DE102011109573B3 - Preparation of composite component used for mechanical sealing and drawing die, involves forming layer containing silicide, carbide, boride, carbonitride, nitride of metal or its alloy, organic binder and diamond crystals on substrate - Google Patents

Preparation of composite component used for mechanical sealing and drawing die, involves forming layer containing silicide, carbide, boride, carbonitride, nitride of metal or its alloy, organic binder and diamond crystals on substrate Download PDF

Info

Publication number
DE102011109573B3
DE102011109573B3 DE201110109573 DE102011109573A DE102011109573B3 DE 102011109573 B3 DE102011109573 B3 DE 102011109573B3 DE 201110109573 DE201110109573 DE 201110109573 DE 102011109573 A DE102011109573 A DE 102011109573A DE 102011109573 B3 DE102011109573 B3 DE 102011109573B3
Authority
DE
Germany
Prior art keywords
sic
silicon
diamond
vol
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE201110109573
Other languages
German (de)
Inventor
Björn Matthey
Mathias Herrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE201110109573 priority Critical patent/DE102011109573B3/en
Application granted granted Critical
Publication of DE102011109573B3 publication Critical patent/DE102011109573B3/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/383Alpha silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/3834Beta silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/086Carbon interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/61Joining two substrates of which at least one is porous by infiltrating the porous substrate with a liquid, such as a molten metal, causing bonding of the two substrates, e.g. joining two porous carbon substrates by infiltrating with molten silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

A layer containing silicide, carbide, boride, carbonitride, nitride of metal or its alloy, organic binder and diamond crystals is formed on a substrate made of silicon carbide or ceramic precursor. The coated substrate is thermally-treated in inert atmosphere under vacuum condition, to from wear-resistant layer on its surface, to obtain composite component. The organic binder in the layer is thermally-decomposed and silicon or its alloy is infiltrated at less than 1650[deg] C in an inert atmosphere under vacuum condition. A layer containing silicide, carbide, boride, carbonitride, nitride of metal or its alloy, organic binder and diamond crystals is formed on a substrate made of silicon carbide or ceramic precursor. The coated substrate is thermally-treated in inert atmosphere under vacuum condition, to from wear-resistant layer on its surface, to obtain composite component. The organic binder in the layer is thermally-decomposed and silicon or its alloy is infiltrated at less than 1650[deg] C in an inert atmosphere under vacuum condition. The diamond particles are decomposed to carbon which is then combined with silicon, to form beta -silicon carbide particles. The wear-resistant layer contains 30 %mass or more of diamond crystals and 30 %mass or more of beta -silicon carbide.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Verbundbauteils sowie ein mit dem Verfahren hergestelltes Verbundbauteil. Dabei sollen diese Bauteile eine Schicht aufweisen, die eine hohe Verschleißbeständigkeit aufweist und ähnliche Eigenschaften wie polykristalline Diamantwerkstoffe oder Werkstoffe auf Basis kubischem Bornitrid erreichen.The invention relates to a method for producing a composite component and to a composite component produced by the method. These components should have a layer which has a high wear resistance and similar properties such as polycrystalline diamond materials or materials based on cubic boron nitride.

So sind mit SiC gebundene Diamantschichten (Diamantgehalte von 30–50 Vol.-%) auf einem Bauteilgrundkörper aus SiC als Verschleißschutzschichten aus der DE 10 2007 063 517 B3 bekannt. Dabei erfolgt die Herstellung so, dass bei einer Wärmebehandlung eine Infiltration mit Silicium sowohl im Bauteilgrundkörper, wie auch in der Verschleißschutzschicht erfolgt.For example, SiC-bonded diamond layers (diamond contents of 30-50% by volume) on a component main body made of SiC are used as wear-resistant layers of the DE 10 2007 063 517 B3 known. In this case, the production takes place in such a way that during a heat treatment an infiltration with silicon takes place both in the component base body and in the wear protection layer.

Es hat sich aber herausgestellt, dass diese Bauteile bei vielen Anwendungen problemlos eingesetzt und durch die Verschleißschutzschichten auch über längere Zeiten genutzt werden können. Werden die Bauteile aber mechanisch bzw. thermisch beansprucht, wie dies beispielsweise bei einem Einsatz als Schneidwerkzeug, der Fall ist wirken sich mechanische Zugspannungen innerhalb der Verschleißschutzschicht nachteilig aus, so dass es zur Zerstörung, zumindest einem teilweisen Ablösen der Verschleißschutzschicht vom Bauteilgrundkörper kommen kann. Es besteht sogar die Gefahr einer Rissbildung in der Verschleißschutzschicht unmittelbar im Anschluss an die Herstellung der Bauteile während des Abkühlens in Folge der Zugspannungen.However, it has been found that these components can be used without problems in many applications and can be used by the wear-resistant layers even over longer periods. If the components but mechanically or thermally stressed, as is the case for example when used as a cutting tool, mechanical tensile stresses within the wear protection layer adversely affect, so that it can destroy, at least a partial detachment of the wear protection layer from the component body come. There is even a risk of cracking in the wear protection layer immediately after the manufacture of the components during cooling as a result of the tensile stresses.

Bei den Bauteilen wirken sich aber Zugspannungen in auf der Oberfläche ausgebildeten Verschleißschutzschichten bei zusätzlich wirkenden Kräften besonders nachteilig aus, da die durch die zusätzlichen äußeren Kräfte wirkenden mechanischen Spannungen zu den bereits vorhandenen inneren eigenen Zugspannungen hinzu kommen und daher die Belastungsgrenze der Bauteile schneller und bei geringeren wirkenden äußeren Kräften und Momenten erreicht wird.In the case of components, however, tensile stresses in wear protection layers formed on the surface have a particularly disadvantageous effect on additionally acting forces, since the mechanical stresses acting through the additional external forces add to the inherent inherent tensile stresses and therefore the load limit of the components is faster and lower acting external forces and moments is achieved.

In der DE 10 2007 063 517 B3 sind ein Verfahren zur Herstellung von Bauteilen mit einer Verschleißschutzbeschichtung, ein so hergestelltes Bauteil und Verwendungen beschrieben. Dabei ist ein Bauteilgrundkörper aus SiC-Keramik mit kohlenstofffaserverstärktem Kohlenstoff oder einem SiC-Keramikvorprodukt mit mindestens einer Schicht, die mit einem organischen Binder und Diamantkristallen gebildet ist, beschichtet.In the DE 10 2007 063 517 B3 For example, a method of making components with a wear-resistant coating, a component so manufactured, and uses are described. In this case, a component base body of SiC ceramic with carbon fiber reinforced carbon or a SiC ceramic precursor with at least one layer which is formed with an organic binder and diamond crystals coated.

Es ist daher Aufgabe der Erfindung, Verbundbaueile mit einem Substratkörper, auf dem eine Schicht in der Diamantkristalle enthalten sind, zur Verfügung zu stellen, bei der die Schicht zumindest nahezu frei von mechanischen Zugeigenspannungen ist.It is therefore an object of the invention to provide composite structural parts with a substrate body, on which a layer in the diamond crystals are contained, in which the layer is at least almost free of mechanical tensile residual stresses.

Erfindungsgemäß wird diese Aufgabe mit einem Verfahren, das die Merkmale des Anspruchs 1 aufweist, gelöst. Anspruch 7 betrifft ein mit dem Verfahren hergestelltes Verbundbauteil. Vorteilhafte Ausgestaltungen und Weiterbildungen können mit in untergeordneten Ansprüchen bezeichneten Merkmalen erreicht werden.According to the invention, this object is achieved by a method having the features of claim 1. Claim 7 relates to a composite component produced by the method. Advantageous embodiments and further developments can be achieved with features described in the subordinate claims.

Bei dem erfindungsgemäß hergestellten Verbundbauteil ist auf einer Oberfläche eines Substratkörpers aus SiC mindestens eine Schicht, die aus mindestens 30 Masse-% Diamantkristallen und mindestens 30 Masse-% β-SiC besteht, vorhanden. Zusätzlich zum SiC ist im Substratkörper mindestens eine weitere Komponente enthalten. Diese eine oder auch mehrere Komponente(n) weisen einen thermischen Ausdehnungskoeffizienten auf, der ≥ dem thermischen Ausdehnungskoeffizienten von Diamant ist. Außerdem soll(en) sich die Komponente(n) nicht oder nur mit einem Anteil < 15% in Silicium während der Infiltration lösen oder eine Schutzschicht ausbilden können, die ein weiteres Lösen der weiteren Komponente(n) verhindern. Dabei ist/sind die Komponente(n) in Partikelform innerhalb der SiC-Matrix des Substratkörpers vorhanden. Als weitere Komponente wird eine Komponente eingesetzt, die ausgewählt ist aus einem Metall, einer Metalllegierung, einem Silicid, einem Carbid, einem Borid, einem Metallhydrid, einem Mischcarbid und Diamant.In the composite component produced according to the invention, at least one layer which consists of at least 30% by mass of diamond crystals and at least 30% by mass of β-SiC is present on a surface of a substrate body made of SiC. In addition to the SiC, at least one further component is contained in the substrate body. These one or more component (s) have a thermal expansion coefficient which is ≥ the coefficient of thermal expansion of diamond. In addition, the component (s) should not dissolve or only with a proportion of <15% in silicon during infiltration or form a protective layer that prevent further dissolution of the other component (s). In this case, the component (s) in particle form are present within the SiC matrix of the substrate body. As another component, a component selected from a metal, a metal alloy, a silicide, a carbide, a boride, a metal hydride, a mixed carbide and diamond is used.

Bevorzugt sind dabei MSi2 (mit M = Zr, Hf, Mo, W, Ta, Nb), Mo4.8Si3.5Cp0.3, Ti2SiC, Ti3SiC2, Si3Ti5 auch WC, W2C, B4C/TiB2, ZrB2, HfB2 und/oder W2B4.Preference is given here MSi 2 (with M = Zr, Hf, Mo, W, Ta, Nb), Mo 4.8 Si 3.5 Cp 0.3 , Ti 2 SiC, Ti 3 SiC 2 , Si 3 Ti 5 also WC, W 2 C, B. 4 C / TiB 2 , ZrB 2 , HfB 2 and / or W 2 B 4 .

Eine weitere Komponente könnte neben den bereits explizit genannten, auch eine andere Max-Phase (Mischcarbidphase mit Metall- und Carbideigenschaften) sein. Max-Phasen können teilweise mit Silicium reagieren. Im Substratkörperwerkstoff enthaltene Max-Phasen reduzieren die elastischen Komponenten und beeinflussen den E-Modul, wodurch die Eigenspannungen ebenfalls reduziert werden können. Außerdem kann eine erhöhte Bruchzähigkeit erreicht werden.Another component, in addition to those already explicitly mentioned, could also be another Max phase (mixed carbide phase with metal and carbide properties). Max phases can partially react with silicon. Max phases contained in the substrate body material reduce the elastic components and influence the modulus of elasticity, as a result of which the residual stresses can likewise be reduced. In addition, an increased fracture toughness can be achieved.

Eine homogene Verteilung an weiterer Komponente im Werkstoff des Substratkörpers ist wünschenswert, wodurch eine gleichmäßige Eigenspannungsverteilung innerhalb seines Volumens erreicht werden kann, die auch bei sich verändernder Temperatur beibehalten werden kann. Die Partikelgröße hat auch einen Einfluss auf die Lösbarkeit in Silicium, das bei einer Infiltration zugeführt wird. So können kleinere Partikel schneller und vermehrt in Silicium gelöst werden, als dies bei größeren Partikeln, der Fall ist. Letztgenannte lösen sich mit einem geringeren Anteil, so dass die vorteilhafte Wirkung der weiteren Komponente im Substratkörperwerkstoff beibehalten werden kann. Die Partikelgröße sollte so gewählt werden, dass für die jeweilige weitere Komponente die Partikel nicht mit der Siliciumschmelze bei der Infiltration in die Diamantkristalle enthaltende Schicht transportiert werden und auch eine Lösung in Silicium, falls eine Löslichkeit möglich ist, klein gehalten werden kann, so dass ein ausreichender Konzentrationsgradient, der jeweiligen weiteren Komponente, zwischen der Schicht und dem Substratkörper erhalten bleibt, mit dem die Eigenspannungen der Schicht in der gewünschten Form beeinflusst werden können. A homogeneous distribution of further component in the material of the substrate body is desirable, whereby a uniform residual stress distribution can be achieved within its volume, which can be maintained even with changing temperature. The particle size also has an influence on the solubility in silicon, which is supplied in an infiltration. Thus, smaller particles can be dissolved faster and more in silicon than is the case with larger particles. The latter dissolve with a smaller proportion, so that the advantageous effect of the further component in the substrate body material can be maintained. The particle size should be selected so that for the respective further component, the particles are not transported with the silicon melt in the infiltration into the diamond crystals containing layer and also a solution in silicon, if a solubility is possible, can be kept small, so that sufficient concentration gradient, the respective further component, is maintained between the layer and the substrate body, with which the residual stresses of the layer can be influenced in the desired shape.

Für weitere Komponenten mit geringer Löslichkeit in Silicium können Partikelgrößen im Bereich 1 μm bis 3 μm sinnvoll sein. Für weitere Komponenten mit höherer Löslichkeit in Silicium sollten Partikelgrößen im Bereich 10 μm bis 50 μm gewählt werden.For other components with low solubility in silicon, particle sizes in the range of 1 μm to 3 μm may be useful. For other components with higher solubility in silicon particle sizes in the range 10 microns to 50 microns should be selected.

Der Anteil an weiterer Komponente im fertig hergestellten Substratkörper sollte so groß sein, dass keine mechanischen Spannungen in der auf dem Substratkörper ausgebildeten Schicht vorhanden sind oder in der Schicht mechanische Druckspannungen, im unbelasteten Zustand wirken. In der Regel sind dies mindestens 10 Vol.-% (siehe Tabelle A).The proportion of further component in the finished substrate body should be so large that no mechanical stresses are present in the layer formed on the substrate body or in the layer mechanical compressive stresses act in the unloaded state. As a rule, these are at least 10% by volume (see Table A).

Die Eigenspannungen können wie folgt bestimmt werden. Spannungen – Makroskopisches Interface

Figure 00060001
The residual stresses can be determined as follows. Voltages - Macroscopic Interface
Figure 00060001

Dabei sind V1, V2 und V3 die Volumenanteile der Phasen. Phasenkonstanten für verschiedene mögliche Phasen sind in der Tabelle A angegeben.In this case, V 1 , V 2 and V 3 are the volume fractions of the phases. Phase constants for various possible phases are given in Table A.

Die auf dem Substratkörper ausgebildete Schicht weist 30 bis 70 Masse-% Diamantkristalle und 70 bis 30 Masse-% β-SiC auf.The layer formed on the substrate body has 30 to 70% by mass of diamond crystals and 70 to 30% by mass of β-SiC.

Bei der Herstellung eines erfindungsgemäßen Verbundbauteils wird so vorgegangen, dass ein Substratkörper, der aus einer SiC-Keramik oder einem SiC-Keramikvorprodukt, in der/dem mindestens eine weitere Komponente in Form von Partikeln enthalten ist, mit mindestens einer Schicht, die mit einem organischen Binder und Diamantkristallen gebildet ist, an der Oberfläche beschichtet wird. Die weitere Komponente hat einen thermischen Ausdehnungskoeffizienten, der ≥ dem thermischen Ausdehnungskoeffizienten von Diamant ist und die Komponente ist nicht oder nur mit einem Anteil < 15 Vol.-% in Silicium lösbar.In the production of a composite component according to the invention, the procedure is such that a substrate body which is made of a SiC ceramic or a SiC ceramic precursor, in which / at least one further component in the form of particles, with at least one layer containing an organic Binder and diamond crystals is formed on the surface is coated. The other component has a coefficient of thermal expansion which is ≥ the coefficient of thermal expansion of diamond and the component is not or only in proportion <15 vol .-% soluble in silicon.

Der so beschichtete Substratkörper wird in einer inerten Atmosphäre oder unter Einhaltung von Vakuumbedingungen einer thermischen Behandlung unterzogen und dabei wird eine thermische Zersetzung des organischen Binders unter Bildung von Kohlenstoff erreicht.The thus-coated substrate body is subjected to a thermal treatment in an inert atmosphere or under vacuum conditions, and thereby thermal decomposition of the organic binder to form carbon is achieved.

Gleichzeitig oder nachfolgend wird eine Infiltration mit Silicium oder einer Siliciumlegierung, bei einer Temperatur oberhalb der Schmelztemperatur von Silicium oder der Siliciumlegierung und unterhalb von 1650°C, ebenfalls in inerter Atmosphäre oder bei Einhaltung von Vakuumbedingungen durchgeführt. Bei dieser Wärmebehandlung reagiert der gebildete Kohlenstoff und/oder ein kleiner Anteil an Diamant mit Silicium zu β-SiC und es werden Poren mit Silicium oder der Siliciumlegierung gefüllt, so dass eine Diamantkristalle enthaltende mit dem β-SiC gebundene Schicht ausgebildet wird.Simultaneously or subsequently, an infiltration with silicon or a silicon alloy, at a temperature above the melting temperature of silicon or silicon alloy and below 1650 ° C, also carried out in an inert atmosphere or in compliance with vacuum conditions. In this heat treatment, the carbon formed and / or a small amount of diamond reacts with silicon to form β-SiC, and pores are filled with silicon or the silicon alloy to form a β-SiC bonded layer containing diamond crystals.

Für den Fall, dass die Temperatur bei der Silicium-Infiltration erhöht wird, kann sich an Grenzflächen zwischen Diamant und SiC eine Graphitschicht bilden, die zu einer weniger festen Einbindung der Diamantkristalle in die SiC-Matrix führt. Über die Parameter bei der Infiltration (Temperatur und Zeit) und die Art der eingesetzten Diamantkristalle kann die Schicht aber auch gezielt beeinflusst werden.In the case where the temperature is increased in the silicon infiltration, a graphite layer can form at interfaces between diamond and SiC, resulting in a less firm integration of the diamond crystals in the SiC matrix. However, the layer can also be influenced in a targeted manner via the parameters during infiltration (temperature and time) and the type of diamond crystals used.

Die Beschichtung zur Ausbildung der Schicht kann durch Tauchen, Spritzguss, Laminieren von Folie, Pressen, elektrophoretische Abscheidung, Gießen oder Heißgießen erfolgen.The coating for forming the layer can be done by dipping, injection molding, laminating foil, pressing, electrophoretic deposition, casting or hot casting.

Der Substratkörper sollte aus pulverförmigem SiC und mindestens einer pulverförmigen weiteren Komponente hergestellt werden. Dabei ist es von Bedeutung, dass eine weitere Komponente im festen Aggregatzustand eingesetzt und mit dem SiC gemeinsam gesintert wird.The substrate body should be made of powdery SiC and at least one powdery further component. It is important that another component is used in the solid state and sintered together with the SiC.

Eine weitere Komponente sollte, wie bereits angedeutet, mit einer mittleren Partikelgröße eingesetzt werden, bei der sich maximal 15 Vol.-% der weiteren Komponente während der Infiltration in Silicium lösen.Another component should, as already indicated, be used with an average particle size at which a maximum of 15% by volume of the further component dissolves during the infiltration into silicon.

Die Herstellung der Formkörper kann durch Pressen warm oder kalt, auch zweilagig, CIP, normales Spritzgießen, Heißgießen, Schlickergießen, Gelcasting, Coextrudieren oder Laminieren erfolgen.The production of the moldings can be carried out by pressing hot or cold, even two-ply, CIP, normal injection molding, hot casting, Schlickergießen, gel casting, coextruding or laminating.

Möglichkeiten zur Durchführung einer Infiltration von SiC mit Silicium sind von M. Esfehanian u. a. in „Development of high temperature Cf/XSi2 – SiC (X=Mo, Ti) composite via reactive met infiltration”; Journal European Ceramic Society; 27; 2007; Seite 1229 beschrieben.Possibilities for carrying out an infiltration of SiC with silicon are described by M. Esfehanian et al. In "Development of high temperature C f / XSi 2 - SiC (X = Mo, Ti) composite via reactive met infiltration"; Journal European Ceramic Society; 27; 2007; Page 1229 described.

Mit den erfindungsgemäßen Verbundbauteilen können um bis zu 300 MPa höhere Festigkeiten erreicht werden, wodurch insbesondere die Bruchfestigkeit und damit auch der Einsatzbereich positiv beeinflusst werden können.With the composite components according to the invention higher strengths can be achieved by up to 300 MPa, which in particular the breaking strength and thus also the application can be positively influenced.

Nachfolgend soll die Erfindung beispielhaft näher erläutert werden.The invention will be explained in more detail by way of example in the following.

Dabei können den folgenden Tabellen mögliche Zusammensetzungen und die Eigenspannungsverhältnisse im Substratkörper und der Schicht, für verschiedene Beispiele entnommen werden. Die Spannungen wurden für eine Dicke der Schicht von 2 mm und eine Dicke des Substratkörpers von 5 mm berechnet. Dabei sind σDia die Spannung Diamant enthaltenden Schicht und σsub die Spannung im Substratkörper. Substrat- SiSiC + MoSi2 Zusammensetzung der Diamant-Kompositschicht Gehalt MoSi2 0 Vol.-% 5 Vol.-% 10 Vol.-% 20 Vol.-% 50 vol.-% SiC σsub [MPa] –73 –34 6 89 50 vol.-% Diamant σDia [MPa] 183 85 –15 –221 60 vol.-% SiC σsub [MPa] –60 –22 16 95 40 vol.-% Diamant σDia [MPa] 149 56 –40 –237 55 vol.-% SiC σsub [MPa] –78 –41 –3 75 40 vol.-% Diamant 5 vol.-% Si σDia [MPa] 196 103 9 –187 50 vol.-% SiC σsub [MPa] –85 –47 –8 72 45 vol.-% Diamant 5 vol.-% Si σDia [MPa] 213 118 21 –179 Substrat- SiSiC + ZrSi2 Zusammensetzung der Diamant-Kompositschicht Gehalt ZrSi2 0 Vol.-% 5 Vol.-% 10 Vol.-% 20 Vol.-% 50 vol.-% SiC σsub [MPa] –73 –30 13 104 50 vol.-% Diamant σDia [MPa] 183 76 –33 –259 60 vol.-% SiC σsub [MPa] –60 –19 23 109 40 vol.-% Diamant σDia [MPa] 149 47 –57 –273 55 vol.-% SiC σsub [MPa] –78 –38 3 90 40 vol.-% Diamant 5 vol.-% Si σDia [MPa] 196 95 –9 –224 50 vol.-% SiC σsub [MPa] –85 –44 –1 87 45 vol.-% Diamant 5 vol.-% Si σDia [MPa] 213 109 3 –217 Substrat- SiSiC + B4C Zusammensetzung der Diamant-Kompositschicht Gehalt B4C 0 Vol.-% 5 Vol.-% 10 Vol.-% 20 Vol.-% 50 vol.-% SiC σsub [MPa] –73 –53 –34 6 50 vol.-% Diamant σDia [MPa] 183 134 84 –14 60 vol.-% SiC σsub [MPa] –60 –41 –22 16 40 vol.-% Diamant σDia [MPa] 149 102 55 –39 55 vol.-% SiC σsub [MPa] –78 –60 –41 –4 40 vol.-% Diamant 5 vol.-% Si σDia [MPa] 196 149 103 10 50 vol.-% SiC σsub [MPa] –85 –66 –47 –9 45 vol.-% Diamant 5 vol.-% Si σDia [MPa] 213 165 117 22 Substrat- SiSiC + TiB2 Zusammensetzung der Diamant-Kompositschicht Gehalt TiB2 0 Vol.-% 5 Vol.-% 10 Vol.-% 20 Vol.-% 50 vol.-% SiC σsub [MPa] –73 –33 8 91 50 vol.-% Diamant σDia [MPa] 183 82 –19 –227 60 vol.-% SiC σsub [MPa] –60 –21 18 97 40 vol.-% Diamant σDia [MPa] 149 53 –44 –243 55 vol.-% SiC σsub [MPa] –78 –40 –2 77 40 vol.-% Diamant 5 vol.-% Si σDia [MPa] 196 101 5 –191 50 vol.-% SiC σsub [MPa] –85 –46 –7 74 45 vol.-% Diamant 5 vol.-% Si σDia [MPa] 213 116 17 –184 Substrat- SiSiC + W2B4 Zusammensetzung der Diamant-Kompositschicht Gehalt W2B4 0 Vol.-% 5 Vol.-% 10 Vol.-% 20 Vol.-% 50 vol.-% SiC σsub [MPa] –73 139 337 696 50 vol.-% Diamant σDia [MPa] 183 –347 –842 –1739 60 vol.-% SiC σsub [MPa] –60 143 332 675 40 vol.-% Diamant σDia [MPa] 149 –358 –831 –1687 55 vol.-% SiC σsub [MPa] –78 122 308 645 40 vol.-% Diamant 5 vol.-% Si σDia [MPa] 196 –304 –770 –1613 50 vol.-% SiC σsub [MPa] –85 120 311 656 45 vol.-% Diamant 5 vol.-% Si σDia [MPa] 213 –299 –776 –1640 Substrat- SiSiC + CrB2 Zusammensetzung der Diamant-Kompositschicht Gehalt CrB2 0 Vol.-% 5 Vol.-% 10 Vol.-% 20 Vol.-% 50 vol.-% SiC σsub [MPa] –73 –31 12 104 50 vol.-% Diamant σDia [MPa] 183 78 –31 –260 60 vol.-% SiC σsub [MPa] –60 –20 22 110 40 vol.-% Diamant σDia [MPa] 149 49 –54 –274 55 vol.-% SiC σsub [MPa] –78 –39 3 90 40 vol.-% Diamant 5 vol.-% Si σDia [MPa] 196 97 –6 –225 50 vol.-% SiC σsub [MPa] –85 –44 –2 87 45 vol.-% Diamant 5 vol.-% Si σDia [MPa] 213 111 5 –218 In the following tables, possible compositions and the residual stress ratios in the substrate body and the layer can be found for different examples. The stresses were calculated for a thickness of the layer of 2 mm and a thickness of the substrate body of 5 mm. In this case, σ Dia is the stress-containing layer and σ sub is the stress in the substrate body. Substrate SiSiC + MoSi 2 Composition of the diamond composite layer Salary MoSi 2 0 vol.% 5 vol.% 10 vol.% 20 vol.% 50 vol.% SiC σ sub [MPa] -73 -34 6 89 50 vol.% Diamond σ dia [MPa] 183 85 -15 -221 60 vol.% SiC σ sub [MPa] -60 -22 16 95 40 vol.% Diamond σ dia [MPa] 149 56 -40 -237 55 vol.% SiC σ sub [MPa] -78 -41 -3 75 40% by volume of diamond 5% by volume of Si σ dia [MPa] 196 103 9 -187 50 vol.% SiC σ sub [MPa] -85 -47 -8th 72 45% by volume of diamond 5% by volume of Si σ dia [MPa] 213 118 21 -179 Substrate SiSiC + ZrSi 2 Composition of the diamond composite layer Salary ZrSi 2 0 vol.% 5 vol.% 10 vol.% 20 vol.% 50 vol.% SiC σ sub [MPa] -73 -30 13 104 50 vol.% Diamond σ dia [MPa] 183 76 -33 -259 60 vol.% SiC σ sub [MPa] -60 -19 23 109 40 vol.% Diamond σ dia [MPa] 149 47 -57 -273 55 vol.% SiC σ sub [MPa] -78 -38 3 90 40% by volume of diamond 5% by volume of Si σ dia [MPa] 196 95 -9 -224 50 vol.% SiC σ sub [MPa] -85 -44 -1 87 45% by volume of diamond 5% by volume of Si σ dia [MPa] 213 109 3 -217 Substrate SiSiC + B 4 C Composition of the diamond composite layer Content B 4 C 0 vol.% 5 vol.% 10 vol.% 20 vol.% 50 vol.% SiC σ sub [MPa] -73 -53 -34 6 50 vol.% Diamond σ dia [MPa] 183 134 84 -14 60 vol.% SiC σ sub [MPa] -60 -41 -22 16 40 vol.% Diamond σ dia [MPa] 149 102 55 -39 55 vol.% SiC σ sub [MPa] -78 -60 -41 -4 40% by volume of diamond 5% by volume of Si σ dia [MPa] 196 149 103 10 50 vol.% SiC σ sub [MPa] -85 -66 -47 -9 45% by volume of diamond 5% by volume of Si σ dia [MPa] 213 165 117 22 Substrate SiSiC + TiB 2 Composition of the diamond composite layer Content TiB 2 0 vol.% 5 vol.% 10 vol.% 20 vol.% 50 vol.% SiC σ sub [MPa] -73 -33 8th 91 50 vol.% Diamond σ dia [MPa] 183 82 -19 -227 60 vol.% SiC σ sub [MPa] -60 -21 18 97 40 vol.% Diamond σ dia [MPa] 149 53 -44 -243 55 vol.% SiC σ sub [MPa] -78 -40 -2 77 40% by volume of diamond 5% by volume of Si σ dia [MPa] 196 101 5 -191 50 vol.% SiC σ sub [MPa] -85 -46 -7 74 45% by volume of diamond 5% by volume of Si σ dia [MPa] 213 116 17 -184 Substrate SiSiC + W 2 B 4 Composition of the diamond composite layer Content W 2 B 4 0 vol.% 5 vol.% 10 vol.% 20 vol.% 50 vol.% SiC σ sub [MPa] -73 139 337 696 50 vol.% Diamond σ dia [MPa] 183 -347 -842 -1,739 60 vol.% SiC σ sub [MPa] -60 143 332 675 40 vol.% Diamond σ dia [MPa] 149 -358 -831 -1,687 55 vol.% SiC σ sub [MPa] -78 122 308 645 40% by volume of diamond 5% by volume of Si σ dia [MPa] 196 -304 -770 -1,613 50 vol.% SiC σ sub [MPa] -85 120 311 656 45% by volume of diamond 5% by volume of Si σ dia [MPa] 213 -299 -776 -1640 Substrate SiSiC + CrB 2 Composition of the diamond composite layer Salary CrB 2 0 vol.% 5 vol.% 10 vol.% 20 vol.% 50 vol.% SiC σ sub [MPa] -73 -31 12 104 50 vol.% Diamond σ dia [MPa] 183 78 -31 -260 60 vol.% SiC σ sub [MPa] -60 -20 22 110 40 vol.% Diamond σ dia [MPa] 149 49 -54 -274 55 vol.% SiC σ sub [MPa] -78 -39 3 90 40% by volume of diamond 5% by volume of Si σ dia [MPa] 196 97 -6 -225 50 vol.% SiC σ sub [MPa] -85 -44 -2 87 45% by volume of diamond 5% by volume of Si σ dia [MPa] 213 111 5 -218

Nachfolgend sollen Beispiele für die Herstellung erfindungsgemäßer Verbundbauteile erläutert werden.In the following, examples of the production of composite components according to the invention will be explained.

Beispiel 1a und 1b:Example 1a and 1b:

Erfindungsgemäße Verbundbauteile können mittels Gießformgebung in einem endformnahen Verfahren hergestellt werden. Dabei werden fließfähige Massen für den Substratkörper und die Schicht hergestellt. Für die Schicht werden Diamantkristalle mit einer mittleren Partikelgröße d50 von 10 μm in einem Gemisch aus Phenolharz mit Ethanol dispergiert. Der Anteil an Phenolharz entspricht dabei 30 Masse-%.Composite components according to the invention can be produced by means of casting in a near net shape process. In this case, flowable masses for the substrate body and the layer are produced. For the layer, diamond crystals having a mean particle size d 50 of 10 μm are dispersed in a mixture of phenolic resin with ethanol. The proportion of phenolic resin corresponds to 30% by mass.

Der Substratkörper wird aus zwei SiC-Fraktionen (α-SiC mit 70 Vol.-% bei einer mittleren Partikelgröße d50 von 50 μm und 30 Vol.-% α-SiC bei einer mittleren Partikelgröße d50 von 2 μm) hergestellt. Dieser Zusammensetzung wird als weitere zusätzliche Komponente 20 Vol.-% MoSi2 für das Beispiel 1a und 30 Vol.-% B4C für das Beispiel 1b zugegeben. Diese Anteile an zusätzlicher Komponente ermöglichen eine Minimierung der Eigenspannungen in der auf dem Substratkörper ausgebildeten Schicht, was den vorangestellten Tabellen entnommen werden kann. Das für die Herstellung der Schicht eingesetzte Diamant-Pulver wird mit einer Phenolharzmischung mit einem Anteil von 30 Masse-%, analog zur Herstellung für den Substratkörper, dispergiert.The substrate body is produced from two SiC fractions (α-SiC with 70% by volume with an average particle size d 50 of 50 μm and 30% by volume α-SiC with a mean particle size d 50 of 2 μm). This composition is added as further additional component 20 vol .-% MoSi 2 for Example 1a and 30 vol .-% B 4 C for Example 1b. These proportions of additional component allow a minimization of the residual stresses in the formed on the substrate body layer, which can be taken from the preceding tables. The diamond powder used for the preparation of the layer is dispersed with a phenolic resin mixture in a proportion of 30% by mass, analogously to the preparation for the substrate body.

Die viskosen Gießmassen können anschließend endkonturnah in die gewünschte Form gegossen werden. Es wird eine Wärmebehandlung durchgeführt, bei der zuerst eine der beiden vorbereiteten Zusammensetzungen bei 80°C in einen gelartigen Zustand versetzt wird. Anschließend wird diese mit der zweiten Zusammensetzung verbunden. The viscous casting compounds can then be poured near net shape into the desired shape. A heat treatment is carried out in which first one of the two prepared compositions is placed in a gel state at 80 ° C. Subsequently, this is connected to the second composition.

Die beiden gegossenen Formkörper werden zur Vernetzung bzw. Härtung des organischen Binders, der beispielsweise Phenolharz sein kann, einer weiteren Wärmebehandlung bei 180°C unterzogen.The two molded bodies are subjected to crosslinking or curing of the organic binder, which may be, for example, phenolic resin, a further heat treatment at 180 ° C.

Im Anschluss daran wurde an dem gehärteten Formkörper eine Pyrolyse in einer Argonatmosphäre bei einer Temperatur bis zu 900°C durchgeführt.Thereafter, pyrolysis was performed on the cured molded body in an argon atmosphere at a temperature of up to 900 ° C.

Die abschließende Silicierung der vorab pyrolisierten Formkörper wird in einer Spark-Plasma-Sinteranlage (SPS) durchgeführt. Dabei wird das üblicherweise eingesetzte uniaxiale Presswerkzeug durch ein Tiegelwerkzeug ersetzt, so dass zumindest nahezu drucklos gearbeitet wird. Das Tiegelwerkzeug wir dabei mit dem pyrolysierten Formkörper und grobkörnigen Silicium befüllt. Es soll dabei soviel Silicium eingesetzt werden, dass die noch vorhandenen Poren gefüllt werden und der zusätzliche Kohlenstoff, außer den Diamantkristallen zu SiC umgesetzt wird. Dabei kann der Silicium Überschuss 15% betragen. In der SPS-Anlage erfolgt die Erwärmung zum Schmelzen des Siliciums. Dabei wird das Werkzeug unter Vakuumbedingungen mit einer Heizrate bis zu 50 K/min auf die Temperatur von 1550°C erwärmt und diese Temperatur über 20 min gehalten.The final siliconization of the pre-pyrolyzed moldings is carried out in a spark plasma sintering plant (SPS). In this case, the commonly used uniaxial pressing tool is replaced by a crucible tool, so that at least working almost without pressure. The crucible tool is filled with the pyrolyzed molding and coarse-grained silicon. It should be used so much silicon that the remaining pores are filled and the additional carbon, except the diamond crystals is converted to SiC. The silicon excess may be 15%. In the PLC system, the heating takes place to melt the silicon. The tool is heated under vacuum conditions at a heating rate up to 50 K / min to the temperature of 1550 ° C and held this temperature for 20 min.

Danach ist der Formkörper vollständig mit Silicium infiltriert und weist in der auf dem Substratkörper ausgebildeten Schicht eine Härte (HK2) von 45 GPa auf. Diese Schicht besteht aus Diamantkristallen, β SiC, einem Restanteil an Silicium (≤ 5%). Der Substratkörper enthält α- und β-SiC, Si sowie MoSi2 beim Beispiel 1a und B4C beim Beispiel 1b, was röntgenographisch bestimmt werden kann.Thereafter, the molded body is completely infiltrated with silicon and has a hardness (HK2) of 45 GPa in the layer formed on the substrate body. This layer consists of diamond crystals, β SiC, a residual silicon (≤ 5%). The substrate body contains α- and β-SiC, Si and MoSi 2 in Example 1a and B 4 C in Example 1b, which can be determined by X-ray diffraction.

Beispiel 2a und 2b:Example 2a and 2b:

Bei der Herstellung erfindungsgemäßer Verbundbauteile durch Pressformgebung kann für die Schicht ein pulverförmiges Diamantgranulat eingesetzt werden. Die Granaliengröße liegt im Bereich 100 μm bis 200 μm.In the production of composite components according to the invention by press molding, a powdered diamond granulate can be used for the layer. The granule size is in the range 100 μm to 200 μm.

Für die Herstellung wurde Diamantpulver mit einer mittleren Partikelgröße d50 von 20 μm eingesetzt. Zur Herstellung des Granulats wird das Ausgangspulver mit einem Anteil eines organischem Binder von 9 Masse-% in einem Lösungsmittel, z. B. Ethanol gelöst. Die Mischung wird in einem Rotationsverdampfer getrocknet und das entstandene Produkt durch ein Sieb mit einer Maschenweite von 212 μm granuliert.Diamond powder with a mean particle size d 50 of 20 μm was used for the production. For the preparation of the granules, the starting powder with a proportion of an organic binder of 9% by mass in a solvent, for. B. dissolved ethanol. The mixture is dried in a rotary evaporator and the resulting product is granulated through a sieve with a mesh size of 212 microns.

Für den Substratkörper wird ein SiC-Granulat mit einer mittleren Partikelgröße im Bereich 200 μm bis 300 μm eingesetzt, Eine SiSiC typische Zusammensetzung aus maximal 95 Masse-% α-SiC, mit 65 Vol.-% α-SiC mit einer Korngröße d50 von 50 μm und 35 Vol.-% mit einer mittleren Korngröße d50 von 2 μm und einem effektiven Anteil an Kohlenstoff von 5 Masse-% werden mit 10 Masse-% eines Binders in wässriger Suspension dispergiert. Dieser Zusammensetzung wird eine weitere Komponente MoSi2 mit einem Anteil 20 Vol.-%, bezogen auf das Granulat für das Beispiel 2a und 30 Vol.-% B4C für das Beispiel 2b zugemischt. Das Granulat für die Schicht und der Werkstoff für den Substratkörper werden in einer Doppelpresstechnik in einer Presse mit einem Druck von ca. 40 MPa verdichtet. Anschließend wird der so erhaltene Presskörper zur Vernetzung bzw. Härtung des organischen Binders einer Wärmebehandlung bei einer Temperatur von 180°C unterzogen. In diesem Zustand können zusätzliche Konturen, die nicht mittels Pressen realisierbar sind, mit für keramische Werkstoffe typischer Grünbearbeitung eingebracht werden.For the substrate body, a SiC granules having an average particle size in the range 200 microns to 300 microns, a SiSiC typical composition of a maximum of 95% by weight of α-SiC, with 65 vol .-% α-SiC with a particle size d 50 of 50 microns and 35 vol .-% with a mean particle size d 50 of 2 microns and an effective proportion of carbon of 5 mass% are dispersed with 10% by mass of a binder in aqueous suspension. This composition is a further component MoSi 2 with a proportion of 20 vol .-%, based on the granules for Example 2a and 30 vol .-% B 4 C for Example 2b mixed. The granules for the layer and the material for the substrate body are compacted in a double press technique in a press with a pressure of about 40 MPa. Subsequently, the resulting compact is subjected to crosslinking or curing of the organic binder, a heat treatment at a temperature of 180 ° C. In this state, additional contours, which can not be realized by means of pressing, can be introduced with ceramic materials for typical green processing.

Anschließend wurde eine Pyrolyse in Argonatmosphäre bei einer Temperatur von 900°C durchgeführt.Subsequently, pyrolysis was carried out in an argon atmosphere at a temperature of 900 ° C.

Die Infiltration mit Silicium erfolgte ebenfalls in einer Spark-Plasma-Sinteranlage, in einem Tiegelwerkzeug, wie bei den Beispielen 1a und 1b.Silicon infiltration also occurred in a spark plasma sintering machine, in a crucible tool, as in Examples 1a and 1b.

Das erhaltene Verbundbauteil war vollständig siliciert und die Schicht hatte eine Härte (HK2) von 45 GPa. Die die Diamantkristalle enthaltende Schicht besteht dabei aus Diamantkristallen, β-SiC und geringen Anteilen an Silicium. Im Substratkörper waren neben der Hauptphase SiC auch sekundär MoSi2 (Beispiel 2a) oder B4C (Beispiel 2b) vorhanden, was röntgenographisch nachgewiesen werden kann. Kleine Anteile an Graphit können röntgenographisch nicht eindeutig nachgewiesen werden. Dies ist aber mittels FESEM möglich.The obtained composite component was completely silicided and the layer had a hardness (HK2) of 45 GPa. The diamond crystal containing layer consists of diamond crystals, β-SiC and small amounts of silicon. In addition to the main phase SiC, secondary MoSi 2 (Example 2a) or B 4 C (Example 2b) were also present in the substrate body, which can be detected by X-ray diffraction. Small amounts of graphite can not be clearly detected by X-ray diffraction. But this is possible with FESEM.

Nachfolgende Tabelle A gibt die Konstanten für die Bestimmung der Eigenspannungen wieder. Stoff Therm. Ausdehnungskoeffizient 106/K E-Modul GPa Poissonzahl ν Diamant 5,0 1050 0,144 SiC 4,5 450 0,212 Silicium 4,5 169 0,279 MoSi2 8,4 385 0,17 TiSi2 11 255 0,24 ZrSi2 9,7 235 0,25 (approximiert) B4C 6 450 0,21 TiB4 7,8 560 0,11 W2B4 13 770 0,25 (approximiert) CrB4 11 215 0,206 Table A below shows the constants for determining the residual stresses. material Therm. Expansion coefficient 10 6 / K E-modul GPa Poisson number ν diamond 5.0 1050 0.144 SiC 4.5 450 0.212 silicon 4.5 169 0,279 MoSi 2 8.4 385 0.17 TiSi 2 11 255 0.24 ZrSi 2 9.7 235 0.25 (approximated) B 4 C 6 450 0.21 TiB 4 7.8 560 0.11 W 2 B 4 13 770 0.25 (approximated) CrB 4 11 215 0.206

Die nachfolgende 1 zeigt den Einfluss der Graphitschichtdicke, auf der Oberfläche von Diamantkristallen, auf die Härte in Abhängigkeit von der Infiltrationstemperatur. Die Graphitschichtdicke wurde an FESEM-Aufnahmen bestimmt.The following 1 shows the influence of the graphite layer thickness, on the surface of diamond crystals, on the hardness as a function of the infiltration temperature. The graphite layer thickness was determined on FESEM images.

Claims (7)

Verfahren zur Herstellung von Verbundbauteilen, bei dem ein Substratkörper, der aus einer SiC-Keramik oder einem SiC-Keramikvorprodukt, in der/dem mindestens eine weitere Komponente – in Form von Partikeln, ausgewählt aus einem Metall, einer Metalllegierung, einem Silicid, einem Carbid, einem Borid, einem Metallcarbonitrid, Nitrid, einem Mischcarbid und Diamant, – mit einem thermischen Ausdehnungskoeffizienten, der ≥ dem thermischen Ausdehnungskoeffizienten von Diamant ist, enthalten ist, mit mindestens einer Schicht, die mit einem organischen Binder und Diamantkristallen gebildet ist, an der Oberfläche beschichtet wird; der so beschichtete Substratkörper in einer inerten Atmosphäre oder unter Einhaltung von Vakuumbedingungen einer thermischen Behandlung unterzogen wird, bei der eine thermische Zersetzung des organischen Binders unter Bildung von Kohlenstoff erreicht wird; gleichzeitig oder nachfolgend eine Infiltration mit Silicium oder einer Siliciumlegierung, bei einer Temperatur oberhalb der Schmelztemperatur von Silicium oder der Siliciumlegierung und unterhalb von 1650°C, ebenfalls in inerter Atmosphäre oder bei Einhaltung von Vakuumbedingungen, erfolgt, wobei – durch thermische Zersetzung des organischen Binders gebildeter Kohlenstoff und/oder ein kleiner Anteil an Diamant mit Silicium zu β-SiC reagiert, – die Komponente nicht oder nur mit einem Anteil < 15 Vol.-% in Silicium lösbar ist, – Poren mit dem Silicium oder der Siliciumlegierung gefüllt werden, so dass eine mindestens 30 Masse-% Diamantkristalle und mindestens 30 Masse-% β-SiC enthaltende Verschleißschutzschicht ausgebildet wird.A method for producing composite components, wherein a substrate body, which consists of a SiC ceramic or a SiC ceramic precursor, in the / at least one further component In the form of particles selected from a metal, a metal alloy, a silicide, a carbide, a boride, a metal carbonitride, nitride, a mixed carbide and diamond, With a thermal expansion coefficient ≥ the thermal expansion coefficient of diamond, with at least one layer formed with an organic binder and diamond crystals coated on the surface; the substrate body thus coated is subjected to a thermal treatment in an inert atmosphere or under vacuum conditions, in which thermal decomposition of the organic binder to form carbon is achieved; simultaneously or subsequently an infiltration with silicon or a silicon alloy, at a temperature above the melting temperature of silicon or the silicon alloy and below 1650 ° C, also in an inert atmosphere or in compliance with vacuum conditions, takes place - Carbon formed by thermal decomposition of the organic binder and / or a small proportion of diamond reacts with silicon to form β-SiC, The component is not solvable in silicon or only in a proportion <15% by volume, - Pores are filled with the silicon or the silicon alloy, so that at least 30 mass% of diamond crystals and at least 30 mass% β-SiC-containing wear protection layer is formed. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Beschichtung durch Tauchen, Spritzguss, Laminieren von Folie, Pressen, elektrophoretische Abscheidung, Gießen oder Heißgießen aufgebracht wird.A method according to claim 1, characterized in that the coating is applied by dipping, injection molding, laminating of film, pressing, electrophoretic deposition, casting or hot casting. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Substratkörper aus pulverförmigem SiC und mindestens einem Pulver der weiteren Komponente hergestellt wird.A method according to claim 1 or 2, characterized in that the substrate body of powdered SiC and at least one powder of the further component is produced. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine weitere Komponente mit einer mittleren Partikelgröße eingesetzt wird, bei der sich maximal 15 Vol.-% der weiteren Komponente während der Infiltration in Silicium lösen.Method according to one of the preceding claims, characterized in that the at least one further component having an average particle size is used, in which a maximum of 15 vol.% Of the further component dissolve during the infiltration into silicon. Verfahren nach einem der vorhergehenden Ansprüche, das als weitere Komponente MSi2 (mit M = Zr, Hf, Mo, W, Ta, Nb), Mo4.8Si3.5C0.3, Ti2SiC, Ti3SiC2, Si3Ti5, WC, W2C, B4C/TiB2, ZrB2, HfB2 und/oder W2B4 eingesetzt wird/werden. Method according to one of the preceding claims, which as further component MSi 2 (with M = Zr, Hf, Mo, W, Ta, Nb), Mo 4.8 Si 3.5 C 0.3 , Ti 2 SiC, Ti 3 SiC 2 , Si 3 Ti 5 , WC, W 2 C, B 4 C / TiB 2 , ZrB 2 , HfB 2 and / or W 2 B 4 is / are used. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schicht mit 30 bis 70 Masse-% Diamantkristallen und 70 bis 30 Masse-% β-SiC gebildet wird.Method according to one of the preceding claims, characterized in that the layer with 30 to 70 mass% of diamond crystals and 70 to 30 mass% β-SiC is formed. Verbundbauteil für Gleitringdichtungen, in Form eines Ziehsteins oder in Form einer Düse, hergestellt mit einem Verfahren nach einem der Ansprüche 1 bis 6.Composite component for mechanical seals, in the form of a drawing die or in the form of a nozzle, produced by a method according to one of claims 1 to 6.
DE201110109573 2011-08-04 2011-08-04 Preparation of composite component used for mechanical sealing and drawing die, involves forming layer containing silicide, carbide, boride, carbonitride, nitride of metal or its alloy, organic binder and diamond crystals on substrate Active DE102011109573B3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE201110109573 DE102011109573B3 (en) 2011-08-04 2011-08-04 Preparation of composite component used for mechanical sealing and drawing die, involves forming layer containing silicide, carbide, boride, carbonitride, nitride of metal or its alloy, organic binder and diamond crystals on substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201110109573 DE102011109573B3 (en) 2011-08-04 2011-08-04 Preparation of composite component used for mechanical sealing and drawing die, involves forming layer containing silicide, carbide, boride, carbonitride, nitride of metal or its alloy, organic binder and diamond crystals on substrate

Publications (1)

Publication Number Publication Date
DE102011109573B3 true DE102011109573B3 (en) 2012-10-25

Family

ID=46967583

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201110109573 Active DE102011109573B3 (en) 2011-08-04 2011-08-04 Preparation of composite component used for mechanical sealing and drawing die, involves forming layer containing silicide, carbide, boride, carbonitride, nitride of metal or its alloy, organic binder and diamond crystals on substrate

Country Status (1)

Country Link
DE (1) DE102011109573B3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201731A1 (en) 2014-01-31 2015-08-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Component made of ceramic material and method for its preparation
DE102015206241A1 (en) 2015-04-08 2016-10-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. SiC-diamond composite material and process for its production
DE102018203882A1 (en) * 2018-03-14 2019-09-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the production of hard material particles from SiC-bonded diamond, hard-material particles produced by the process, porous components produced with the hard-material particles and their use

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007063517B3 (en) * 2007-12-21 2009-01-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Manufacturing wear-resistant silicon carbide- or carbon component, coats substrate with diamond crystals and binder, fires and infiltrates with silicon at high temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007063517B3 (en) * 2007-12-21 2009-01-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Manufacturing wear-resistant silicon carbide- or carbon component, coats substrate with diamond crystals and binder, fires and infiltrates with silicon at high temperature

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201731A1 (en) 2014-01-31 2015-08-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Component made of ceramic material and method for its preparation
DE102014201731B4 (en) * 2014-01-31 2017-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Component made of ceramic material and method for its preparation
DE102015206241A1 (en) 2015-04-08 2016-10-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. SiC-diamond composite material and process for its production
DE102015206241B4 (en) 2015-04-08 2018-10-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. SiC-diamond composite material and process for its production
DE102018203882A1 (en) * 2018-03-14 2019-09-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the production of hard material particles from SiC-bonded diamond, hard-material particles produced by the process, porous components produced with the hard-material particles and their use

Similar Documents

Publication Publication Date Title
EP1601630B1 (en) Heat sink having a high thermal conductivity
EP1741137B1 (en) Heat sink made from a diamond/copper composite material containing boron
DE3012199C2 (en) Boron nitride sintered body having a matrix of MC? X?, MN? X? and / or M (CN)? x? and Al and its uses
EP1751320B1 (en) Wearing part consisting of a diamantiferous composite
DE102008061024B4 (en) A method of making TiB reinforced composite titanium alloy based components by powder metallurgy methods
DE102007063517B3 (en) Manufacturing wear-resistant silicon carbide- or carbon component, coats substrate with diamond crystals and binder, fires and infiltrates with silicon at high temperature
DE10008686A1 (en) Fiber-reinforced silicon carbide composite, useful as a structural, fusion reactor or artificial bone material, is made by silicon melt infiltration of a carbonized and reaction sintered fiber moulding containing silicon powder and resin
DE102018208427B4 (en) Process for manufacturing a component, the component itself and its use
DE102011109573B3 (en) Preparation of composite component used for mechanical sealing and drawing die, involves forming layer containing silicide, carbide, boride, carbonitride, nitride of metal or its alloy, organic binder and diamond crystals on substrate
EP1657227B1 (en) Process of manufacture of a carbide ceramic material with a defined graded phase distribution profile, carbide ceramic material and structural member.
DE19845151A1 (en) Metal- or ceramic-bonded cubic boron nitride composite material, especially for cutting tools, is produced by plasma-assisted hot pressing of a fine matrix powder and boron nitride particle mixture
DE69631897T2 (en) METAL CARBIDE-CONTAINING REFRACTORY MATERIALS
WO2013113944A1 (en) Fiber-reinforced silicon carbide composite materials
DE2923729A1 (en) SINTER-CERAMIC PRODUCT AND METHOD FOR THE PRODUCTION THEREOF
DE19706925C2 (en) Process for producing ceramic-metal composite bodies, ceramic-metal composite bodies and their use
DE19612926A1 (en) Modified silicon nitride composite powder for thermal coating technologies and processes for their production
DE102015206241B4 (en) SiC-diamond composite material and process for its production
EP1310469B1 (en) A process for production of ceramic bearing components
DE4331307C2 (en) Manufacture of a carbon fiber reinforced composite and its use
DE102012012227A1 (en) Producing silicon carbide based ceramic sintered body that is useful e.g. for fabricating semiconductors, comprises sintering powder body in inert gas atmosphere, and performing gas pressure sintering in nitrogen-containing atmosphere
WO2009112192A2 (en) Composite material based on transition metal borides, method for the production thereof, and use thereof
DE3603331A1 (en) SILICON CARBIDE SINTER PRODUCT AND METHOD FOR THE PRODUCTION THEREOF
DE102008034258B4 (en) Sintered material and process for its production
DE4026127C2 (en) Process for producing a pressure-free sintered product
DE102015210831B4 (en) Process for producing a material in which diamond or cBN particles are embedded as hard material in a silicon nitride matrix

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20130126