DE102012206966A1 - LED-basierte Lichtquelle - Google Patents

LED-basierte Lichtquelle Download PDF

Info

Publication number
DE102012206966A1
DE102012206966A1 DE102012206966A DE102012206966A DE102012206966A1 DE 102012206966 A1 DE102012206966 A1 DE 102012206966A1 DE 102012206966 A DE102012206966 A DE 102012206966A DE 102012206966 A DE102012206966 A DE 102012206966A DE 102012206966 A1 DE102012206966 A1 DE 102012206966A1
Authority
DE
Germany
Prior art keywords
led
light source
chip
based light
white
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102012206966A
Other languages
English (en)
Inventor
Jörg Frischeisen
Stefan Lange
Vera Stöppelkamp
Frank Jermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Priority to DE102012206966A priority Critical patent/DE102012206966A1/de
Priority to PCT/EP2013/058296 priority patent/WO2013160250A1/de
Publication of DE102012206966A1 publication Critical patent/DE102012206966A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/08Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/10Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/10Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings
    • F21V3/12Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings the coatings comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Led Device Packages (AREA)

Abstract

Eine LED-basierte Lichtquelle weist als primäre Lichtquelle mindestens eine weiß emittierende LED auf, wobei deren Strahlung durch ein Beabstandungsmittel weiter modifiziert wird.

