiespeichers, Ladegerät, Verfahren zum Betreiben des Ladegeräts
DE102012209657A1 (de) Verfahren und Vorrichtung zur Ermittlung des Innenwiderstandes von Batteriezellen einer Batterie
DE102021209389B3 (de) Bordnetz für ein Kraftfahrzeug sowie Kraftfahrzeug
DE112011101621T5 (de) Leistungswandler
DE102012202868A1 (de) Gleichspannungsabgriffsanordnung für eine Energiespeichereinrichtung und Verfahren zum Erzeugen einer Gleichspannung aus einer Energiespeichereinrichtung
DE102010042718A1 (de) Verfahren zur Steuerung einer Batterie mit variabler Ausgangsspannung

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: GULDE HENGELHAUPT ZIEBIG & SCHNEIDER, DE

Representative=s name: GULDE & PARTNER PATENT- UND RECHTSANWALTSKANZL, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee