DE102012208254A1 - Verfahren und System zur Erstellung eines aktuellen Situationsabbilds - Google Patents

Verfahren und System zur Erstellung eines aktuellen Situationsabbilds Download PDF

Info

Publication number
DE102012208254A1
DE102012208254A1 DE201210208254 DE102012208254A DE102012208254A1 DE 102012208254 A1 DE102012208254 A1 DE 102012208254A1 DE 201210208254 DE201210208254 DE 201210208254 DE 102012208254 A DE102012208254 A DE 102012208254A DE 102012208254 A1 DE102012208254 A1 DE 102012208254A1
Authority
DE
Germany
Prior art keywords
data
database
situation image
vehicle
vehicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE201210208254
Other languages
English (en)
Inventor
Matthias Strauss
Ulrich Stählin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Teves AG and Co OHG
Original Assignee
Continental Teves AG and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves AG and Co OHG filed Critical Continental Teves AG and Co OHG
Priority to DE201210208254 priority Critical patent/DE102012208254A1/de
Priority to EP13722727.8A priority patent/EP2850607B1/de
Priority to US14/400,868 priority patent/US9373255B2/en
Priority to KR1020147035014A priority patent/KR20150013775A/ko
Priority to PCT/EP2013/059397 priority patent/WO2013171088A1/de
Priority to CN201380037574.XA priority patent/CN104471625B/zh
Publication of DE102012208254A1 publication Critical patent/DE102012208254A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096733Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place
    • G08G1/096741Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place where the source of the transmitted information selects which information to transmit to each vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096775Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Erstellung eines aktuellen Situationsabbilds, insbesondere eines aktuellen innerstädtischen Situationsabbilds, bei welchem eine lokal begrenzte Situation beschreibende Umfelddaten und/oder Kartendaten und/oder Positionsdaten von einer Vielzahl von Fahrzeugen (12, 14, 22, 24) mittels Fahrzeug-zu-X-Kommunikationsmitteln an eine Datenbank (16, 25) gesendet werden. Die Umfelddaten werden mittels Umfeldsensoren und/oder Fahrzeugsensoren erfasst, die Kartendaten werden aus einem digitalen Speicher ausgelesen und die Positionsdaten werden zumindest mittels eines globalen Satellitenpositionssystems bestimmt. Das Verfahren zeichnet sich dadurch aus, dass die Umfelddaten und/oder die Kartendaten und/oder die Positionsdaten mit einem in der Datenbank (16, 25) bereits vorhandenen Situationsabbild kontinuierlich zu einem aktuellen Situationsabbild fusioniert werden und sowohl die Datenbank als auch das Situationsabbild ortsfest sind. Die Erfindung betrifft weiterhin ein entsprechendes System.

Description

  • Die Erfindung betrifft ein Verfahren zur Erstellung eines aktuellen Situationsabbilds gemäß Oberbegriff von Anspruch 1 und ein System zur Erstellung eines aktuellen Situationsabbilds gemäß Oberbegriff von Anspruch 8.
  • Im Stand der Technik sind unterschiedliche Gattungen von Fahrerassistenzsystemen bekannt, denen im Wesentlichen gemein ist, dass sie der Entlastung des Fahrers im Verkehrsgeschehen dienen. Derartige Systeme basieren dabei teilweise auf mittels Umfeldsensorik erfassten Umfeldinformationen, auf aus digitalem Kartenmaterial ausgelesenen Informationen oder auch auf Informationen, die mittels Fahrzeug-zu-X-Kommunikation empfangen wurden. Alle diese Systeme sind zur Unterstützung des Fahrers auf eine hohe Zuverlässigkeit und Aktualität der erfassten Informationen sowie eine möglichst große Informationsdichte angewiesen.
  • In diesem Zusammenhang beschreibt die DE 10 2008 060 869 A1 ein Verfahren und eine Vorrichtung zur Unterstützung eines Bedieners eines Fahrzeugs, welches sich einer Verkehrssignalanlage nähert. Die Verkehrssignalanlage verfügt über zwei unterschiedliche Betriebszustände, wobei in einem ersten Betriebszustand ein Überfahren der Haltelinie erlaubt ist und in einem zweiten Betriebszustand ein Überfahren der Haltelinie nicht erlaubt ist. Das Fahrzeug empfängt dabei ein Signal, welches den aktuellen Betriebszustand der Verkehrssignalanlage sowie die Zeitdauer bis zu einem Wechsel des Betriebszustands beschreibt. Anhand des empfangenen Signals prüft das Fahrzeug, ob die Haltelinie der Verkehrssignalanlage mit einer Geschwindigkeit aus einem vorgegebenen Geschwindigkeitsbereich erreicht werden kann, während sich die Verkehrssignalanlage im ersten Betriebszustand befindet. In Abhängigkeit des Ergebnisses der Prüfung wird die Geschwindigkeit des Fahrzeugs beeinflusst oder dem Fahrer eine Empfehlung zu einer entsprechenden Beeinflussung der Geschwindigkeit gegeben.
  • Aus der DE 10 2007 048 809 A1 ist ein Verfahren zur Erkennung von verdeckten Objekten im Straßenverkehr bekannt. Dabei werden die Umgebung eines Fahrzeugs sowie Bewegungsgrößen des Fahrzeugs sensorisch erfasst. Diese Informationen werden mittels Fahrzeug-zu-Fahrzeug-Kommunikation an im Umfeld befindliche Fahrzeuge übertragen. Gleichzeitig werden von den im Umfeld befindliche Fahrzeugen ebenfalls Umgebungs- und Bewegungsinformationen erfasst und gesendet. Die empfangenen Informationen werden dazu verwendet, ein Umfeldmodell zu erweitern. Das solcherart erweiterte Umfeldmodell wird mittels einer Anzeige im Fahrzeug aktualisiert wiedergegeben und kann einem oder mehreren Fahrerassistenzsystemen zur Verfügung gestellt werden. Somit stehen im Fahrzeug Informationen über Objekte zur Verfügung, welche von den Fahrzeugsensoren selbst nicht erfasst werden können.
  • In der DE 10 2009 008 959 A1 wird ein Fahrzeugsystem zur Navigation und/oder Fahrerassistenz beschrieben. Das Fahrzeugsystem umfasst eine Providereinheit, zumindest einen Umfeldsensor und einen Fahrzeugsensor. Die Providereinheit umfasst ihrerseits ein auf einem Satellitensignalsensor basierendes Positionsmodul und einen ADAS-Horizontprovider, welcher mit einer Navigationseinheit, die sich auch außerhalb des Fahrzeugs befinden kann, kommunikativ koppelbar ist. Die Navigationseinheit kann dabei z.B. als leistungsstarker Server ausgeführt sein, welcher Kartenausschnitte einer digitalen Karte an die Providereinheit übermittelt.
  • Die DE 10 2008 012 660 A1 offenbart ein Verfahren zur serverbasierten Warnung von Fahrzeugen vor Gefahren sowie eine entsprechende Gefahrenwarneinheit. Dabei wird ein Messwert mittels einer Erfassungseinheit eines ersten Fahrzeugs erfasst und es wird bestimmt, ob der Messwert mit einer Gefahr korrespondiert. Sofern der Messwert mit einer Gefahr korrespondiert, werden Informationsdaten über die Gefahr an eine Zentrale übermittelt. In der Zentrale werden die Art der Gefahr, der Ort, an dem der Messwert erfasst wurde, die Zeit, zu der der Messwert erfasst wurde sowie eine Identifikation des übermittelnden Fahrzeugs gespeichert und entsprechende Warndaten erzeugt. Die für ein zweites Fahrzeug relevanten Warndaten können von diesem zweiten Fahrzeug von der Zentrale abgerufen werden.
  • Die im Stand der Technik bekannten Verfahren und Systeme sind jedoch insofern nachteilbehaftet, als dass die einem Fahrerassistenzsystem mittels Fahrzeug-zu-X-Kommunikation zur Verfügung gestellten Informationen entweder auf einen einzelnen bestimmten Aspekt des Verkehrsgeschehens beschränkt sind, wie dies z.B. bei Ampelassistenten oder Gefahrenwarnungen der Fall ist, oder aber die im komplexen Stadtverkehr notwendigen Informationen nicht mit einer hierfür benötigten Zuverlässigkeit und Aktualität bereitstellen können, so dass derartige Assistenzsysteme nur in außerstädtischen Gebieten ausreichend zuverlässig sind. Insbesondere in Kreuzungsbereichen gilt es, eine Vielzahl unterschiedlicher Verkehrsregeln zu beachten und gleichzeitig den Fahrerwunsch zu erkennen, um den Fahrer wirksam entlasten zu können. Hierfür ist das Vorhandensein von sowohl stets aktuellen als auch exakten Informationen, wie z.B. über Baustellen, Umleitungen oder geänderte Beschilderungen, jedoch eine wichtige Voraussetzung. Es ist somit eine kontinuierliche und detaillierte Erfassung sowie Aktualisierung dieser Informationen notwendig.
  • Die Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren vorzuschlagen, welches ein aktuelles Situationsabbild sowohl mit einer vergleichsweise großen Detailtiefe erstellte als auch eine hohe Aktualisierungsrate aufweist.
  • Diese Aufgabe wird erfindungsgemäß durch das Verfahren zur Erstellung eines aktuellen Situationsabbilds gemäß Anspruch 1 gelöst.
  • Gemäß dem erfindungsgemäßen Verfahren zur Erstellung eines aktuellen Situationsabbilds, insbesondere eines aktuellen innerstädtischen Situationsabbilds, werden eine lokal begrenzte Situation beschreibende Umfelddaten und/oder Kartendaten und/oder Positionsdaten von einer Vielzahl von Fahrzeugen mittels Fahrzeug-zu-X-Kommunikationsmitteln an eine Datenbank gesendet. Die Umfelddaten werden dabei mittels Umfeldsensoren und/oder Fahrzeugsensoren erfasst, die Kartendaten werden aus einem digitalen Speicher ausgelesen und die Positionsdaten werden zumindest mittels eines globalen Satellitenpositionssystems bestimmt. Das Verfahren zeichnet sich dadurch aus, dass die Umfelddaten und/oder die Kartendaten und/oder die Positionsdaten mit einem in der Datenbank bereits vorhandenen Situationsabbild kontinuierlich zu einem aktuellen Situationsabbild fusioniert werden und sowohl die Datenbank als auch das Situationsabbild ortsfest sind. Daraus ergibt sich der Vorteil, dass jedes sich in der Situation befindende und mit geeigneten Sensoren ausgestattete Fahrzeug das in der Datenbank vorhandene Situationsabbild aktualisieren und ergänzen kann. Somit steht, insbesondere in innerstädtischen Gebieten, ständig eine vergleichsweise große Zahl von von der Vielzahl von Fahrzeugen gesendeten Umfelddaten und/oder Kartendaten und/oder Positionsdaten zur Verfügung, um das vorhandene Situationsabbild zu aktualisieren bzw. zu ergänzen. Dadurch können selbst komplexe und sich vergleichsweise häufig ändernde Situationen zuverlässig beschrieben werden. Ein zusätzlicher infrastrukturseitiger Installationsaufwand an geeigneten Sensoren zur Situationserfassung ist dabei nicht notwendig. Das solcherart erstellte Situationsabbild kann u.a. Straßenverläufe, Vorfahrtsregeln, Abbiegestreifen, Fußgängerüberwege, Ampelpositionen, Baustellen und liegengebliebene Fahrzeuge oder andere Hindernisse umfassen. Selbst dann, wenn sich zwischenzeitlich keine Fahrzeuge im Situationsabbild aufhalten und somit zwischenzeitlich keine Umfelddaten und/oder Kartendaten und/oder Positionsdaten an die Datenbank gesendet werden, kann bei erneutem Eintreffen von Fahrzeugen im Situationsabbild das vorhandene Situationsabbild unverzüglich mit den dann empfangenen Umfelddaten und/oder Kartendaten und/oder Positionsdaten fusioniert werden, da sowohl das Situationsabbild als auch die Datenbank ortsfest sind und nicht verloren gehen bzw. gelöscht werden. Dies stellt einen wesentlichen Vorteil gegenüber aus dem Stand der Technik bekannten Verfahren dar, bei denen sich die Datenbanken in den einzelnen Fahrzeugen befindet und die Situationsabbilder somit ständig neu erstellt bzw. verworfen werden müssen, da sich das Fahrzeug während der Fahrt stetig fortbewegt und in neue Situationsabbilder eintritt.
  • Die Umfelddaten beschreiben erfindungsgemäß das vom Fahrzeug erfasste Umfeld, beispielsweise mittels eines geeigneten Sensors erfasste Beschilderungen, Ampelmasten, Leitplanken, Häuserwände, Bordsteine und allgemein alle Objekte, die zur Topologie des Fahrzeugumfelds beitragen. Auch mittels ESP-Sensorik erfasste Schlaglöcher werden im Sinne der Erfindung als Umfelddaten verstanden. Zu den von den Umfelddaten umfassten Objekten zählen weiterhin andere Fahrzeuge und Verkehrsteilnehmer, sofern sie sensorisch erfasst werden. Der Begriff Umfelddaten beschreibt somit sowohl Informationen über statische als auch über nicht-statische Objekte. Die Kartendaten hingegen beschreiben eine im Fahrzeug vorhandene lokale Karte und können sowohl Routeninformationen und Straßenverlaufsinformationen umfassen als auch durch Umfelddaten ergänzt sein. Die Positionsdaten geben die Position des die Daten sendenden Fahrzeugs an und werden ebenfalls im aktuellen Situationsabbild abgebildet. Die Bestimmung der Positionsdaten durch die Fahrzeuge erfolgt mittels eines globalen Satellitenpositionssystems, wie z.B. GPS oder Galileo, und wird bevorzugt durch Map-Matching bzw. Koppelnavigation ergänzt.
  • Bevorzugt ist es vorgesehen, dass die Datenbank das aktuelle Situationsabbild an die von der lokal begrenzten Situation umfassten Fahrzeuge sendet und das aktuelle Situationsabbild von den Fahrzeugen mindestens einem Fahrerassistenzsystem zur Verfügung gestellt wird. Somit steht allen von der lokalen Situation umfassten Fahrzeugen ein vergleichsweise aktuelles und detailliertes Situationsabbild zur Verfügung, welches von den vorhandenen Fahrerassistenzsystemen zur Unterstützung und Entlastung des Fahrers sowie ggf. zur Unfallvermeidung oder zumindest zur Unfallabmilderung genutzt werden kann. Beispielsweise kann situationsabhängig eine Warnung an den Fahrer ausgegeben werden oder sogar ein Eingriff in die Fahrzeugsteuerung durchgeführt werden. Des Weiteren kann durch einen Vergleich einer im Fahrzeug vorhandenen Karte und des empfangenen aktuellen Situationsabbilds eine verbesserte Positionsbestimmung durchgeführt werden.
  • In einer weiteren bevorzugten Ausführungsform ist es vorgesehen, dass Objekte und Ereignisse im aktuellen Situationsabbild von der Datenbank mit Existenzwahrscheinlichkeiten versehen werden. Daraus ergibt sich der Vorteil, dass eine vergleichsweise feine Abstufung hinsichtlich des tatsächlichen Vorhandenseins und damit der Bedeutung der Objekte und Ereignisse möglich wird. Die Existenzwahrscheinlichkeiten der Objekte und Ereignisse können z.B. aus dem Anteil der sie erfassenden Sensoren zu dem Anteil der sie nicht-erfassenden Sensoren bestimmt werden, wobei Sensoren, welche nicht zur Erfassung der jeweiligen Objekte oder Ereignisse geeignet sind, zur Bestimmung der Existenzwahrscheinlichkeiten unberücksichtigt bleiben. Somit wird es auch möglich, mehrere, sich prinzipiell widersprechende Objekte oder Ereignisse mit unterschiedlichen Existenzwahrscheinlichkeiten an derselben Position abzubilden.
  • Zweckmäßigerweise ist es vorgesehen, dass die Existenzwahrscheinlichkeiten der Objekte von einem empfangenden Fahrzeug zusätzlich individuell ausgewertet werden. Somit kann ein das aktuelle Situationsabbild empfangendes Fahrzeug mittels seiner eigenen Bordsensorik entscheiden, welche Existenzwahrscheinlichkeit einem Objekt oder einem Ereignis zuerkannt werden soll. Die empfangenen Informationen können beispielsweise genutzt werden, die Erkennungsschwellen für bestimmte Objekte oder Ereignisse in einem Objekt- oder Ereigniserkennungsalgorithmus der Bordsensorik herabzusetzen.