Description

  • Technisches Gebiet
  • Die Erfindung geht aus von einer LED-basierten Lichtquelle gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich dabei insbesondere um eine sog. LED light engine, Leuchte oder LED.
  • Stand der Technik
  • Die US 2009/058256 , US 2007/215890 und US 2010/019261 offenbaren eine LED-basierte Lichtquelle, die Leuchtstoffe direkt auf dem Chip oder davon beabstandet verwendet. Die US 2010/025700 und die 2007/274093 offenbart eine LED-basierte Lichtquelle für Hinterleuchtung, die auf aufwendige Weise mittels zweier LED-Gruppen warm-weiße Lichtfarben im Bereich 2500 bis 4500 K erzeugt. Die JP 2009026672 verwendet zwei weiße LEDs mit unterschiedlicher Farbtemperatur.
  • Darstellung der Erfindung
  • Es ist Aufgabe der vorliegenden Erfindung, eine kostengünstige Lösung für eine hochwertige LED-basierte Lichtquelle bereitzustellen.
  • Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.
  • Die neuartige Lösung bezieht sich auf LED-basierte Lichtquellen, vor allem LED-basierte Lampen oder Leuchten oder Module oder sog. Light Engines, die auf der teilweisen Konversion von Licht von LEDs durch eine Leuchtstoffschicht basieren, so dass insgesamt ein bestimmter, z.B. warmweißer, Farbeindruck entsteht.
  • Beim Stand der Technik gilt bisher folgendes:
    Die Konversion kann dabei in einer ersten Ausführungsform chipnah erfolgen. Für die Applikation der Leuchtstoffe kommen alle etablierten Konversionstechniken in Frage, beispielsweise Volumenverguss, Keramikkonverter, elektrophoretische Abscheidung (EPD), Sedimentation, oder Verwendung mittels Siebdruck, Rakeln oder durch Sprayen hergestellter Plättchen aus Leuchtstoff und einem Matrixmaterial (CLC/Layer Transfer). Alternativ können LED-Chip(s) und Leuchtstoff räumlich getrennt sein, also das sog. Remote-Phosphor-Konzept benutzen. Dabei kann der Leuchtstoff in einer Matrix, beispielsweise Kunststoff, Polymer, Glas, Silikon o.ä eingebettet sein, die z.B. als eine Art Kuppel oder Platte über der LED bzw. den LEDs angebracht ist.
  • Als Variante der beiden grundlegenden Konversionskonzepte ist es bekannt, blaue LEDs und rote LEDs zu kombinieren, sog. Brilliant-Mix-Lösung, wobei das Licht der blauen LEDs entweder chipnah oder über ein Remote Phosphor Element konvertiert wird. Außerdem ist ein sog. Hybrid-Remote-Konzept bekannt, das auch unter dem Namen Magenta-Konzept bekannt ist. Es handelt sich um ein Remote Phosphor Konzept, bei dem ein Teil des Lichts der blauen LEDs über einen chipnahen roten Leuchtstoff in rotes Licht konvertiert wird.
  • Die grundlegenden Konversionskonzepte einer chipnahen Anbringung des Leuchtstoffs bzw. Remote Phosphor Konzept besitzen verschiedene Vor- und Nachteile. Das Remote Phosphor-Konzept hat häufig Vorteile hinsichtlich der Effizienz, da die LED-Chips nicht direkt durch einen chipnahen Leuchtstoff erwärmt werden, wodurch die Chips kühler und effizienter bleiben. Daneben kann ein Effizienzvorteil vorhanden sein, wenn der Bereich innerhalb des Remote Phosphor Elements eine höhere Reflektivität als der Chip besitzt.
  • Ein gravierender Nachteil des Remote-Phosphor-Konzepts ist die fehlende Kühlmöglichkeit des Leuchtstoffes mit Hilfe des Chips. Dadurch werden je nach Leistung der LED-basierten Lichtquelle besondere Anforderungen an das Matrixmaterial des Remote Phosphor Elements gestellt, da bei der Konversion von Licht im Remote-Phosphor-Element mehr oder weniger Abwärme entsteht. Des weiteren hat das Remote-Phosphor-Konzept einen deutlich höheren Leuchtstoffbedarf. Aus ästhetischer Sicht stellt ein Remote-Phosphor-Element häufig einen Nachteil dar. Beispielsweise führt seine gelbe oder orange Farbe zu einem unerwünschten farblichen Eindruck der LED-basierten Lichtquelle. Dieser wird oft durch ein zusätzliches Streuelement reduziert. Allerdings wird damit auch die Effizienz reduziert.
  • Normalerweise werden für das Remote-Phosphor-Konzept blaue LEDs ohne chipnahe Konversion verwendet. Diese sind prinzipiell kostengünstiger als entsprechende weiße LEDs mit chipnaher Konversion. Dennoch werden derzeit blaue LEDs zum Teil teurer angeboten, weil weiße LEDs und insbesondere LEDs für Hinterleuchtung (Backlighting Unit) in deutlich größerer Menge produziert und angeboten werden. Daher hat die Remote-Phosphor-Technologie zusätzlich zu den höheren Leuchtstoffkosten teilweise den Nachteil, dass es weniger Angebot für die benötigten blauen LEDs gibt und diese noch dazu teurer sind als weiße LEDs. Außerdem sind für die Brilliant-Mix-Lösung zusätzlich rote LEDs erforderlich
  • Die erfindungsgemäße Lösung sieht eine Kombination von chipnaher Konversion und Remote Phosphor vor, sie beruht also auf einem Partial-Remote-Phosphor-Konzept. Dabei wird das Licht der blauen LEDs teilweise chipnah konvertiert, so dass der Zielfarbort noch nicht allein durch die chipnahe Konversion getroffen wird. Der zweite Schritt der Konversion erfolgt über ein (oder mehrere) Remote Phosphor Element(e), die einen oder mehrere Leuchtstoffe und zusätzliche Streuer enthalten können. Der rote Anteil des Spektrums kann dabei entweder zum Teil chipnah oder zum Teil über das Remote Phosphor Element erzeugt werden. Daneben kann das Partial Remote Phosphor Konzept auch mit dem Brilliant-Mix-Konzept oder mit dem Hybrid-Remote-Konzept kombiniert werden.
  • Durch Verwendung des Partial-Remote-Phosphor-Konzepts, also der Kombination von teilweiser chipnaher Konversion und Remote Phosphor-Konzept, ergeben sich mehrere Vorteile gegenüber der Lösung, entweder die Konversion nur chipnah oder nur über Remote Phosphor durchzuführen:
    Es können LEDs verwendet werden, bei denen ein Teil des blauen Lichts bereits chipnah konvertiert wird, z.B. LEDs mit kaltweißem Farbort oder LEDs für Backlight Units (Farbort z.B. x = 0.274 und y = 0.255 oder z.B. x = 0.265 und y = 0.227) oder LEDs mit einem Farbort im Bereich zwischen dem Farbort einer blauen LED und einem kaltweißen Farbort. Für diese LEDs gibt es teilweise ein größeres Angebot und der Preis kann niedriger sein als für entsprechende blaue LEDs (ohne chipnahe Konversion).
  • Es können viele verschiedene Lampentypen nur durch die Anpassung des Remote Phosphor Elements realisiert werden. Durch Verwendung geeigneter Leuchtstoffe im Remote Phosphor Element kann man insgesamt einen breiten Bereich von Farborten abdecken (zwischen dem Farbort der LED und dem Farbort von einem Leuchtstoff bzw. den Farborten von mehreren Leuchtstoffen). Dadurch können z.B. ein sehr breiter Farbraum (z.B. warmweiß 2000 K bis kaltweiß 8000 K), verschiedene CRI-Varianten (z.B. CRI 70 bis 100) oder unterschiedliche Lumen-Pakete abgedeckt werden. Im Gegensatz dazu benötigt man bei einer reinen klassischen chipnahen Konversion für jeden Lampentyp jeweils passende LEDs.
  • Partial Remote Phosphor (und auch Remote Phosphor an sich) ist hervorragend geeignet für eine Plattform-Strategie (d.h. es sollen möglichst viele Komponenten der Lampe bei vielen Lampentypen gleich sein). Hier könnten neben Heatsink, Treiber usw. auch die LEDs (bzw. LED Light Engines / Chips on Board) für mehrere Lampentypen verwendet werden, wodurch man größere Stückzahlen einkaufen und die Kosten reduzieren kann. Verglichen mit einer kompletten Remote Phosphor Lösung (ohne teilweise chipnahe Konversion) wird beim Partial Remote Phosphor Konzept weniger Hitze im Remote Phosphor Element erzeugt, da ein Teil des Lichts bereits chipnah konvertiert wurde. Dadurch kann man auch bei höherem Lichtstrom des Bauteils noch relativ temperaturempfindliche Matrixmaterialien (z.B. Kunststoff/Polymer) für das Remote Phosphor Element verwenden.
  • Gegenüber der kompletten Remote Phosphor Lösung kann außerdem der gesamte Bedarf an Leuchtstoff im Remote Phosphor Element niedriger sein. Das kann zum einen die Leuchtstoff-Kosten senken, zum anderen kann sich ein ästhetischer Vorteil ergeben, da das Remote Phosphor Element einen weniger farbigen (z.B. gelb oder orange) Eindruck erweckt. Gegenüber einer reinen klassischen chipnahen Konversion kann man mit dem Partial Remote Konzept eine höhere Effizienz erzielen, da die LED Chips durch die nur teilweise chipnahe Konversion weniger stark erwärmt werden. Außerdem kann man den Bereich unter dem Remote Phosphor Element mit einer höheren Reflektivität gestalten im Vergleich zu der Reflektivität der Chips.
  • Wesentliche Merkmale der Erfindung in Form einer numerierten Aufzählung sind:
    • 1. LED-basierte Lichtquelle mit mindestens einem Chip oder LED und einem Leuchtstoff, der dem Chip oder der LED vorgeschaltet ist, wobei der Leuchtstoff in unmittelbarer Nähe des Chip in thermischem Kontakt angeordnet ist, so dass ein LUKOLED-System vorliegt, dadurch gekennzeichnet, dass mindestens ein weiterer Leuchtstoff beabstandet vom Chip ohne thermische Kopplung dem LUKOLED-System vorgeschaltet ist, wobei die LUKOLED weiß einer bestimmten Farbtemperatur abstrahlt und wobei die Lichtquelle weiß einer anderen Farbtemperatur oder mit anderem CRI abstrahlt.
    • 2. LED-basierte Lichtquelle nach Vorschlag 1, dadurch gekennzeichnet, dass die LUKOLED Konfektionsware ist.
    • 3. LED-basierte Lichtquelle nach Vorschlag 1, dadurch gekennzeichnet, dass die Wärmebrücke zusätzlich mit einem Mittel zur Wärmespreizung ausgestattet ist.
    • 4. LED-Modul nach Vorschlag 3, dadurch gekennzeichnet, dass das Mittel zur Wärmespreizung eine Dampf enthaltender Hohlraum ist, insbesondere ein Hohlraum in einem Metallrohr.
    • 5. LED-Modul nach Vorschlag 1, dadurch gekennzeichnet, dass der Wärmetauscher ein Körper aus offenporigem Graphitschaum ist, der mindestens eine Seitenfläche aufweist.
    • 6. LED-Modul nach Vorschlag 5, dadurch gekennzeichnet, dass der Körper ein Quader mit Seitenflächen ist, insbesondere mit Schmalseiten und Breitseiten.
    • 7. LED-Modul nach Vorschlag 5, dadurch gekennzeichnet, dass mindestens eine Seitenfläche mit der Wärmebrücke in thermischem Kontakt stehen.
    • 8. LED-Modul nach Vorschlag 5, dadurch gekennzeichnet, dass der Körper mindestens eine zweite Seitenfläche besitzt, wobei mindestens eine zweite Seitenfläche mit Schlitzen versehen ist.
    • 9. LED-Modul nach Vorschlag 1, dadurch gekennzeichnet, dass das LED-Modul eine light engine ist.
    • 10. LED-Modul nach Vorschlag 8, dadurch gekennzeichnet, dass der Körper zwei einander gegenüberliegende zweite Seitenflächen mit Schlitzen aufweist, wobei die Schlitze auf den beiden zweiten Seitenflächen gegeneinander versetzt sind.
  • Figuren
  • Im folgenden soll die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert werden. Es zeigen:
  • 1 eine Prinzipdarstellung einer LED-basierten Lichtquelle;
  • 27 LED-basierte Lichtquellen gemäß dem Stand der Technik;
  • 813 LED-basierte Lichtquellen gemäß der Erfindung;
  • 1415 LED-Lampen bzw. LED-Module gemäß der Erfindung;
  • 16 zeigt das Grundprinzip der Erfindung;
  • 17 bis 26 zeigt jeweils paarweise das Emissionsspektrum einer weißen LED und den Farbort der light engine ohne und mit einem Remote-Phosphor-Element für vier verschiedene Ausführungsbeispiele.
  • Beschreibung der Figuren
  • 1 zeigt eine LED-basierte Lichtquelle 1 mit einem LED-Modul, insbesondere eine light engine, deren konkreter Aufbau für die Erfindung keine Rolle spielt. Sie verwendet das Partial-Remote-phosphor-Konzept.
  • Dabei sitzt beispielsweise ein Chip 2 auf einem Substrat 3, wobei direkt auf dem Chip eine Schicht Leuchtstoff 4 angebracht ist. Somit findet chipnahe Teil-Konversion statt. Der Leuchtstoff ist beispielsweise grün oder gelb emittierend. Er konvertiert einen gewissen Teil der blauen Strahlung des Chip.
  • Über dem Chip spannt sich eine beabstandete Kuppel 5. Das teilkonvertierte Licht (schwarzer Pfeil) des Chips gelangt zur Kuppel 5, an der ein Remote-Phosphor-Element 6 untergebracht ist. Dies geschieht beispielsweise dadurch, dass die Kuppel mit Leuchtstoff beschichtet ist oder im Material der Kuppel Leuchtstoff dispergiert ist oder indem ein Plättchen mit Leuchtstoff in die Kuppel eingelassen ist. Außer dem Leuchtstoff kann die Kuppel selbst oder ein separates Remote-Phosphor-Element 6, das daran befestigt ist, ein zusätzliches Streumittel wie TiO2 enthalten.
  • Ein Teil des teilkonvertierten Lichts wird durch das Remote-Phosphor-Element 6 konvertiert, so dass die gesamte Strahlung (weißer Pfeil) beispielsweise weiß ergibt oder einen speziellen Farbeindruck hervorruft.
  • 2 zeigt einen Stand der Technik für eine LED-basierte Lichtquelle 1 mit chipnaher Konversion. Dabei wird weißes Licht chipnah dadurch erzeugt, dass auf einem Substrat 3 ein Chip 2 sitzt, dem oberflächennah direkt oder mittels aufgesetzter Matrix ein oder mehrere Leuchtstoffe 4 vorgeschaltet sind. Typisch ist der Chip blau emittierend und ein Teil des Lichts wird durch einen gelb emittierenden oder auch durch zwei Leuchtstoffe, die grün und rot emittieren, längerwellig verschoben.
  • 3 zeigt ein ähnliches Konzept einer LED-basierte Lichtquelle 1, wobei der Chip 2 mit den oberflächennahen Leuchtstoffen in Schicht 4 in einem Gehäuse 7 sitzt und wobei dem Gehäuse eine Streuscheibe 8 als Deckplatte vorgeschaltet ist. 4 zeigt eine rein auf dem Remote-Phosphor-Konzept basierende LED 10 mit Kuppel 11. Dabei sind alle Leuchtstoffe von dem Chip, der blau emittiert, räumlich beabstandet. Sie sitzen insbesondere auf der Kuppel 11 als Innenschicht 12, zusammen mit einer weiteren Schicht 13, die Streumittel enthält. Auch hier ist die einfachste Lösung das sog. BY-Konzept, also die teilweise Wandlung der blauen Primärstrahlung des Chips in gelb (Blue-Yellow). Eine bessere Farbwiedergabe wird mittels zweier Leuchtstoffe erzielt, die vor der Kuppel 11 angeordnet sind und die blaue Primärstrahlung konvertieren, wobei sie grün bzw. rot emittieren (RGB-Konzept). 5 zeigt das gleiche Prinzip, wobei die Schichten der Leuchtstoffe 12 und Streumittel 13 auf einer Deckplatte 8, die vom Chip 2 beabstandet ist, angebracht oder eingebracht sind.
  • 6 zeigt eine LED-basierte Lichtquelle 1, die das sog. Brilliant-Mix-Konzept verwendet. Dabei sitzen auf einem Substrat sowohl eine blau emittierende LED 2a als auch eine rot emittierende LED 2b. Nur das Licht der blauen LED wird direkt chipnah durch eine Leuchtstoffschicht 4 teilkonvertiert. Sinnvoll ist dabei eine Gelb-Konversion bis Grün-Konversion. Die Mischung der Strahlung beider LEDs ergibt wieder weißes Licht (weißer Pfeil).
  • 7 zeigt schematisch eine LED-basierte Lichtquelle 1, die das sog. Brilliant-Mix-Konzept verwendet, mit Remote-Phosphor-Lösung. Dabei wölbt sich eine gemeinsame Kuppel 11 über eine blau und eine rot emittierende LED 2a und 2b. In der Kuppel 11 sitzen Leuchtstoffe 15 und Streumittel 16 (schematisch dargestellt), die das blaue Licht teilweise konvertieren, aber das rote Licht, abgesehen von der Streuung, ungehindert passieren lassen.
  • 8 zeigt schematisch das Magenta-Konzept. Dabei wird ein Paar von blau emittierenden LEDs 2a, 2c verwendet, die nicht notwendig die gleiche Peakwellenlänge aufweisen müssen. Die Strahlung der ersten LED 2a wird ungehindert zu einer Kuppel 11 geschickt, die beabstandet angebracht ist. Die Strahlung der zweiten LED 2c wird chipnah durch eine geeignete Schicht 4 langwellig konvertiert, insbesondere zu rot bzw. magenta. In der Kuppel 11 oder an der Kuppel ist wieder ein Leuchtstoff 15 angebracht, ggf. zusätzlich auch Streumittel 16, wobei der Leuchtstoff das blaue Licht teilweise in gelbes bzw. grünes Licht konvertiert. Insgesamt wird auch hier weißes Licht erzeugt.
  • 9 zeigt ein Ausführungsbeispiel einer LED-basierten Lichtquelle 1 gemäß der Erfindung, die das Partial-Remote-phosphor-Konzept verwendet. Dabei sitzt in der Ausnehmung eines Gehäuses 7 eine LUKOLED, also eine LED, bei der der Chip 2 bereits einer chipnahen Konversion zu weiß unterzogen wird. Dies geschieht mittels einer chipnahen Schicht 4 aus Leuchtstoff oder Leuchtstoffen. Dabei emittiert diese LUKOLED insbesondere kaltweiß oder es handelt sich um eine LED, die für backlighting gedacht war und daher preisgünstig war. Das Gehäuse 7 ist mit einer Abdeckscheibe 8 versehen, an der oder in der weitere Leuchtstoffe 15 und ggf. Streumittel 16 untergebracht sind. Diese weiteren Leuchtstoffe dienen dazu, die Lichtfarbe des primären weiß zu verändern. Beispielsweise wird dabei sekundär die Lichtfarbe warmweiß oder neutralweiß oder tageslichtähnliches weiß bis hin zu skywhite erzeugt. Ein Konzept der Erfindung ist also die Modifizierung der Farbtemperatur, insbesondere gezielt zu niedrigeren Farbtemperaturen hin, mit einem Delta von mindestens 100 K, bevorzugt 200 K bis hinzu 1500 K. Konkret lässt sich die Farbtemperatur von neutralweiß oder kaltweiß (hier 4000 bis 4800 K) hin zu warmweiß (typisch 2600 bis 3200 K) verschieben. Typische Vertreter für primäres weiß sind LEDs für backlighting units (BLU) mit einer Lichtfarbe von tageslichtweiß bis hin zu skywhite oder sogar noch höher.
  • 10 zeigt das Partial-Remote-phosphor-Konzept angewendet auf eine LED-basierte Lichtquelle 1 unter Verwendung des Brilliant-Mix-Konzepts. Dabei wird eine erste LED bzw. ein Chip 2a verwendet, dessen primäre Strahlung blau ist und deren Strahlung von einem chipnah angebrachten Leuchtstoff 4 teilkonvertiert ist. Der Leuchtstoff emittiert gelb oder grün. Die LED 2a ist insgesamt wieder beispielsweise kaltweiß emittierend oder ursprünglich zur Verwendung bei backlighting units gedacht. Daneben ist eine zweite LED 2b auf demselben Substrat 3 angeordnet, die rot emittiert. Das Licht beider LEDs trifft auf eine sich über beide LEDs wölbende Kuppel 5. In der Kuppel oder an der Kuppel sind weitere Leuchtstoffe 15 und ggf. Streumittel 16 untergebracht, die das Licht beider LEDs mischen bzw. zu einem weiß konvertieren, das sich von dem ursprünglichen weiß der ersten LED unterscheidet.
  • 11 zeigt das Partial-Remote-phosphor-Konzept angewendet auf eine LED-basierte Lichtquelle 1 in einem ähnlichen Ausführungsbeispiel, jedoch ist die Kuppel durch eine Frontscheibe 8 ersetzt. Die beiden Chips 2a und 2b sitzen in einem Gehäuse 7, dessen Deckel 8 die Frontscheibe ist.
  • 12 und 13 zeigen in analoger Weise zwei LEDs 1, bei denen das Partial-Remote-phosphor-Konzept auf das Hybrid- bzw. Magenta-Konzept angewendet ist, jeweils als Kuppel-Variante (12) und Frontscheiben-Variante (13). Der erste Chip auf dem Substrat ist eine kaltweiß emittierende oder neutralweiß emittierende, für backlighting units gedachte LED 2a. Ihrem blau emittierenden Chip ist für die Erzeugung der ersten weißen Lichtfarbe, beispielsweise kaltweiß, chipnah ein Leuchtstoff 4a für eine Teilkonversion in gelb bis grün vorgeschaltet, wie an sich bekannt. Der zweite Chip 2b ist ebenfalls blau emittierend, wobei dem Chip ein geeigneter rot emittierender Leuchtstoff 4b zur Konversion in Magenta bis rot vorgeschaltet ist. Davor ist wieder beabstandet eine beide Chips überwölbende Kuppel 5 oder Scheibe 8 vorgeschaltet. Insbesondere wird ein Keramikplättchen als Scheibe 8 oder Teil der Scheibe 8 verwendet. Dieses Remote-Phosphor-Element weist mindestens einen Leuchtstoff 15 und ggf. Streumittel 16 auf. Damit lässt sich weißes Licht beliebiger Anforderung realisieren.
  • 14 zeigt eine LED-Lampe 18 in Retrofit-Konzept, die das Partial-Remote-phosphor-Konzept anwendet. Sie hat einen Sockel 19, ein Gehäuse 21, das Elektronik enthält, und eine Kuppel 17 auf dem Gehäuse. Dabei wird die Primärstrahlung und chipnahe Teilkonversion bei den auf dem Gehäuse angebrachten LEDs 20 erzeugt. Die partielle nachgeordnete Konversion und Streuung wird im Bereich der Kuppel 17 erzeugt.
  • 15 zeigt ein ähnliches Konzept für ein LED-Modul 25. Dabei wird die Primärstrahlung und chipnahe Teilkonversion bei den LEDs 20 erzeugt. Die partielle nachgeordnete Konversion wird im Bereich der Kuppel 17 erzeugt. Die Streuung schließlich im Bereich der äußeren kuppelförmigen Abdeckung 48.
  • 16 zeigt das Grundprinzip der vorliegenden Erfindung. Dargestellt ist das CIE-Diagramm, wobei der erste Farbort (1) den Farbort der LED mit chipnaher Konversion beispielsweise gemäß 1 oder 9 darstellt. Die teilweise Konversion gemäß Remote-Phosphor-Konzept verschiebt den Farbort dann zum zweiten Farbort (2). Dieser zweite Farbort (2) liegt beispielsweise genau auf der Planck-Kurve P.
  • Konkret gilt: Farbort 1 kann durch verschiedene Kombinationen von LED(s) mit einem oder mehreren Leuchtstoffen und optional zusätzlichen Streuern erreicht werden. Dabei spielt u. a. die Wellenlänge der LED(s) eine große Rolle. Vorteilhaft wird als Peakwellenlänge der LED 420 nm bis 480 nm, insbesondere 430 bis 460 nm, verwendet.
  • Das Remote Phosphor Element kann einen oder mehrere Leuchtstoffe und optional zusätzliche Streuer enthalten, um von Farbort 1 zu Farbort 2 zu gelangen, unter Nutzung der preisgünstigen LED, die Farbort 1 vermittelt.
  • Als Leuchtstoffe, die zur Anwendung im Remote-Phosphor-Element geeignet sind, werden insbesondere Granate, Orthosilikate, Chlorosilikate, Nitridosilikate und deren Derivate vorgeschlagen wie insbesondere:
    (Ca, Sr)8Mg(SiO4)4Cl2: Eu2+
    (Sr, Ba, Lu)2Si(O, N)4: Eu2+
    (Sr, Ba, Ln)2Si(O, N)4: Eu2+ mit Ln ausgewählt aus den Lanthanoiden mit der Möglichkeit, für Ln auch mehr als ein Lanthanoid zu verwenden
    (Sr, Ba)Si2N2O2:Eu2+
    (Y, Gd, Tb, Lu)3(Al, Ga)5O12:Ce3+
    (Ca, Sr, Ba)2SiO4:Eu2+
    (Sr, Ba, Ca)2Si5N8:Eu2+
    (Sr, Ca)AlSiN3:Eu2+
    (Sr, Ca)S:Eu2+
    (Sr, Ba, Ca)2(Si, Al)5(N, O)8:Eu2+
    (Sr, Ba, Ca)2Si5N8:Eu2+
    (Sr, Ba, Ca)3SiO5:Eu2+
    α-SiAlON:Eu2+
    Ca(5 – δ)Al(4 – 2δ)Si(8 + 2δ)N18O:Eu2+
  • 16 bezieht sich auf eine light engine, die sich vorteilhaft das folgende Konzept zu Nutze macht. Auf dem Markt gibt es häufig große und billige Mengen an bestimmten Chargen von weißen LED, beispielsweise kaltweiß emittierende LED. Mit einem Remote-Phosphor-Element kann eine derartige LED als Lichtquelle einer light engine verwendet werden, wobei der den Farbort verändernde Leuchtstoff im Remote-Phosphor-Element untergebracht ist. Auf diese Weise kann auf die Verwendung von erheblich teureren blauen LEDs als Lichtquelle für die light engine verzichtet werden. Im folgenden werden zwei konkrete Ausführungsbeispiele näher erläutert.
  • Im ersten Ausführungsbeispiel hat die primäre Lichtquelle chipnah einen einzigen Leuchtstoff vorgeschaltet. Der ursprüngliche (primäre) Farbort der LED ist x = 0.26/y = 0.22. Diese LED ist ursprünglich für die Display-Hinterleuchtung gedacht. Dabei ist der ursprüngliche erste und einzige chipnahe Leuchtstoff ein üblicher YAG:Ce mit Al/Ga-Anteil (YaGaG:Ce), konkret handelt es sich insbesondere um (Y0.96Ce0.04)3Al3.75Ga1.25O12.
  • Die primäre Lichtquelle ist eine blaue LED mit Peakwellenlänge 444 nm, deren Licht vom YAG:Ce teilweise in gelb konvertiert wird, so dass insgesamt ein weißer Farbeindruck entsteht. Als Remote-Phosphor-Element wird eine Mischung aus zwei Leuchtstoffen verwendet, und zwar ein vereinfachter YAG:Ce sowie ein CaAlSiN. Konkret werden die Leuchtstoffe (Y0.96Ce0.04)3Al5O12 und Ca0.996Eu0.004AlSiN3 gemeinsam im Remote-Phosphor-Element verwendet.
  • 17 zeigt die Emission der light engine ohne Remote-Phosphor-Element (Kurve 1) und mit Remote-Phosphor-Element (Kurve 2). 18 zeigt den Farbort einer light engine ohne Remote-Phosphor-Element (Kreis) und mit Remote-Phosphor-Element (Dreieck). Der neue Farbort ist x = 0.46/y = 0.41. Die Farbtemperatur ist hier neu 2700 K und der Farbwiedergabeindex CRI ist 80. Der visuelle Nutzeffekt ist 300 lm/W_vis. Konkret basiert dabei die light engine auf einer BLU-LED mit hoher Farbtemperatur als primäres weiß.
  • 19 zeigt die Emission einer light engine mit/ohne Remote-Phosphor-Element in einem zweiten Ausführungsbeispiel. Dabei ist die primäre Lichtquelle gleich wie beim ersten Ausführungsbeispiel. Jedoch ist das Remote-Phosphor-Element anders gewählt. Als Remote-Phosphor-Element wird eine Mischung aus zwei Leuchtstoffen verwendet, und zwar zum einen der gleiche YAG:Ce wie er auch chipnah verwendet wird sowie ein Nitridosilikat. Konkret werden die Leuchtstoffe (Y0.96Ce0.04)3Al3.75Ga1.25O12 und (Sr0.48Ba0.48Eu0.04)2Si5N8 gemeinsam im Remote-Phosphor-Element verwendet.
  • 19 zeigt die Emission der light engine ohne Remote-Phosphor-Element (Kurve 1) und mit Remote-Phosphor-Element (Kurve 2). 20 zeigt den Farbort einer light engine ohne Remote-Phosphor-Element (Kreis) und mit Remote-Phosphor-Element (Dreieck). Der neue Farbort ist x = 0.44/y = 0.40. Die Farbtemperatur ist hier neu 3000 K und der Farbwiedergabeindex CRI ist 72. Der visuelle Nutzeffekt ist 338 lm/W_vis. Mit Farbtemperatur ist hier ggf. die ähnlichste Farbtemperatur gemeint.
  • 21 und 22 zeigt ein weiteres Ausführungsbeispiel mit der gleichen ursprünglichen light engine. Hier ist im Remote-Phosphor-Element wieder der gleiche Leuchtstoff wie in der primären Lichtquelle verwendet, also (Y0.96Ce0.04)3Al3.75Ga1.25O12. Überraschenderweise führt auch diese Anordnung bereits zu einem gänzlich anderen Farbort, siehe 22. Die Emission ist in 21 gezeigt. 22 zeigt den Farbort einer light engine ohne Remote-Phosphor-Element (Kreis) und mit Remote-Phosphor-Element (Dreieck). Der neue Farbort ist x = 0.314/y = 0.321. Die Farbtemperatur ist hier neu 6500 K und der Farbwiedergabeindex CRI ist 73. Der visuelle Nutzeffekt ist 306 lm/W_vis.
  • Im vierten Ausführungsbeispiel hat die primäre Lichtquelle chipnah zwei Leuchtstoffe vorgeschaltet. Der ursprüngliche Farbort der LED ist x = 0.27/y = 0.23. Diese LED ist ursprünglich für die Display-Hinterleuchtung gedacht. Dabei sind die ursprünglichen ersten und zweiten chipnahe Leuchtstoffe ein üblicher LuAG:Ce mit Al-Anteil, konkret handelt es sich insbesondere um (Lu0.99Ce0.01)3Al5O12. Der zweite Leuchtstoff ist ein übliches Calsin, dabei handelt es sich insbesondere um Ca0.996Eu0.004AlSiN3.
  • Die primäre Lichtquelle ist eine blaue LED mit Peakwellenlänge 442 nm, deren Licht vom LuAG:Ce und dem Calsin teilweise in grün und rot konvertiert wird, so dass insgesamt ein weißer Farbeindruck entsteht. Als Remote-Phosphor-Element wird eine Mischung aus zwei Leuchtstoffen verwendet, und zwar ein YAG:Ce sowie ein CaAlSiN. Konkret werden die Leuchtstoffe (Y0.96Ce0.04)3Al3.75Ga1.25O12 und Ca0.996Eu0.004AlSiN3 gemeinsam im Remote-Phosphor-Element verwendet.
  • 23 zeigt die Emission der light engine ohne Remote-Phosphor-Element (Kurve 1) und mit Remote-Phosphor-Element (Kurve 2). 24 zeigt den Farbort einer light engine ohne Remote-Phosphor-Element (Kreis) und mit Remote-Phosphor-Element (Dreieck). Der neue Farbort ist x = 0.46/y = 0.41. Die Farbtemperatur ist hier neu 2700 K und der Farbwiedergabeindex CRI ist 91. Der visuelle Nutzeffekt ist 275 lm/W_vis. Farborte für BLU-LEDs liegen innerhalb eines Rechtecks im CIE-xy-Diagramm mit folgenden Eckpunkt-Koordinaten, jeweils (x / y):
    (0,20 / 0,16)
    (0,26 / 0,16)
    (0,32 / 0,29)
    (0,27 / 0,33)
  • Konkrete Farborte für BLU-LEDs liegen beispielsweise im Bereich x = 0,26 bis 0,27 und y = 0,21 bis 0,22. Sie werden bevorzugt in Bereiche für x und y größer 0,40 verschoben. 25 zeigt die Emission einer light engine ohne Remote-Phosphor-Element (Kurve 1) und mit Remote-Phosphor-Element (Kurve 2). 26 zeigt den Farbort dieser light engine ohne Remote-Phosphor-Element (Kreis) und mit Remote-Phosphor-Element (Dreieck). Es handelt sich dabei um ein Ausführungsbeispiel auf Basis des Brillant-Mix-Konzepts, d.h. mit zusätzlicher roter LED. Hier wurde die gleiche BLU-LED verwendet wie in den vorherigen Ausführungsbeispielen. Der ursprüngliche Farbort ist 0,26/0,22 als x/y-Koordinaten im CIE Farbdiagramm.
  • Der neue Farbort ist x = 0.46/y = 0.41. Die Farbtemperatur ist hier neu 2700 K und der Farbwiedergabeindex CRI ist 91. Der visuelle Nutzeffekt ist 354 lm/W_vis.
  • Die primäre Lichtquelle ist eine blaue LED mit Peakwellenlänge 444 nm, deren Licht von YaGaG:Ce primär konvertiert wird, so dass zunächst ein erster weißer Farbeindruck entsteht. Als Remote-Phosphor-Element wird der gleiche Leuchtstoff verwendet. Konkret wird der Leuchtstoff (Y0.96Ce0.04)3Al3.75Ga1.25O12 verwendet. Hinzu kommt eine rote InGaAlP-LED, wobei insgesamt ein weißer Farbeindruck mit niedrigerer Farbtemperatur entsteht.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 2009/058256 [0002]
    • US 2007/215890 [0002]
    • US 2010/019261 [0002]
    • US 2010/025700 [0002]
    • US 2007/274093 [0002]
    • JP 2009026672 [0002]

Claims (10)

  1. LED-basierte Lichtquelle mit mindestens einem Chip oder LED und mindestens einem Leuchtstoff, der dem Chip oder der LED vorgeschaltet ist, wobei der Leuchtstoff in unmittelbarer Nähe des Chip in thermischem Kontakt angeordnet ist, so dass ein LUKOLED-System vorliegt, dadurch gekennzeichnet, dass mindestens ein weiterer Leuchtstoff beabstandet vom Chip ohne thermische Kopplung dem LUKOLED-System vorgeschaltet ist, wobei die LUKOLED weiß einer bestimmten Farbtemperatur abstrahlt und wobei die Lichtquelle weiß einer anderen Farbtemperatur oder mit anderem CRI abstrahlt, wobei der mindestens eine weitere Leuchtstoff einem Beabstandungsmittel zugeordnet ist.
  2. LED-basierte Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass die LUKOLED Konfektionsware ist.
  3. LED-basierte Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass mehrere unterschiedliche LEDs nebeneinander verwendet werden.
  4. LED-basierte Lichtquelle nach Anspruch 3, dadurch gekennzeichnet, dass mindestens eine LED chipnah weiß konvertiert, während mindestens eine weitere LED farbig emittiert.
  5. LED-basierte Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass das Beabstandungsmittel mittels einer Deckplatte oder einer Kuppel realisiert ist.
  6. LED-basierte Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass das Beabstandungsmittel mindestens einen Leuchtstoff als Schicht oder als Dispersion enthält.
  7. LED-basierte Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass das Beabstandungsmittel mindestens ein Streumittel als Schicht oder als Dispersion enthält.
  8. LED-basierte Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass als Leuchtstoffe des Beabstandungsmittels Granate, Orthosilikate, Chlorosilikate, Nitridosilikate und deren Derivate eingesetzt sind.
  9. LED-basierte Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass die LED-basierte Lichtquelle eine light engine ist.
  10. LED-basierte Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass als primäre Lichtquelle eine kaltweiß emittierende oder für backlighting units gedachte LED mit einer Farbtemperatur zwischen 2600 und 4800 K verwendet ist, deren Strahlung mittels des Beabstandungsmittels modifiziert wird, insbesondere hin zu warmweiß, neutralweiß, tageslichtähnlichem Weiß oder skywhite, besonders bevorzugt hin zu einer niedrigeren Farbtemperatur, die insbesondere um mindestens 200 K niedriger ist.
DE102012206966A 2012-04-26 2012-04-26 LED-basierte Lichtquelle Withdrawn DE102012206966A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102012206966A DE102012206966A1 (de) 2012-04-26 2012-04-26 LED-basierte Lichtquelle
PCT/EP2013/058296 WO2013160250A1 (de) 2012-04-26 2013-04-22 Led-basierte lichtquelle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012206966A DE102012206966A1 (de) 2012-04-26 2012-04-26 LED-basierte Lichtquelle

Publications (1)

Publication Number Publication Date
DE102012206966A1 true DE102012206966A1 (de) 2013-10-31

Family

ID=48190943

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012206966A Withdrawn DE102012206966A1 (de) 2012-04-26 2012-04-26 LED-basierte Lichtquelle

Country Status (2)

Country Link
DE (1) DE102012206966A1 (de)
WO (1) WO2013160250A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014207664A1 (de) * 2014-04-23 2015-10-29 Osram Gmbh Leuchtvorrichtung mit Lichterzeugungseinrichtung und Leuchtstoffkörper
DE102014112883A1 (de) * 2014-09-08 2016-03-10 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil
DE102014112973A1 (de) * 2014-09-09 2016-03-10 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014117423A1 (de) * 2014-11-27 2016-06-02 Seaborough IP IV BV Lichtemittierende Remote-Phosphor-Vorrichtung
CN105295903A (zh) * 2015-11-03 2016-02-03 江苏罗化新材料有限公司 一种高显指白光和背光源led用氮化物红色荧光粉的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070215890A1 (en) 2006-03-17 2007-09-20 Philips Lumileds Lighting Company, Llc White LED for backlight with phosphor plates
US20070274093A1 (en) 2006-05-25 2007-11-29 Honeywell International, Inc. LED backlight system for LCD displays
JP2009026672A (ja) 2007-07-23 2009-02-05 Zen:Kk Led光源
US20090058256A1 (en) 2007-08-31 2009-03-05 Iwao Mitsuishi Light-emitting device
US20100019261A1 (en) 2008-01-15 2010-01-28 Goeken Group Corp. Silicon nanoparticle white light emitting diode device
US20100025700A1 (en) 2008-07-29 2010-02-04 Seoul Semiconductor Co., Ltd. Warm white light emitting apparatus and back light module comprising the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8441179B2 (en) * 2006-01-20 2013-05-14 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
CN101473453B (zh) * 2006-01-20 2014-08-27 科锐公司 通过在空间上隔开荧光片转换固态光发射器内的光谱内容
WO2010106504A1 (en) * 2009-03-19 2010-09-23 Koninklijke Philips Electronics N.V. Illumination device with remote luminescent material
WO2013030727A1 (en) * 2011-08-31 2013-03-07 Koninklijke Philips Electronics N.V. A color temperature tunable lighting device and a luminaire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070215890A1 (en) 2006-03-17 2007-09-20 Philips Lumileds Lighting Company, Llc White LED for backlight with phosphor plates
US20070274093A1 (en) 2006-05-25 2007-11-29 Honeywell International, Inc. LED backlight system for LCD displays
JP2009026672A (ja) 2007-07-23 2009-02-05 Zen:Kk Led光源
US20090058256A1 (en) 2007-08-31 2009-03-05 Iwao Mitsuishi Light-emitting device
US20100019261A1 (en) 2008-01-15 2010-01-28 Goeken Group Corp. Silicon nanoparticle white light emitting diode device
US20100025700A1 (en) 2008-07-29 2010-02-04 Seoul Semiconductor Co., Ltd. Warm white light emitting apparatus and back light module comprising the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014207664A1 (de) * 2014-04-23 2015-10-29 Osram Gmbh Leuchtvorrichtung mit Lichterzeugungseinrichtung und Leuchtstoffkörper
US9611995B2 (en) 2014-04-23 2017-04-04 Osram Gmbh Lighting apparatus with light generating device and luminescent body
DE102014112883A1 (de) * 2014-09-08 2016-03-10 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil
US10276762B2 (en) 2014-09-08 2019-04-30 Osram Opto Semiconductors Gmbh Optoelectronic component
DE102014112973A1 (de) * 2014-09-09 2016-03-10 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil
US10026880B2 (en) 2014-09-09 2018-07-17 Osram Opto Semiconductors Gmbh Optoelectronic component
DE112015004123B4 (de) 2014-09-09 2022-11-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauteil und Verfahren zur Herstellung des optoelektronischen Bauteils

Also Published As

Publication number Publication date
WO2013160250A1 (de) 2013-10-31

Similar Documents

Publication Publication Date Title
EP2753863B1 (de) Beleuchtungsvorrichtung
DE10233050B4 (de) Lichtquelle auf LED-Basis für die Erzeugung von Licht unter Ausnutzung des Farbmischprinzips
EP3132180B1 (de) Led-modul zur abgabe von weisslicht
DE10335077A1 (de) LED-Modul
DE102015100631A1 (de) Licht emitierende Vorrichtung, Lichtquelle zur Beleuchtung und Beleuchtungseinrichtung
DE102012200711A1 (de) LED Dimmer-Modul
DE102012206966A1 (de) LED-basierte Lichtquelle
DE112011103148T5 (de) Multichip-LED-Vorrichtungen mit hoher Dichte
DE112015002289T5 (de) Festkörper-Beleuchtungseinrichtungen mit einem zu einer Schwarzkörper-Ortskurve nicht übereinstimmenden Farbpunkt
DE102007043355A1 (de) LED-Modul, LED-Leuchtmittel und LED Leuchte für die energie-effiziente Wiedergabe von weißem Licht
DE102014112394B4 (de) Leuchtdiodenleuchte für Hintergrundlicht
DE202008018060U1 (de) Weißlicht-emittierende Vorrichtung und Weißlichtquellenmodul, das diese Vorrichtung verwendet
DE102012219873A1 (de) Lichtsystem mit Farbort-Stabilisierung
DE112015001928T5 (de) Festkörperbeleuchtung mit verbesserter Leuchtkraft und hohem Cri Wert
DE102016111082A1 (de) Beleuchtungslichtquelle, Beleuchtungsvorrichtung, Aussenbeleuchtungsvorrichtung und Fahrzeugscheinwerfer
EP2534003B1 (de) Leseleuchte für kraftfahrzeuge
DE102014110087A1 (de) Licht emittierendes Modul, Beleuchtungsvorrichtung und Beleuchtungsausstattung
DE102013211525A1 (de) LED-Modul mit LED-Chips
EP2126982A1 (de) Anordnung und verfahren zur erzeugung von mischlicht
TW201418839A (zh) 背光模組
DE102012209354A1 (de) LED-Modul
WO2012052432A2 (de) Leuchtvorrichtung zur flächigen lichtabstrahlung
DE102008022834A1 (de) Beleuchtungseinrichtung
DE102012205461A1 (de) Led-chip mit temperaturabhängiger wellenlänge
AT13039U1 (de) Reflektoreinheit für leds, led lichtquelle, poster-box sowie verfahren zur montage der led lichtquelle

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee