DE102011003313A1 - Fiber composite plastic and manufacturing method thereto - Google Patents

Fiber composite plastic and manufacturing method thereto Download PDF

Info

Publication number
DE102011003313A1
DE102011003313A1 DE201110003313 DE102011003313A DE102011003313A1 DE 102011003313 A1 DE102011003313 A1 DE 102011003313A1 DE 201110003313 DE201110003313 DE 201110003313 DE 102011003313 A DE102011003313 A DE 102011003313A DE 102011003313 A1 DE102011003313 A1 DE 102011003313A1
Authority
DE
Germany
Prior art keywords
fiber
matrix
nano
fibers
fiber composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE201110003313
Other languages
German (de)
Inventor
Heinrich Kapitza
Christian Seidel
Heinrich Zeininger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE201110003313 priority Critical patent/DE102011003313A1/en
Priority to PCT/EP2012/050801 priority patent/WO2012101036A1/en
Publication of DE102011003313A1 publication Critical patent/DE102011003313A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Die Erfindung betrifft ein Faserflächengebilde, bei dem Fasern in eine Matrix eingebettet sind. Die Adhäsion zwischen der Faser und der bettenden Matrix wird durch Füllen der Matrix mit Nano-Material verbessert.The invention relates to a fibrous sheet-like structure in which fibers are embedded in a matrix. The adhesion between the fiber and the bedding matrix is improved by filling the matrix with nano-material.

Description

Die Erfindung betrifft ein Faserflächengebilde, bei dem Fasern in eine Matrix eingebettet sind.The invention relates to a fibrous sheet in which fibers are embedded in a matrix.

Faserverbundkunststoffe zeichnen sich im Vergleich zu metallischen Konstruktionswerkstoffen durch ein deutlich geringeres spezifisches Gewicht und höhere spezifische Eigenschaften aus.Fiber composite plastics are characterized by a significantly lower specific weight and higher specific properties compared to metallic construction materials.

Es sind Faserverbundkunststoffe beispielsweise aus der DE 20 2004 008 122 bekannt, sie werden auch als „Organoblech” oder „Hybridgarngewebe” bezeichnet und im Flugzeug-, Schiffs- oder Fahrzeugbau sowie in der Energieindustrie eingesetzt, generell bei Leichtbauanwendungen.They are fiber composite plastics, for example, from DE 20 2004 008 122 They are also known as "organo sheet" or "hybrid yarn fabric" and used in aircraft, ship or vehicle construction and in the energy industry, generally in lightweight construction applications.

Ein Faserverbundkunststoff (FVK) ist ein Mehrphasen- oder Mischwerkstoff aus mindestens zwei Hauptkomponenten, eine bettende Matrix und verstärkende Fasern. Als bettende Matrix wird ein Harz, als Faser beispielsweise eine Glas-, Kohlenstoff- und/oder Aramidfaser eingesetzt. FVK-Bauteile finden Anwendung in klassischen statischen Konstruktionen und zunehmend auch in dynamisch belasteten Bauteilen oder Komponenten, beispielsweise in Turbinenkomponenten für die Energieerzeugung inklusive Windräder, Bauteile für (Schienen-)Fahrzeuge, Komponenten elektrotechnischer Geräte (Trafos, Generatoren, Motoren) oder in der Photovoltaik.A composite fiber plastic (FRP) is a multiphase or mixed material of at least two main components, a bedding matrix and reinforcing fibers. As a bedding matrix, a resin, as a fiber, for example, a glass, carbon and / or aramid fiber used. FRP components are used in classic static designs and increasingly also in dynamically loaded components or components, for example in turbine components for power generation including wind turbines, components for (rail) vehicles, components of electrical equipment (transformers, generators, motors) or in photovoltaics ,

Bei der Herstellung wird eine Faser mit dem Harz imprägniert oder infiltriert. Die Fasern tragen in der Regel zumindest teilweise eine Beschichtung, wie beispielsweise eine so genannte Schlichte an der Oberfläche, die zum einen eine glatte Faseroberfläche für die Webschritte gewährleistet zum anderen eine Kompatibilisierung mit der Matrix herstellt.During manufacture, a fiber is impregnated or infiltrated with the resin. The fibers usually carry at least partially a coating, such as a so-called sizing on the surface, which on the one hand ensures a smooth fiber surface for the weaving, on the other hand makes a compatibilization with the matrix.

Bei Faserverbunden werden die mechanischen Eigenschaften durch Auswahl der Fasern und Matrixharze bestimmt. Die mechanischen Eigenschaften in Faserrichtung sind vor allem durch die Eigenschaften der Fasern bestimmt, währen in Querzugsrichtung insbesondere bei DU-Gelegen die Eigenschaften der Matrix bestimmend sind. In Faserverbundanwendungen für die Energietechnik, wie beispielsweise Windkraft und Medizintechnik beispielsweise Patientenliegen sollen Zug – und Querzugeigenschaften verbessert werden. Bei Glasfaserverbunden ist man auf das E-Glas beschränkt, so dass Eigenschaftsverbesserungen nur über die Matrix eingebracht werden können. Bei CFK-Verbunden stehen beispielsweise auch Hochmodul-Fasern zur Verfügung, durch deren gezielten Einbau die Steifigkeit des Verbundes erhöht wird.In fiber composites, the mechanical properties are determined by selecting the fibers and matrix resins. The mechanical properties in the fiber direction are primarily determined by the properties of the fibers, while in the transverse direction, in particular in the case of DU layers, the properties of the matrix are decisive. In fiber composite applications for energy technology, such as wind power and medical technology, for example patient beds, tensile and transverse tensile properties are to be improved. With glass fiber composites one is limited to the E glass, so that property improvements can be introduced only over the matrix. With CFRP composites, for example, high-modulus fibers are also available, through the targeted installation of which the rigidity of the composite is increased.

Es besteht immer der Bedarf, die Steifigkeit, Festigkeit, Reißfestigkeit, (Schlag)-zähigkeit, die Verbesserung des Benetzungsverhaltens der Faser sowie die Schwingfestigkeit und Kompaktheit der FVKs zu optimieren.There is always a need to optimize the stiffness, strength, tear strength, (toughness) toughness, improvement of the wetting behavior of the fiber as well as the fatigue strength and compactness of the FRPs.

Aufgabe der vorliegenden Erfindung ist es daher, einen FVK zu schaffen, der gegenüber der Stand der Technik verbesserte mechanische Eigenschaften aufweist.The object of the present invention is therefore to provide an FRP which has improved mechanical properties compared to the prior art.

Die Lösung der Aufgabe und der Gegenstand der Erfindung sind in der Beschreibung, den Ansprüchen und der Figur offenbart.The solution of the problem and the subject of the invention are disclosed in the description, the claims and the figure.

Allgemeine Erkenntnis der Erfindung ist es, dass durch den Einbau von Nano-Materialien, beispielsweise in Form nanopartikulärer Füllstoffe, Sole, Gele und/oder Kolloide, die mechanischen Eigenschaften sowohl in Faserrichtung als auch quer zur Faserrichtung deutlich verbessert werden können.General knowledge of the invention is that the incorporation of nano-materials, for example in the form of nanoparticulate fillers, sols, gels and / or colloids, the mechanical properties can be significantly improved both in the fiber direction and transverse to the fiber direction.

Gegenstand der Erfindung ist daher ein Faserverbundkunststoff, Faser und eine bettende Matrix umfassend, wobei die bettende Matrix durch Nano-Materialien modifiziert ist. Außerdem ist Gegenstand der Erfindung ein Verfahren zur Herstellung eines Faserverbundkunststoffes, wobei die Matrix vor dem Einbetten der Faser durch Nano-Materialien modifiziert wird.The subject of the invention is therefore a fiber composite plastic comprising fiber and a bedding matrix, wherein the bedding matrix is modified by nano-materials. In addition, the invention relates to a method for producing a fiber composite plastic, wherein the matrix is modified by embedding the fiber by nano-materials.

Die Modifizierung der Polymermatrix durch Nano-Material findet im noch nicht vollständig und bevorzugt im ungehärteten und/oder unvernetztem Zustand statt.The modification of the polymer matrix by nano-material does not yet take place completely and preferably in the uncured and / or uncrosslinked state.

Zur Modifizierung der Polymermatrix durch Nano-Material werden bevorzugt Nano-Materialien in Form von nanoskaligen Partikel, beispielsweise als Füllstoffe, in Form von Solen, Kolloiden oder ähnlichem in die bettende Matrix eingearbeitet.To modify the polymer matrix by nano-material, nano-materials in the form of nanoscale particles, for example as fillers, in the form of sols, colloids or the like are preferably incorporated in the bedding matrix.

Als Nano-Materialien eignen sich beispielsweise SiO2, Al2O3, CNTs, metallische Nano-Materialien, Bornitrid (BN), Siliziumcarbid (SiC), Titnoxid (TiO2), Bariumtitanat (BaTiO3), Siliziumnitrid(SiN), Magnesiumoxid(MgO) und allgemein Oxide, Nitride, Carbide aller GruppeII und Übergangs-Metalle, insbesondere auch von Aluminium, Titan, Chrom, Vanadium, Niob und/oder Zirkon.Suitable nano-materials are, for example, SiO 2 , Al 2 O 3 , CNTs, metallic nano-materials, boron nitride (BN), silicon carbide (SiC), titanium oxide (TiO 2 ), barium titanate (BaTiO 3 ), silicon nitride (SiN), magnesium oxide (MgO) and generally oxides, nitrides, carbides of all group II and transition metals, in particular also of aluminum, titanium, chromium, vanadium, niobium and / or zirconium.

Die Nano-Materialien können weiterhin die Wärmeleitfähigkeit (für BN und SiC) des FVK erhöhen, insbesondere auch senkrecht zur Faserorientierung, also in Dickenrichtung des Laminats.The nano-materials can further increase the thermal conductivity (for BN and SiC) of the FRP, in particular also perpendicular to the fiber orientation, ie in the thickness direction of the laminate.

Der Füllgrad des Nano-Materials in der bettenden Matrix beträgt beispielsweise 0,05% bis 70 Gew%, abhängig von der Wirksamkeit des Nano-Materials in der jeweiligen Matrix.The degree of filling of the nano-material in the bedding matrix is for example 0.05% to 70% by weight, depending on the effectiveness of the nano-material in the respective matrix.

Abhängig vom Nano-Material werden verschiedene Prozentbereiche bevorzugt, beispielsweise wird Nano-SiO2 in Mengen von 7% bis 40 Gew%, Nano-CarbonNanoTubes (CNT) im Bereich von 0,05 bis 5 Gew% und Nano-Al2O3 in Mengen von 30 bis 50 Gew% eingearbeitet. Bevorzugte Bereiche liegen dann innerhalb dieser Grenzen, also beispielsweise für Nano-SiO2 bei 10 bis 25 Gew%, bei CNT von 0,1 bis 3 Gew% und bei Al2O3 bei 30 bis 40 Gew%. Depending on the nano-material, various percentage ranges are preferred, for example, nano-SiO 2 in amounts of 7% to 40% by weight, nano-carbon nanotubes (CNT) in the range of 0.05 to 5% by weight and nano-Al 2 O 3 in Incorporated amounts of 30 to 50 wt%. Preferred ranges are then within these limits, ie for example for nano-SiO 2 at 10 to 25% by weight, at CNT from 0.1 to 3% by weight and at Al 2 O 3 at 30 to 40% by weight.

Die Materialien für die bettende Matrix werden dann wie üblich hergestellt und verarbeitet. Demnach umfasst ein Matrixmaterial beispielsweise neben dem eigentlichen Polymer und dem Nano-Material je nach Ausführungsform auch noch Additive, Zusatzstoffe, Füllstoffe, Lösungsmittel etc.The materials for the bedding matrix are then prepared and processed as usual. Accordingly, a matrix material, for example, in addition to the actual polymer and the nano-material, depending on the embodiment also includes additives, additives, fillers, solvents, etc.

Die Verteilung des Nano-Materials innerhalb der bettenden Matrix ist bevorzugt homogen und/oder isotrop, es kann jedoch als Folge der Verarbeitung auch zu Inhomogenitäten in der Verteilung des Nano-Materials in der Matrix kommen.The distribution of the nano-material within the bedding matrix is preferably homogeneous and / or isotropic, however, as a result of the processing, inhomogeneities may also occur in the distribution of the nano-material in the matrix.

Beispiele für die bettende Matrix sind polymere Kunststoffe aller Art. Beispiele dafür sind Thermoplaste, Duroplaste, Harze auf Basis von Epoxid-, Polyurethan-, Acrylat. Es eignen sich außerdem ungesättigte Polyester (UP)-Harze, Vinylester (VE)-Harze, Duromere, Duroplaste, und/oder weitere Kunstharze.Examples of the bedding matrix are polymeric plastics of all kinds. Examples include thermoplastics, thermosets, resins based on epoxy, polyurethane, acrylate. Also suitable are unsaturated polyester (UP) resins, vinyl ester (VE) resins, duromers, thermosets, and / or other synthetic resins.

Beispiele für Thermoplasten sind Acrylnitril-Butadien-Styrol (ABS), Polyamide (PA), Polyactat (PLA), Polymethylmethacrylat (PMMA), Polycarbonat (PC), Polyethylenterephtalat (PET), Polyethylen (PE) , Polypropylen (PP) , Polystyrol (PS) , Polyetheretherketon (PEEK), Polyvinylchlorid (PVC).Examples of thermoplastics are acrylonitrile-butadiene-styrene (ABS), polyamides (PA), polyactate (PLA), polymethylmethacrylate (PMMA), polycarbonate (PC), polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene ( PS), polyetheretherketone (PEEK), polyvinylchloride (PVC).

Die bettende Matrix kann auch als Blend von mehreren polymeren Kunststoffen vorliegen.The bedding matrix may also be present as a blend of several polymeric plastics.

Als Faser können alle Arten von Fasern, insbesondere Hochleistungsfasern eingesetzt werden, beispielsweise ausgewählt aus der Gruppe folgender Fasern: Kohlenstofffasern, Glasfaser, Aramidfaser, polymere Fasern wie Polyethylenfaser, Polypropylenfaser, Polystyrolfaser, Polyethylenterephtalatfaser, Keramikfaser wie Siliziumcarbidfaser, Aluminiumoxidfasern oder sonstige verstärkende Fasern.As the fiber, there can be used all kinds of fibers, especially high-performance fibers, for example selected from the group of following fibers: carbon fibers, glass fiber, aramid fiber, polymeric fibers such as polyethylene fiber, polypropylene fiber, polystyrene fiber, polyethylene terephthalate fiber, ceramic fiber such as silicon carbide fiber, alumina fibers or other reinforcing fibers.

Die Fasern können auch als Gemisch von Fasern vorliegen.The fibers may also be present as a mixture of fibers.

Die Fasern können in Form von einem Gewebe, Gewirke, Gelege, Geflecht, Faservlies vorliegen.The fibers may be in the form of a woven, knitted, scrim, braid, non-woven fabric.

Nach einer bevorzugten Ausführungsform sind die Fasern beschichtet, so dass beispielsweise nasschemisch eine Schlichte auf die Faser aufgebracht wurde und/oder diese ummantelt.According to a preferred embodiment, the fibers are coated so that, for example, wet-chemically a size has been applied to the fiber and / or encased in it.

Nach einer weiteren bevorzugten Ausführungsform haben die Fasern eine aktivierte Oberfläche, das heißt, die Oberfläche der Fasern, unabhängig davon ob die Faser beschichtet ist oder nicht, ist chemisch und/oder physikalisch aktiviert. Eine derartige physikalische Aktivierung ist beispielsweise über eine Plasmabehandlung, eine chemische beispielsweise über Säure-/Basebehandlung zu erreichen. Die Fasern mit der aktivierten Oberfläche haben eine wesentlich bessere Adhäsion zu der bettenden Matrix als die Fasern ohne Aktivierung.According to another preferred embodiment, the fibers have an activated surface, that is, the surface of the fibers, whether coated or not, is chemically and / or physically activated. Such a physical activation can be achieved for example via a plasma treatment, a chemical, for example via acid / base treatment. The fibers with the activated surface have a much better adhesion to the bedding matrix than the fibers without activation.

Zur Herstellung des FVKs werden die Fasern entweder mit dem unvernetzten Polymer imprägniert, also mit dem unvernetzten Polymer überzogen oder die Fasern werden durch ein Tauchbad mit dem unvernetzten Polymer gezogen. Die FVKs können auch durch einen Tripreg Prozess hergestellt werden.To produce the FRP, the fibers are either impregnated with the uncrosslinked polymer, ie coated with the uncrosslinked polymer, or the fibers are drawn through an immersion bath with the uncrosslinked polymer. The FRPs can also be made by a Tripreg process.

Durch die Modifizierung mit Nano-Material wird eine wesentlich stärkere Adhäsion zwischen der bettenden Matrix und der Faser erreicht, unabhängig davon, ob die Faser beschichtet ist oder nicht.By modifying with nano-material, a much stronger adhesion between the bedding matrix and the fiber is achieved, regardless of whether the fiber is coated or not.

Die Fasern liegen beispielsweise in Form von Gewebe, Gewirke, Gelege, Geflecht und/oder Faservlies vor.The fibers are, for example, in the form of woven, knitted fabric, scrim, braid and / or non-woven fabric.

Die Faser wird zur Bildung des FVKs beispielsweise durch ein Bad mit dem modifizierten, noch nicht vernetzten Harz gezogen. Damit wird das Harz in einer dünnen Schicht auf die Faser aufgebracht.The fiber is pulled to form the FRP, for example, by bathing with the modified, uncrosslinked resin. Thus, the resin is applied in a thin layer on the fiber.

Im Folgenden wird noch anhand eines Diagramms eines Ausführungsbeispiels gezeigt, welche durchschlagende Verbesserung im Bezug auf die Faser-Matrix-Adhäsion eine Modifizierung mit Nano-Material bringen kann.In the following, it will be shown, with reference to a diagram of an embodiment, which radical improvement with respect to the fiber-matrix adhesion can bring about a modification with nano-material.

Die 1 zeigt einen Vergleich zwischen der ungefüllten bettenden Matrix links im Diagramm und der mit 0,8 Gew% CNT (CarboNanoTubes) gefüllten Matrix rechts davon. Gemessen wurde die Spaltfestigkeit in MPa, die ein direktes Maß für die Adhäsion zwischen der Faser und der bettenden Matrix in einem FVK darstellt.The 1 shows a comparison between the unfilled bedding matrix on the left in the diagram and the 0.8 wt% CNT (CarboNanoTubes) filled matrix to the right. The split strength was measured in MPa, which is a direct measure of the adhesion between the fiber and the bedding matrix in a FRP.

Im Folgenden wird die Erfindung noch anhand eines Ausführungsbeispiels näher erläutert:The invention will be explained in more detail below with reference to an exemplary embodiment:

Herstellung eines FVKProduction of a FRP

Zum einen kann ein entsprechendes Laminat über einen RTM-Prozess (z. B. Infusion) und/oder über Vakuuminfusion folgendermaßen hergestellt werden. Etliche Lagen CarbonFaser-UniDirektional (CF-DU)-Fasergelege werden in eine Form eingebracht. Nach dem Schließen und Verschrauben des Werkzeuges wird die Form in einem Vakuumschrank auf 80°C erwärmt und evakuiert. Über eine Öffnung, versehen mit einem Schlauch, wird die Harzmatrix in die Form durch Belüften des Schrankes reingezogen. Das CF-Fasergelege wird dabei vollständig überflutet. Der Inhalt der Form (CF + Matrix) wird mit einem für die Matrix definierten Temperaturprofil ausgehärtet. Danach wird die Form auf Raumtemperatur abgekühlt und das fertige FVK in Form eines CFK-Laminats entnommen.On the one hand, a corresponding laminate can be produced via an RTM process (eg infusion) and / or via vacuum infusion as follows. Several layers of carbon fiber UniDirectional (CF-DU) fiber webs are placed in a mold. After closing and screwing the tool, the mold is in one Vacuum cabinet heated to 80 ° C and evacuated. Through an opening provided with a hose, the resin matrix is drawn into the mold by aerating the cabinet. The CF fiber layer is completely flooded. The content of the mold (CF + matrix) is cured with a temperature profile defined for the matrix. The mold is then cooled to room temperature and the finished FRP is removed in the form of a CFRP laminate.

Weiterhin kann auch eine Imprägnierung der einzelnen Faserlagen mit dem entsprechend modifizierten Harz durchgeführt werden (Prepreg-Technologie). In diesem Fall erfolgt die Herstellung des Verbund-Laminats durch ein Verpressen imprägnierten Faserlagen unter Temperatur und Druck.Furthermore, an impregnation of the individual fiber layers can be carried out with the correspondingly modified resin (prepreg technology). In this case, the composite laminate is produced by pressing impregnated fiber layers under temperature and pressure.

Die Viskosität liegt bei den Verarbeitungstemperaturen für den Infusionsprozess < 600 mPas und für den Prepregprozess bei < 3000 mPas, so dass im Prepregprozess auch höhere Nano-Material-Konzentrationen verarbeitet werden können.The viscosity is <600 mPas at the processing temperatures for the infusion process and <3000 mPas for the prepreg process, so that even higher nano-material concentrations can be processed in the prepreg process.

Die SiO2-Nanopartikel sind beispielsweise gut dispergierbar, bis zu Konzentrationen. 40% sind keine Agglomerationen festzustellen. Der AL-Wert wird durch das Nano-Material nicht wesentlich beeinflusst. Der AL-Wert von 10% SiO2 liegt innerhalb der Messgenauigkeit bei 0,158 im Vergleich zum ummodifizierten Matrixsystem bei 0,150.For example, the SiO 2 nanoparticles are readily dispersible, down to concentrations. 40% are no agglomerations. The AL value is not significantly affected by the nano-material. The AL value of 10% SiO 2 is within the measurement accuracy at 0.158 compared to the remodeled matrix system at 0.150.

Als Ausführungsbeispiele seine folgende Materialien genannt, die jedoch beliebig erweitert werden können mit weiteren Nano-Materialien und ebenso für weitere, beispielsweise auch kommerziell verfügbare, polymere Komponenten auf Basis von Epoxidharzen sowie UP- und PU-Harzen:As examples of its following materials mentioned, but which can be arbitrarily extended with other nano-materials and also for other, for example, commercially available, polymeric components based on epoxy resins and UP and PU resins:

Harzeresins

  • Araldite LY556/Aradur 917/DY070 Fa. Huntsman (Harzbasis: DGBA)Araldite LY556 / Aradur 917 / DY070 from Huntsman (resin base: DGBA)
  • Araldite CY179/Aradur 917/DY070 Fa. Huntsman (Harzbasis: Cycloaliphatisches Epoxidharz)Araldite CY179 / Aradur 917 / DY070 from Huntsman (resin base: cycloaliphatic epoxy resin)
  • Nanopox E 470 mit 40% kolloidalen SiO2 Partikeln von 20 nm (Harzbasis: DGBA)Nanopox E 470 with 40% colloidal SiO 2 particles of 20 nm (resin base: DGBA)
  • Nanopox C 620 mit 40% kolloidalen SiO2 Partikeln von 20 nm (Harzbasis: Cycloaliphatisches Epoxidharz)Nanopox C 620 with 40% colloidal SiO 2 particles of 20 nm (resin base: cycloaliphatic epoxy resin)

Nano-Materialien:Nano-materials:

  • Carbon Nanotubes (CNT): MWCNT, Typ Baytubes C 1502, MWCNT, Typ Nanocyl 7000Carbon nanotubes (CNT): MWCNT, Baytubes C 1502 type, MWCNT, Nanocyl 7000 type
  • Aluminiumoxid: Disperal HP 14Alumina: Disperal HP 14
  • Siliziumoxid: SiO2, Nanopox E 470, Nanopox C 620, kolloidal in Epoxidharz eingearbeitetSilica: SiO 2, Nanopox E 470, Nanopox C 620, colloidally incorporated in epoxy resin

Alle Typen von kommerziell verfügbaren Kohlenstoff-Fasern in Form von Gelegen und Geweben, insbesondere basierend auf Glas- und Kohlenstofffaser, können eingesetzt werden.All types of commercially available carbon fibers in the form of loops and fabrics, especially based on glass and carbon fiber, can be used.

Folgende Teste und/oder Messungen zeigen die Verbesserung der mechanischen Eigenschaften der FVKs (2) Die Tabellen zeigen, dass im Imprägnierverfahren durch Zusatz von 10% Nano-SiO2 eine Steigerung des E-Moduls in Querzugsrichtung von ca. 20% erzielt werden kann; in Hauptbiegerichtung senkrecht zur Faser wird trotz der Faserdominanz eine Verbesserung des E-Moduls von 10% erreicht. Durch höhere nano-SiO2 Zugaben werden die mechanischen Eigenschaften weiter verbessert.The following tests and / or measurements show the improvement of the mechanical properties of the FRPs ( 2 ) The tables show that in the impregnation process by adding 10% nano-SiO 2, an increase in the modulus of elasticity in the transverse direction of about 20% can be achieved; In the main bending direction perpendicular to the fiber, an improvement of the modulus of elasticity of 10% is achieved despite the fiber dominance. Higher nano-SiO2 additions further improve the mechanical properties.

Ähnliche Verbesserungen werden bei der gleichen 10%igen Zugaben von nano-SiO2 mit einem Kohlefaser-Gewebe erhalten. Sowohl der E-Modul als auch die Biegefestigkeit nehmen um über 10% zu.Similar improvements are obtained at the same 10% additions of nano-SiO 2 with a carbon fiber fabric. Both the modulus of elasticity and the flexural strength increase by more than 10%.

Verbesserung Faser-Matrix HaftungImprovement fiber matrix adhesion

Es wurde festgestellt, dass in einem Glasfaser verstärkten Material durch die Einarbeitung von CNT in einer Konzentration von 0,3% die Faser-Matrix-Adhäsion im Transverse Fiber Bundle Test von 23 N/mm2 für das angefüllte Harz auf 33 N/mm2 für das modifizierte Harz gesteigert werden kann. Dies entspricht einer Steigerung > 42%.It was found that in a glass fiber reinforced material by incorporation of CNT at a concentration of 0.3%, the fiber matrix adhesion in the transverse fiber bundle test of 23 N / mm 2 for the filled resin was 33 N / mm 2 for the modified resin can be increased. This corresponds to an increase of> 42%.

Vorteile ergeben sind in der Auslegung der Faserverbund-Bauteile, beispielsweise bei Rotorblattern. Durch die verbesserten mechanischen Eigenschaften kann die Konstruktion material- und gewichtssparender durchgeführt werden. Die Verbesserung der Faser-Matrix Haftung ergeben sich Vorteile bei dynamischen Belastungsfällen, da eine Delamination bei Wechselbelastungen bei höheren Belastungskräften bzw. -Zyklen auftritt. Damit erhöht sich auch die Lebensdauer der Bauteile.Benefits arise in the design of fiber composite components, such as rotor blades. Due to the improved mechanical properties, the construction can be carried out with less material and weight. The improvement in fiber-matrix adhesion provides advantages in dynamic load cases, as delamination occurs at alternating loads at higher loading forces or cycles. This also increases the service life of the components.

Durch die Erfindung wird erstmals gezeigt, wie durch einfache Modifizierung einer bettenden Matrix mit Nano-Material in einem FVK eine Steigerung der Adhäsion zwischen Faser und bettender Matrix von beachtlichem Wert, beispielsweise von 50% erreicht werden kann.The invention shows for the first time how, by simple modification of a bedding matrix with nano-material in an FRP, an increase in the adhesion between the fiber and the bedding matrix of considerable value, for example of 50%, can be achieved.

Additiv und alternativ zu diesem Effekt kann die Adhäsion zwischen bettender Matrix und Faser noch durch die Oberflächenaktivierung der Faser deutlich erhöht werden.Additively and as an alternative to this effect, the adhesion between the bedding matrix and the fiber can be significantly increased by the surface activation of the fiber.

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • DE 202004008122 [0003] DE 202004008122 [0003]

Claims (7)

Faserverbundkunststoff, Faser und bettende Matrix umfassend, wobei die bettende Matrix durch Nano-Material modifiziert ist.Comprising fiber composite plastic, fiber and bedding matrix, wherein the bedding matrix is modified by nano-material. Faserverbundkunststoff nach Anspruch 1, wobei der Füllgrad der bettenden Matrix mit Nano-Material zwischen 0,05 und 70 Gew% liegt.A fiber composite resin according to claim 1, wherein the degree of filling of the nano-bedded matrix is between 0.05 and 70% by weight. Faserverbundkunststoff nach einem der vorstehenden Ansprüche, wobei die Faser in Form von einem Gewebe, Gewirke, Gelege, Geflecht und/oder als Faservlies vorliegt.Fiber-reinforced plastic according to one of the preceding claims, wherein the fiber is in the form of a woven, knitted fabric, scrim, braid and / or as a non-woven fabric. Faserverbundkunststoff nach einem der vorstehenden Ansprüche, wobei die Oberfläche der Faser beschichtet ist.A fiber composite resin according to any one of the preceding claims, wherein the surface of the fiber is coated. Faserverbundkunststoff nach einem de vorstehenden Ansprüche, wobei die Oberfläche der Faser chemisch und/oder physikalisch aktiviert ist.Fiber composite plastic according to one of the preceding claims, wherein the surface of the fiber is chemically and / or physically activated. Verfahren zur Herstellung eines Faserverbundkunststoffes, wobei die Matrix vor dem Einbetten der Faser durch Nano-Material modifiziert wird.A method of making a fiber composite plastic, wherein the matrix is modified by nano-material prior to embedding the fiber. Verfahren zur Herstellung eines Faserverbundkunststoffes nach Anspruch 6, wobei die Faseroberfläche vor dem Einbetten der Faser in die Matrix chemisch und/oder physikalisch aktiviert wird.A method of producing a fiber composite plastic according to claim 6, wherein the fiber surface is chemically and / or physically activated prior to embedding the fiber in the matrix.
DE201110003313 2011-01-28 2011-01-28 Fiber composite plastic and manufacturing method thereto Ceased DE102011003313A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE201110003313 DE102011003313A1 (en) 2011-01-28 2011-01-28 Fiber composite plastic and manufacturing method thereto
PCT/EP2012/050801 WO2012101036A1 (en) 2011-01-28 2012-01-19 Fibre composite polymer and production method therfor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201110003313 DE102011003313A1 (en) 2011-01-28 2011-01-28 Fiber composite plastic and manufacturing method thereto

Publications (1)

Publication Number Publication Date
DE102011003313A1 true DE102011003313A1 (en) 2012-08-02

Family

ID=45509511

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201110003313 Ceased DE102011003313A1 (en) 2011-01-28 2011-01-28 Fiber composite plastic and manufacturing method thereto

Country Status (2)

Country Link
DE (1) DE102011003313A1 (en)
WO (1) WO2012101036A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013219765A1 (en) * 2013-09-30 2015-04-02 Siemens Aktiengesellschaft Thermally conductive, fiber-reinforced plastic for electric motor housings, as well as methods of manufacture and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004008122U1 (en) 2004-05-22 2005-10-20 C. Cramer, Weberei, Heek-Nienborg, Gmbh & Co. Kg Prepreg for organo-sheet material used for the construction of load bearing e.g. carbon fibre structures
EP1770115A1 (en) * 2005-09-30 2007-04-04 Quadrant Plastic Composites AG Fibre-reinforced sheet-like semi-finished product
WO2008012196A1 (en) * 2006-07-22 2008-01-31 Sineurop Nanotech Gmbh Composite

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028740A2 (en) * 2003-06-16 2005-03-31 William Marsh Rice University Sidewall functionalization of carbon nanotubes with hydroxyl-terminated moieties
GB0512610D0 (en) * 2005-06-18 2005-07-27 Hexcel Composites Ltd Composite material
WO2009076499A1 (en) * 2007-12-12 2009-06-18 Kubota Research, Inc. Composite article and method of manufacture
GB2467409A (en) * 2010-01-05 2010-08-04 Univ Bolton Noble/inert gas treatment of a material to increase its resistance to flash fire exposure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004008122U1 (en) 2004-05-22 2005-10-20 C. Cramer, Weberei, Heek-Nienborg, Gmbh & Co. Kg Prepreg for organo-sheet material used for the construction of load bearing e.g. carbon fibre structures
EP1770115A1 (en) * 2005-09-30 2007-04-04 Quadrant Plastic Composites AG Fibre-reinforced sheet-like semi-finished product
WO2008012196A1 (en) * 2006-07-22 2008-01-31 Sineurop Nanotech Gmbh Composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013219765A1 (en) * 2013-09-30 2015-04-02 Siemens Aktiengesellschaft Thermally conductive, fiber-reinforced plastic for electric motor housings, as well as methods of manufacture and use thereof
WO2015043814A3 (en) * 2013-09-30 2015-10-29 Siemens Aktiengesellschaft Thermally conductive, fibre-reinforced plastic for electric motor housings, and method for the production and use thereof

Also Published As

Publication number Publication date
WO2012101036A1 (en) 2012-08-02

Similar Documents

Publication Publication Date Title
Li et al. Multi-scaled enhancement of damping property for carbon fiber reinforced composites
Chen et al. Hybrid multi-scale epoxy composite made of conventional carbon fiber fabrics with interlaminar regions containing electrospun carbon nanofiber mats
Davis et al. An experimental study of interlaminar shear fracture toughness of a nanotube reinforced composite
Towo et al. Fatigue of sisal fibre reinforced composites: Constant-life diagrams and hysteresis loop capture
Li et al. Synchronous effects of multiscale reinforced and toughened CFRP composites by MWNTs-EP/PSF hybrid nanofibers with preferred orientation
Bilisik et al. Carbon nanotubes in carbon/epoxy multiscale textile preform composites: A review
Ma et al. Improving the interlaminar properties of polymer composites using a situ accumulation method to construct the multi-scale reinforcement of carbon nanofibers/carbon fibers
US20120085970A1 (en) Composite Materials Reinforced with Carbon Nanotube Yarns
Phong et al. Improved fracture toughness and fatigue life of carbon fiber reinforced epoxy composite due to incorporation of rubber nanoparticles
Srivastava et al. Effect of graphene coating of carbon fibers on the fracture of uni-directional laminates
Jiménez-Suárez et al. Effect of filtration in functionalized and non-functionalized CNTs and surface modification of fibers as an effective alternative approach
Katagiri et al. Enhancement of mechanical properties of CFRP manufactured by using electro-activated deposition resin molding method with the application of CNF without hydrophobic treatment
Monteiro et al. The carbon nanotubes effect into single-lap joint failure modes and load capacity: a macromechanical analysis
DE102011003313A1 (en) Fiber composite plastic and manufacturing method thereto
WO2013011256A1 (en) Method for manufacturing a nanocomposite material
DE102011003312A1 (en) Fiber composite plastic and manufacturing method thereto
Tsang et al. Effect of γ-irradiation on the short beam shear behavior of pultruded sisal-fiber/glass-fiber/polyester hybrid composites
Shinde et al. Short beam strength of laminated fiberglass composite with and without electospun teos nanofibers
Om Prakash et al. Experimental study on mechanical properties of randomly oriented natural fiber hybrid composites
US20110064949A1 (en) Electrospun nano fabric for improving impact resistance and interlaminar strength
Polyxeni et al. Improvement of Interlaminar Fracture Properties of Out of Autoclave Manufactured Carbon Fiber Reinforced Polymers Using Multi-Walled Carbon Nanotubes
Kausar Design and study of epoxy composites based on polycaprolactone and nanodiamond functionalized carbon fibers
Chiu et al. Comparative study of nanomaterials for interlaminar reinforcement of fiber-composite panels
Zhu et al. Effectively improve the mechanical properties of carbon fabric/epoxy composites by oxidized carbon nitride
Ali et al. Mechanical characterization of glass/epoxy polymer composites sprayed with vapor grown carbon nano fibers

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final

Effective date: 20140506