  • Außerdem ist es vorteilhaft, dass die Umfelddaten und/oder die Kartendaten und/oder die Positionsdaten von der Vielzahl von Fahrzeugen mit vergleichsweise geringer Übertragungspriorität an die Datenbank gesendet werden. Somit wird das Senden und Empfangen von vergleichsweise wichtigen Daten, wie z.B. sog. „Cooperative Awareness Messages“ oder Warninformationen nicht gestört oder sogar unterbrochen. Für die Erstellung des aktuellen Situationsabbilds ist es ausreichend, wenn die Umfelddaten und/oder Kartendaten und/oder Positionsdaten nicht in jedem Sendezyklus an die Datenbank gesendet werden.
  • Bevorzugt ist es vorgesehen, dass von der Vielzahl von Fahrzeugen nur derartige Umfelddaten und/oder Kartendaten und/oder Positionsdaten an die Datenbank gesendet werden, die vom von der Datenbank gesendeten aktuellen Situationsabbild abweichen. Dadurch wird die Menge der zu übertragenden Daten in der Regel deutlich reduziert und die Übertragungskapazität der zur Verfügung stehenden Übertragungskanäle wird nicht unnötig belastet.
  • Zweckmäßigerweise ist es vorgesehen, dass die von der Vielzahl von Fahrzeugen gesendeten Positionsdaten eine Identifikationsinformation der zu einer Bestimmung der Positionsdaten herangezogenen Satelliten umfassen. Diese Satelliten folgen in der Regel festen Bahnen in einer Erdumlaufbahn. Da die Satelliten somit nur zu bestimmten Tageszeiten von bestimmten Punkten der Erdoberfläche aus sichtbar sind, kann anhand der Identifikationsinformation ermittelt werden, welche Satelliten zur Bestimmung eines bestimmten Satzes von Positionsdaten herangezogen wurden. Dies ermöglicht eine verbesserte Positionsbestimmung, insbesondere eine verbesserte relative Positionsbestimmung zwischen zwei oder mehr Fahrzeugen.
  • Die Erfindung betrifft weiterhin ein System zur Erstellung eines aktuellen Situationsabbilds, insbesondere eines aktuellen innerstädtischen Situationsabbilds. Das System umfasst eine Datenbank mit Datenfusionsmittel und Fahrzeug-zu-X-Kommunikationsmitteln sowie eine Vielzahl von Fahrzeugen mit jeweils einem digitalen Speicher und/oder Umfeldsensoren und/oder Fahrzeugsensoren und/oder Positionsbestimmungsmitteln und Fahrzeug-zu-X-Kommunikationsmitteln. Die Datenbank empfängt eine lokal begrenzte Situation beschreibende Umfelddaten und/oder Kartendaten und/oder Positionsdaten von der Vielzahl von Fahrzeugen mittels der Fahrzeug-zu-X-Kommunikationsmittel. Die Vielzahl von Fahrzeugen erfasst die Umfelddaten mittels der Umfeldsensoren und/oder Fahrzeugsensoren, liest die Kartendaten aus dem jeweils einen digitalen Speicher aus und bestimmt die Positionsdaten zumindest mittels des globalen Satellitenpositionssystems. Das System zeichnet sich dadurch aus, dass die Datenfusionsmittel die Umfelddaten und/oder die Kartendaten und/oder die Positionsdaten mit einem in der Datenbank bereits vorhandenen Situationsabbild kontinuierlich zu einem aktuellen Situationsabbild fusionieren und sowohl die Datenbank als auch das Situationsabbild ortsfest sind. Das erfindungsgemäße System umfasst somit alle notwendigen Mittel zur Ausführung des erfindungsgemäßen Verfahrens und ermöglicht auf einfache Weise eine detaillierte und im Wesentlichen stets aktuelle Erstellung des aktuellen Situationsabbilds. Daraus ergeben sich die bereits beschriebenen Vorteile.
  • Vorzugsweise zeichnet sich das System dadurch aus, dass die Datenbank lokal an einem vom Situationsabbild umfassten Ort angeordnet ist. Dadurch ergibt sich der Vorteil, dass die Übertragung der Informationen über vergleichsweise schnell übertragende, kurzreichweitige Kommunikationsmittel erfolgen kann. Dadurch wird ausschließlich lokale Übertragungskapazität der zur Verfügung stehenden Übertragungskanäle genutzt. Ein weiterer Vorteil besteht darin, dass durch die lokale Anordnung der Datenbank keine aufwändige Dateninfrastruktur zu einer zentralen Datenbank vorgehalten werden muss.
  • Weiterhin ist es vorteilhaft, dass die Umfeldsensoren und/oder Fahrzeugsensoren ein oder mehrere Elemente aus der Gruppe
    • – Radarsensor,
    • – optischer Kamerasensor,
    • – Lidarsensor,
    • – Lasersensor,
    • – Ultraschallsensor,
    • – ESP-Sensor,
    • – Beschleunigungssensor,
    • – ABS-Sensor und
    • – Neigungssensor
    sind und die Fahrzeug-zu-X-Kommunikationsmittel auf Basis einer oder mehrerer Verbindungsklassen aus der Gruppe
    • – WLAN-Verbindung, insbesondere nach IEEE 802.11,
    • – ISM-Verbindung (Industrial, Scientific, Medical Band),
    • – Bluetooth®-Verbindung,
    • – ZigBee-Verbindung,
    • – UWB-Verbindung (Ultra Wide Band),
    • – WiMax®-Verbindung (Worldwide Interoperability for Microwave Access),
    • – Infrarotverbindung und
    • – Mobilfunkverbindung
  • Umfelddaten und/oder die Kartendaten und/oder die Positionsdaten senden und/oder empfangen. Bei den genannten Sensoren handelt es sich um im Kraftfahrzeugbereich typischerweise verwendete Sensorgattungen, die im Wesentlichen eine umfassende Erfassung und Erkennung des Fahrzeugumfelds und des Fahrzeugzustands ermöglichen. Zum gegenwärtigen Zeitpunkt ist bereits eine Vielzahl von Fahrzeugen standardmäßig mit mehreren Sensoren der genannten Gattungen ausgestattet und diese Zahl wird in Zukunft aller Voraussicht nach weiter zunehmen. Der zusätzliche Ausrüstungsaufwand zur Implementierung des erfindungsgemäßen Verfahrens in ein Kraftfahrzeug ist daher gering. Die aufgeführten Verbindungsklassen der Fahrzeug-zu-X-Kommunikationsmittel bieten unterschiedliche Vor- und Nachteile, je nach Art und Wellenlänge. WLAN-Verbindungen ermöglichen z.B. eine hohe Datenübertragungsrate und einen schnellen Verbindungsaufbau. ISM-Verbindungen bieten hingegen nur eine geringere Datenübertragungsrate, sind aber hervorragend zur Datenübertragung um Sichthindernisse herum geeignet. Infrarotverbindungen wiederum bieten ebenfalls eine geringe Datenübertragungsrate. Mobilfunkverbindungen schließlich werden durch Sichthindernisse nicht beeinträchtigt und bieten eine gute Datenübertragungsrate. Dafür ist der Verbindungsaufbau jedoch vergleichsweise langsam. Durch die Kombination und gleichzeitige bzw. parallele Nutzung mehrerer dieser Verbindungsarten ergeben sich weitere Vorteile, da so die Nachteile einzelner Verbindungsarten ausgeglichen werden können
  • Bevorzugt ist es vorgesehen, dass das System das erfindungsgemäße Verfahren ausführt.
  • Weitere bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen und den nachfolgenden Beschreibungen von Ausführungsbeispielen an Hand von Figuren.
  • Es zeigt
  • 1 schematisch das Entstehen eines aktuellen Situationsabbilds in einer Datenbank,
  • 2 schematisch das Eintragen von Objekten im aktuellen Situationsabbild und das Versehen der Objekte mit Existenzwahrscheinlichkeiten sowie
  • 3 einen beispielhaften Ablauf des erfindungsgemäßen Verfahrens in Form eines Flussdiagramms.
  • In 1a ist schematisch Kreuzung 11 zu sehen, in welche Fahrzeug 12 von rechts kommend einfährt. Fahrzeug 12 ist mit einem Kamerasensor ausgestattet, der kegelförmigen Bereich 13 von Kreuzung 11 erfasst. Die Umfelddaten, die kegelförmiger Bereich 13 umfasst, werden mittels Fahrzeug-zu-X-Kommunikation unter Verwendung einer WLAN-Verbindung an lokale Datenbank 16 übertragen. Lokale Datenbank 16 ist nahe bei Kreuzung 11 angeordnet und enthält nun die in 1b dargestellten Informationen über Kreuzung 11. Kurz darauf fährt Fahrzeug 14 von unten kommend in Kreuzung 11 ein (1c). Fahrzeug 14 ist ebenfalls mit einem Kamerasensor ausgestattet und erfasst über den Kamerasensor kegelförmigen Bereich 15 von Kreuzung 11. Diese von kegelförmigem Bereich 15 umfassten Umfelddaten werden ebenfalls über eine WLAN-Verbindung an lokale Datenbank 16 gesendet und dort mit den bereits vorhandenen Daten fusioniert. Somit liegt in der Datenbank das in 1d dargestellte aktuelle Situationsabbild vor. Die Positionsdaten von Fahrzeugen 12 und 14 werden beispielsgemäß nicht in das aktuelle Situationsabbild aufgenommen.
  • 2a zeigt Kreuzung 21. Fahrzeug 22 fährt in Kreuzung 21 ein und erkennt mittels eines Kamerasensors an Kreuzung 21 angeordnetes Verkehrszeichen 23 als Geschwindigkeitsbegrenzung „Tempo 30“. Die Existenzwahrscheinlichkeit von Verkehrszeichen 23 mit der Eigenschaft „Tempo 30“ wird von Fahrzeug 22 nach Auswertung durch einen Objekterkennungsalgorithmus mit 80 % angenommen. Sowohl die Verkehrszeichen 23 beschreibenden Umfelddaten als auch die angenommene, zugehörige Existenzwahrscheinlichkeit werden an lokale Datenbank 25 mittels Fahrzeug-zu-X-Kommunikation unter Verwendung einer ISM-Verbindung gesendet und dort mit den bereits vorhandenen Daten fusioniert. Das somit erstellte, aktuelle Situationsabbild ist in 2b zu sehen und wird an alle weiteren in die Kreuzung einfahrenden Fahrzeuge gesendet. In 2c fährt Fahrzeug 24 in Kreuzung 21 ein und erfasst ebenfalls mittels eines Kamerasensors Verkehrszeichen 23. Fahrzeug 24 erkennt Verkehrszeichen 23 jedoch nicht als Geschwindigkeitsbegrenzung „Tempo 30“, sondern als „Vorfahrt achten!“. Ein der Objekterkennung zugrunde liegender Objekterkennungsalgorithmus nimmt die Existenzwahrscheinlichkeit von Verkehrszeichen 23 mit der Eigenschaft „Vorfahrt achten!“ mit 60 % an. Diese Daten werden von Fahrzeug 24 ebenfalls an lokale Datenbank 25 gesendet und dort mit dem bereits vorhandenen Situationsabbild zu einem aktuellen Situationsabbild fusioniert (2d). Das aktuelle Situationsabbild enthält somit an der Position von Verkehrszeichen 23 zwei sich widersprechende Objekte mit unterschiedlichen Existenzwahrscheinlichkeiten. Diese Daten werden von der lokalen Datenbank an alle weiteren in Kreuzung 21 einfahrenden Fahrzeuge gesendet und in den Fahrzeugen entsprechenden Fahrerassistenzsystemen zur Verfügung gestellt. Die ebenfalls gesendeten Existenzwahrscheinlichkeiten werden von den weiteren Fahrzeugen genutzt, um einen Schwellenwert eines Objekterkennungsalgorithmus zu reduzieren. Da die in der lokalen Datenbank vorhandene Existenzwahrscheinlichkeit für Verkehrszeichen 23 mit der Eigenschaft „Tempo 30“ 80 % beträgt und die Existenzwahrscheinlichkeit für Verkehrszeichen 23 mit der Eigenschaft „Vorfahrt achten!“ nur 60 % beträgt, wird der Schwellenwert für die Erkennung von Verkehrszeichen 23 mit der Eigenschaft „Tempo 30“ entsprechend stärker reduziert als für die Erkennung mit der Eigenschaft „Vorfahrt achten!“.
  • In 3 ist ein Flussdiagramm mit einem beispielhaften Ablauf des erfindungsgemäßen Verfahrens dargestellt. In Verfahrensschritten 31, 32 und 33 werden von einem Fahrzeug mittels Umfeld- und Fahrzeugsensoren, einer digitalen Karte und eines globalen Satellitenpositionssystems Umfelddaten, Kartendaten und Positionsdaten erfasst bzw. ausgelesen bzw. bestimmt. In Schritt 34 wird ein in der Datenbank bereits vorhandenes Situationsabbild an das Fahrzeug gesendet, welches in Verfahrensschritt 35 mit den vom Fahrzeug erfassten Daten verglichen wird. In Schritt 36 werden diejenigen vom Fahrzeug erfassten Daten, welche vom von in der Datenbank vorhandenen Situationsabbild abweichen, vom Fahrzeug an die Datenbank gesendet. Das in der lokalen Datenbank bereits vorhandene Situationsabbild wird in Verfahrensschritt 37 mit den vom Fahrzeug gesendeten Umfelddaten, Kartendaten und Positionsdaten zu einem aktuellen Situationsabbild fusioniert und in Schritt 38 erneut von der lokalen Datenbank an alle zu der aktuellen Situation gehörenden Fahrzeuge gesendet.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102008060869 A1 [0003]
    • DE 102007048809 A1 [0004]
    • DE 102009008959 A1 [0005]
    • DE 102008012660 A1 [0006]
  • Zitierte Nicht-Patentliteratur
    • IEEE 802.11 [0020]

Claims (11)

  1. Verfahren zur Erstellung eines aktuellen Situationsabbilds, insbesondere eines aktuellen innerstädtischen Situationsabbilds, bei welchem eine lokal begrenzte Situation beschreibende Umfelddaten und/oder Kartendaten und/oder Positionsdaten von einer Vielzahl von Fahrzeugen (12, 14, 22, 24) mittels Fahrzeug-zu-X-Kommunikationsmitteln an eine Datenbank (16, 25) gesendet werden, wobei die Umfelddaten mittels Umfeldsensoren und/oder Fahrzeugsensoren erfasst werden, wobei die Kartendaten aus einem digitalen Speicher ausgelesen werden und wobei die Positionsdaten zumindest mittels eines globalen Satellitenpositionssystems bestimmt werden, dadurch gekennzeichnet, dass die Umfelddaten und/oder die Kartendaten und/oder die Positionsdaten mit einem in der Datenbank (16, 25) bereits vorhandenen Situationsabbild kontinuierlich zu einem aktuellen Situationsabbild fusioniert werden und sowohl die Datenbank als auch das Situationsabbild ortsfest sind.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Datenbank (16, 25) das aktuelle Situationsabbild an die von der lokal begrenzten Situation umfassten Fahrzeuge (12, 14, 22, 24) sendet und das aktuelle Situationsabbild von den Fahrzeugen (12, 14, 22, 24) mindestens einem Fahrerassistenzsystem zur Verfügung gestellt wird.
  3. Verfahren nach mindestens einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass Objekte und Ereignisse im aktuellen Situationsabbild von der Datenbank (16, 25) mit Existenzwahrscheinlichkeiten versehen werden.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Existenzwahrscheinlichkeiten der Objekte von einem empfangenden Fahrzeug (12, 14, 22, 24) zusätzlich individuell ausgewertet werden.
  5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Umfelddaten und/oder die Kartendaten und/oder die Positionsdaten von der Vielzahl von Fahrzeugen (12, 14, 22, 24) mit vergleichsweise geringer Übertragungspriorität an die Datenbank (16, 25) gesendet werden.
  6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass von der Vielzahl von Fahrzeugen (12, 14, 22, 24) nur derartige Umfelddaten und/oder Kartendaten und/oder Positionsdaten an die Datenbank (16, 25) gesendet werden, die vom von der Datenbank (16, 25) gesendeten aktuellen Situationsabbild abweichen.
  7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die von der Vielzahl von Fahrzeugen (12, 14, 22, 24) gesendeten Positionsdaten eine Identifikationsinformation der zu einer Bestimmung der Positionsdaten herangezogenen Satelliten umfassen.
  8. System zur Erstellung eines aktuellen Situationsabbilds, insbesondere eines aktuellen innerstädtischen Situationsabbilds, umfassend eine Datenbank (16, 25) mit Datenfusionsmittel und Fahrzeug-zu-X-Kommunikationsmitteln sowie eine Vielzahl von Fahrzeugen (12, 14, 22, 24) mit jeweils einem digitalen Speicher und/oder Umfeldsensoren und/oder Fahrzeugsensoren und/oder Positionsbestimmungsmitteln und Fahrzeug-zu-X-Kommunikationsmitteln, wobei die Datenbank (16, 25) eine lokal begrenzte Situation beschreibende Umfelddaten und/oder Kartendaten und/oder Positionsdaten von der Vielzahl von Fahrzeugen (12, 14, 22, 24) mittels der Fahrzeug-zu-X-Kommunikationsmittel empfängt, wobei die Vielzahl von Fahrzeugen (12, 14, 22, 24) die Umfelddaten mittels der Umfeldsensoren und/oder der Fahrzeugsensoren der erfasst, wobei die Vielzahl von Fahrzeugen (12, 14, 22, 24) die Kartendaten aus dem jeweils einen digitalen Speicher ausliest und wobei die Vielzahl von Fahrzeugen (12, 14, 22, 24) die Positionsdaten zumindest mittels des globalen Satellitenpositionssystems bestimmt, dadurch gekennzeichnet, dass die Datenfusionsmittel die Umfelddaten und/oder die Kartendaten und/oder die Positionsdaten mit einem in der Datenbank (16, 25) bereits vorhandenen Situationsabbild kontinuierlich zu einem aktuellen Situationsabbild fusionieren und sowohl die Datenbank als auch das Situationsabbild ortsfest sind.
  9. System nach Anspruch 8, dadurch gekennzeichnet, dass die Datenbank (16, 25) lokal an einem vom Situationsabbild umfassten Ort angeordnet ist.
  10. System nach mindestens einem der Ansprüche 8 und 9, dadurch gekennzeichnet, dass die Umfeldsensoren ein oder mehrere Elemente aus der Gruppe – Radarsensor, – optischer Kamerasensor, – Lidarsensor, – Lasersensor, – Ultraschallsensor, – ESP-Sensor, – ABS-Sensor und – Neigungssensor sind und die Fahrzeug-zu-X-Kommunikationsmittel auf Basis einer oder mehrerer Verbindungsklassen aus der Gruppe – WLAN-Verbindung, insbesondere nach IEEE 802.11, – ISM-Verbindung (Industrial, Scientific, Medical Band), – Bluetooth®-Verbindung, – ZigBee-Verbindung, – UWB-Verbindung (Ultra Wide Band), – WiMax®-Verbindung (Worldwide Interoperability for Microwave Access), – Infrarotverbindung und – Mobilfunkverbindung Umfelddaten und/oder die Kartendaten und/oder die Positionsdaten senden und/oder empfangen.
  11. System nach mindestens einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das System ein Verfahren nach mindestens einem der Ansprüche 1 bis 7 ausführt.
DE201210208254 2012-05-16 2012-05-16 Verfahren und System zur Erstellung eines aktuellen Situationsabbilds Withdrawn DE102012208254A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE201210208254 DE102012208254A1 (de) 2012-05-16 2012-05-16 Verfahren und System zur Erstellung eines aktuellen Situationsabbilds
EP13722727.8A EP2850607B1 (de) 2012-05-16 2013-05-06 Verfahren und system zur erstellung eines aktuellen situationsabbilds
US14/400,868 US9373255B2 (en) 2012-05-16 2013-05-06 Method and system for producing an up-to-date situation depiction
KR1020147035014A KR20150013775A (ko) 2012-05-16 2013-05-06 현재 상황 묘사를 생성하는 방법 및 시스템
PCT/EP2013/059397 WO2013171088A1 (de) 2012-05-16 2013-05-06 Verfahren und system zur erstellung eines aktuellen situationsabbilds
CN201380037574.XA CN104471625B (zh) 2012-05-16 2013-05-06 用于建立当前情况图的方法和***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201210208254 DE102012208254A1 (de) 2012-05-16 2012-05-16 Verfahren und System zur Erstellung eines aktuellen Situationsabbilds

Publications (1)

Publication Number Publication Date
DE102012208254A1 true DE102012208254A1 (de) 2013-11-21

Family

ID=48444359

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201210208254 Withdrawn DE102012208254A1 (de) 2012-05-16 2012-05-16 Verfahren und System zur Erstellung eines aktuellen Situationsabbilds

Country Status (6)

Country Link
US (1) US9373255B2 (de)
EP (1) EP2850607B1 (de)
KR (1) KR20150013775A (de)
CN (1) CN104471625B (de)
DE (1) DE102012208254A1 (de)
WO (1) WO2013171088A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014223620A1 (de) 2014-11-19 2016-05-19 Conti Temic Microelectronic Gmbh Verfahren zum Anpassen des Fahrverhaltens eines Fahrzeugs
EP3671693A1 (de) 2018-12-20 2020-06-24 Volkswagen AG Verfahren und fahrerassistenzsystem zum unterstützen eines fahrers eines fahrzeugs beim führen des fahrzeugs
DE102019200347A1 (de) * 2019-01-14 2020-07-16 Continental Automotive Gmbh Entfernen von Objekten aus einer digitalen Straßenkarte

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016002603A1 (de) * 2016-03-03 2017-09-07 Audi Ag Verfahren zur Ermittlung und Bereitstellung einer auf eine vorbestimmte Umgebung bezogenen, Umfelddaten enthaltenden Datenbank
US10816654B2 (en) 2016-04-22 2020-10-27 Huawei Technologies Co., Ltd. Systems and methods for radar-based localization
DE102016211420A1 (de) * 2016-06-27 2017-12-28 Robert Bosch Gmbh Verfahren zum Bereitstellen einer Lokalisierungsinformation zum Lokalisieren eines Fahrzeugs an einem Lokalisierungsort und Verfahren zum Bereitstellen zumindest einer Information zum Lokalisieren eines Fahrzeugs durch ein anderes Fahrzeug
DE102016214156A1 (de) * 2016-08-01 2018-02-01 Continental Teves Ag & Co. Ohg Verfahren zum Senden von Daten von einem Fahrzeug an einen Server und Verfahren zum Aktualisieren einer Karte
DE102016215249B4 (de) * 2016-08-16 2022-03-31 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Unterstützen eines Fahrerassistenzsystems in einem Kraftfahrzeug
DE102016220249A1 (de) * 2016-10-17 2018-04-19 Robert Bosch Gmbh Verfahren und System zur Lokalisierung eines Fahrzeugs
KR101888295B1 (ko) 2017-01-24 2018-08-14 고려대학교 산학협력단 레이저 거리 센서의 측정 거리에 대해 추정된 거리 유형의 신뢰성을 평가하는 방법 및 이를 이용한 이동 로봇의 위치 추정 방법
DE102017211607A1 (de) * 2017-07-07 2019-01-10 Robert Bosch Gmbh Verfahren zur Verifizierung einer digitalen Karte eines höher automatisierten Fahrzeugs (HAF), insbesondere eines hochautomatisierten Fahrzeugs
DE102017217299A1 (de) * 2017-09-28 2019-03-28 Continental Automotive Gmbh Verfahren und Einrichtung
DE102018000101A1 (de) * 2018-01-09 2019-07-11 Lucas Automotive Gmbh Ein Steuerungssystem und ein Steuerungsverfahren für ein Kraftfahrzeug mit einer Datenbank
DE102018202983A1 (de) * 2018-02-28 2019-08-29 Robert Bosch Gmbh Verfahren zur Ermittlung eines Datenprofils für die satellitengestützte Ermittlung einer Position eines Fahrzeugs
JP7369938B2 (ja) * 2018-03-29 2023-10-27 パナソニックIpマネジメント株式会社 制御装置、及び地図生成方法
US11338816B2 (en) * 2019-02-02 2022-05-24 Ford Global Technologies, Llc Over-the-air flashing and reproduction of calibration data using data regression techniques
EP3882649B1 (de) * 2020-03-20 2023-10-25 ABB Schweiz AG Positionsschätzung für fahrzeuge auf basis der antwort eines virtuellen sensors
KR20230021457A (ko) * 2021-08-05 2023-02-14 현대모비스 주식회사 차량의 장애물 감지 시스템 및 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19513640A1 (de) * 1994-11-28 1996-06-05 Mannesmann Ag Verfahren zur Reduzierung einer aus den Fahrzeugen einer Fahrzeugflotte zu übertragenden Datenmenge
DE19643454A1 (de) * 1996-10-10 1998-04-23 Mannesmann Ag Verfahren und Vorrichtung zur Übermittlung von Daten zur Verkehrslagebeurteilung
DE102007048809A1 (de) 2006-10-13 2008-07-10 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Erkennung von verdeckten Objekten im Straßenverkehr
DE102008012660A1 (de) 2007-06-22 2008-12-24 Continental Teves Ag & Co. Ohg Serverbasierte Warnung vor Gefahren
DE102008060869A1 (de) 2007-12-13 2009-06-18 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Unterstützung eines Fahrzeugbedieners
DE102009008959A1 (de) 2008-02-15 2009-09-03 Continental Teves Ag & Co. Ohg Fahrzeugsystem zur Navigation und/oder Fahrerassistenz
DE102010040803A1 (de) * 2010-09-15 2012-03-15 Continental Teves Ag & Co. Ohg Visuelles Fahrerinformations- und Warnsystem für einen Fahrer eines Kraftfahrzeugs

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173691A (en) * 1990-07-26 1992-12-22 Farradyne Systems, Inc. Data fusion process for an in-vehicle traffic congestion information system
US8983771B2 (en) * 1997-10-22 2015-03-17 Intelligent Technologies International, Inc. Inter-vehicle information conveyance system and method
KR100366716B1 (ko) * 1998-10-13 2003-01-06 가부시키가이샤 자나비 인포메틱스 방송형 정보제공 시스템 및 주행환경 정보수집 장치
US6466862B1 (en) * 1999-04-19 2002-10-15 Bruce DeKock System for providing traffic information
WO2002008695A1 (de) * 2000-07-25 2002-01-31 Volkswagen Ag Verfahren zum bereitstellen von verkehrsdaten
JP4615139B2 (ja) * 2001-03-30 2011-01-19 本田技研工業株式会社 車両の周辺監視装置
DE10162335A1 (de) 2001-12-18 2003-07-10 Zf Lemfoerder Metallwaren Ag Verfahren und Vorrichtung zur Erzeugung und Aktualisierung einer Wege- und/oder Wegezustandskarte
WO2005093688A1 (ja) * 2004-03-25 2005-10-06 Xanavi Informatics Corporation ナビゲーション装置の交通情報収集システム
US20060091654A1 (en) * 2004-11-04 2006-05-04 Autoliv Asp, Inc. Sensor system with radar sensor and vision sensor
DE102006010572A1 (de) 2006-03-06 2007-09-13 Gerhard Lauche Verkehrsleitsystem
JP2007333486A (ja) * 2006-06-13 2007-12-27 Denso Corp 車両用障害物検知装置
DE102006052319A1 (de) * 2006-11-07 2008-05-08 Deutsche Telekom Ag Traffic-Management-System
US20090138190A1 (en) * 2007-11-26 2009-05-28 Magellan Navigation, Inc. System and Method of Providing Traffic Data to a Mobile Device
WO2009098154A1 (en) * 2008-02-04 2009-08-13 Tele Atlas North America Inc. Method for map matching with sensor detected objects
US8140215B2 (en) * 2008-07-22 2012-03-20 Lockheed Martin Corporation Method and apparatus for geospatial data sharing
JP4614005B2 (ja) * 2009-02-27 2011-01-19 トヨタ自動車株式会社 移動軌跡生成装置
WO2011036803A1 (ja) * 2009-09-28 2011-03-31 トヨタ自動車株式会社 物体検出装置
US8260534B2 (en) * 2010-02-08 2012-09-04 Nissan North America, Inc. Vehicle occupant information system for determining obtainable travel distances
CN201974937U (zh) * 2011-03-24 2011-09-14 黄颂晖 智能道路交通信息采集发布***
US20130289824A1 (en) * 2012-04-30 2013-10-31 GM Global Technology Operations LLC Vehicle turn assist system and method
US10210761B2 (en) * 2013-09-30 2019-02-19 Sackett Solutions & Innovations, LLC Driving assistance systems and methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19513640A1 (de) * 1994-11-28 1996-06-05 Mannesmann Ag Verfahren zur Reduzierung einer aus den Fahrzeugen einer Fahrzeugflotte zu übertragenden Datenmenge
DE19643454A1 (de) * 1996-10-10 1998-04-23 Mannesmann Ag Verfahren und Vorrichtung zur Übermittlung von Daten zur Verkehrslagebeurteilung
DE102007048809A1 (de) 2006-10-13 2008-07-10 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Erkennung von verdeckten Objekten im Straßenverkehr
DE102008012660A1 (de) 2007-06-22 2008-12-24 Continental Teves Ag & Co. Ohg Serverbasierte Warnung vor Gefahren
DE102008060869A1 (de) 2007-12-13 2009-06-18 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Unterstützung eines Fahrzeugbedieners
DE102009008959A1 (de) 2008-02-15 2009-09-03 Continental Teves Ag & Co. Ohg Fahrzeugsystem zur Navigation und/oder Fahrerassistenz
DE102010040803A1 (de) * 2010-09-15 2012-03-15 Continental Teves Ag & Co. Ohg Visuelles Fahrerinformations- und Warnsystem für einen Fahrer eines Kraftfahrzeugs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE 802.11

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014223620A1 (de) 2014-11-19 2016-05-19 Conti Temic Microelectronic Gmbh Verfahren zum Anpassen des Fahrverhaltens eines Fahrzeugs
WO2016078654A1 (de) 2014-11-19 2016-05-26 Conti Temic Microelectronic Gmbh Verfahren zum anpassen des fahrverhaltens eines fahrzeugs
EP3671693A1 (de) 2018-12-20 2020-06-24 Volkswagen AG Verfahren und fahrerassistenzsystem zum unterstützen eines fahrers eines fahrzeugs beim führen des fahrzeugs
DE102018222601A1 (de) 2018-12-20 2020-06-25 Volkswagen Aktiengesellschaft Verfahren und Fahrerassistenzsystem zum Unterstützen eines Fahrers eines Fahrzeugs beim Führen des Fahrzeugs
US11853065B2 (en) 2018-12-20 2023-12-26 Volkswagen Aktiengesellschaft Method and driver assistance system for assisting a driver of a vehicle with driving of the vehicle
DE102019200347A1 (de) * 2019-01-14 2020-07-16 Continental Automotive Gmbh Entfernen von Objekten aus einer digitalen Straßenkarte

Also Published As

Publication number Publication date
CN104471625B (zh) 2017-07-11
EP2850607A1 (de) 2015-03-25
US20150127249A1 (en) 2015-05-07
WO2013171088A1 (de) 2013-11-21
KR20150013775A (ko) 2015-02-05
CN104471625A (zh) 2015-03-25
EP2850607B1 (de) 2019-07-10
US9373255B2 (en) 2016-06-21

Similar Documents

Publication Publication Date Title
EP2850607B1 (de) Verfahren und system zur erstellung eines aktuellen situationsabbilds
DE102015100812B4 (de) Verfahren zum Verwenden von Strassenniveaubildern zum Verbessern eines Modus eines automatisierten Fahrens für ein Fahrzeug
EP2979261B1 (de) Backend für fahrerassistenzsysteme
EP3671693B1 (de) Verfahren und fahrerassistenzsystem zum unterstützen eines fahrers eines fahrzeugs beim führen des fahrzeugs
DE102018118215B4 (de) Verfahren zur Aktualisierung einer Umgebungskarte, Vorrichtung für die fahrzeugseitige Durchführung von Verfahrensschritten des Verfahrens, Fahrzeug, Vorrichtung für die zentralrechnerseitige Durchführung von Verfahrensschritten des Verfahrens sowie computerlesbares Speichermedium
EP2936470B1 (de) Verfahren und system zum lernen von verkehrsereignissen sowie verwendung des systems
DE102017116213A1 (de) Fahrspurerkennung mit rückfahrkamera
DE102011116245B4 (de) Verfahren zur Ermittlung aktueller Streckeninformationen einer digitalen Karte
DE102014220681A1 (de) Verkehrssignalvorhersage
EP3164858A1 (de) Verfahren zur parkplatzvermittlung und freier-parkplatz-assistenzsystem
DE102012216788A1 (de) Verfahren und System zum Erhalten von Qualitätsdaten betreffend Informationen über Schaltzeiten und/oder Schaltbedingungen von Ampeln und/oder Wechselverkehrszeichen
DE10004967A1 (de) Navigationssystem und Verfahren zur Konfigurierung eines Navigationssystems
DE102012004625A1 (de) Verfahren und Vorrichtung zur Aktualisierung und Anpassung von Karteninformationen in einem Navigationssystem
WO2020048734A1 (de) Verfahren zur erstellung einer karte eines umfelds eines fahrzeugs
EP2912489B1 (de) Verfahren und vorrichtung zur erkennung von gekennzeichneten gefahr- und/oder baustellen im bereich von fahrbahnen
DE102012214959B4 (de) Verfahren zur Kollisionsvermeidung oder zur Verminderung von Unfallschäden und Fahrerassistenzsystem
DE102012102693A1 (de) Verfahren und Vorrichtung zur Bereitstellung von Verkehrsinformationen in Fahrzeugen
WO2019201650A1 (de) Verfahren und vorrichtung zum bestimmen einer hochgenauen position eines fahrzeugs
DE102017223494A1 (de) Führen eines Kraftfahrzeugs zu und von einer Station
DE102012220357A1 (de) Verfahren zur Ausgabe mindestens einer Geschwindigkeitsinformation in einem Fahrzeug, Informationssystem und Ausgabevorrichtung
EP3076129B1 (de) Bereitstellen von zusatzlandkartendaten für eine offroad-strecke mit einer navigationseinrichtung
EP3696508A2 (de) System zum update von navigationsdaten
DE102022001840A1 (de) Verfahren zum Navigieren eines Fußgängers
DE102016004802A1 (de) Verfahren zum Auswählen und zur verkehrsorientierten Steuerung eines Fahrzeugs und Informationssystem für ein Fahrzeug
WO2022189069A1 (de) Bestimmen von reiseinformationen

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee