DE102010062217A1 - Baukastensystem mit bewegungsfähigen Modulen - Google Patents

Baukastensystem mit bewegungsfähigen Modulen Download PDF

Info

Publication number
DE102010062217A1
DE102010062217A1 DE102010062217A DE102010062217A DE102010062217A1 DE 102010062217 A1 DE102010062217 A1 DE 102010062217A1 DE 102010062217 A DE102010062217 A DE 102010062217A DE 102010062217 A DE102010062217 A DE 102010062217A DE 102010062217 A1 DE102010062217 A1 DE 102010062217A1
Authority
DE
Germany
Prior art keywords
modules
modular system
movement
module
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102010062217A
Other languages
English (en)
Other versions
DE102010062217B4 (de
Inventor
Daniel 99423 Wessolek
Wolfgang Prof. Dr. 73525 Sattler
Leonhard 99423 Oschütz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinematics De GmbH
Original Assignee
Bauhaus Universitaet Weimar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bauhaus Universitaet Weimar filed Critical Bauhaus Universitaet Weimar
Priority to DE102010062217.6A priority Critical patent/DE102010062217B4/de
Priority to PCT/EP2011/050598 priority patent/WO2011089109A1/de
Priority to EP11703159.1A priority patent/EP2525883B1/de
Priority to JP2012549329A priority patent/JP5840625B2/ja
Publication of DE102010062217A1 publication Critical patent/DE102010062217A1/de
Priority to US13/548,611 priority patent/US8851953B2/en
Application granted granted Critical
Publication of DE102010062217B4 publication Critical patent/DE102010062217B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/04Building blocks, strips, or similar building parts
    • A63H33/042Mechanical, electrical, optical, pneumatic or hydraulic arrangements; Motors

Landscapes

  • Toys (AREA)

Abstract

Die Erfindung betrifft ein Baukastensystem mit zusammensteckbaren Modulen, bei denen sich zur Bewegung und Steuerung erforderliche elektronische und mechanische Bauteile in den Modulen befinden. Der Erfindung liegt die Aufgabe zugrunde, ein Baukastensystem der eingangs genannten Art zu schaffen, mit dem bewegungsfähige Modelle aus einfachen Bausteinen gestaltet werden können. Erfindungsgemäß wird die Aufgabe mit einem Baukastensystem mit bewegenden Modulen gelöst, wobei das Baukastensystem mindestens ein Energiemodul (3), mindestens ein Steuerungsmodul (2) mit einem Mikro-Controller, mindestens ein Bewegungsmodul (1) mit einem integrierten Servomotor und mehrere Verbindungsmodule (4) enthält, die beliebig miteinander verbindbar sind, wobei die Module (1, 2, 3, 4, 5) mittels Steckverbindungen verbindbar sind, welche den Stromfluss zwischen benachbarten Modulen ermöglichen.

Description

  • Die Erfindung betrifft ein Baukastensystem mit bewegungsfähigen Modulen.
  • Es handelt sich um ein Konstruktionsspiel, das es ermöglicht, bewegungsfähige und interaktive Objekte zu gestalten. Die Erfindung ist vorzugsweise als kreatives Spielzeug für Kinder im Alter von 5 bis 13 Jahren einsetzbar.
  • Kinder, die das Konstruktionsspiel benutzen, erfahren auf spielerische Weise Zusammenhänge zwischen der Art der Konstruktion, ihrer Bewegung und des ihr spezifischen Energieverbrauchs. Das Baukastensystem macht das Themengebiet der Robotik, Fortbewegung und Energietechnik erlebbar und intuitiv begreifbar. Es ist sowohl als Lehrmittel an Schulen und in Kindergärten als auch für den privaten Gebrauch geeignet.
  • Anfänge so genannter Experimental Computing Baukästen sind bereits seit 1987/1988 bei Fischertechnik bekannt. Bei LEGO wurden in der jüngsten Zeit Roboterbausätze, wie der Cybermaster mit CD-Rom-Animation und 1998 der Mindstorm RCX mit einem 8-Bit-RAM Prozessor, entwickelt. Im Jahre 2006 wurde der Mindstorm RCX vom Mindstorm NXT mit einem 32-Bit-RAM Prozessor abgelöst. Mit diesen Entwicklungen haben die Baukastenhersteller das Ende der Baukästen im klassischen Sinne herbeigeführt. Trotz dieser Tendenzen lässt sich auch zunehmend eine Gegenbewegung beobachten: Eine Vielzahl von ebenso qualitativ guten wie einfachen Elementar-Holzbaukästen führt zu den Ursprüngen der Baukästen und damit zum freien Formen-Spiel zurück.
  • Insbesondere für pädagogische Zwecke sollen Kinder mithilfe von so genannten Digital-Manipulatives durch spielerisches Lernen Sachverhalte näher gebracht werden, die gegenwärtig als zu komplex für ihr Alter gelten. Damit sollen Kinder Werkzeuge und Umgebungen zur Hand gegeben werden, mit denen sie dynamische Systeme entwerfen können.
  • Als LEGO Mindstorms ist eine Produktserie bekannt, die einen programmierbaren Legostein sowie Elektromotoren, Sensoren und LEGO Technik-Teile enthält. Hier können Roboter und andere autonome, interaktive Systeme konstruiert und nachfolgend über eine graphische Nutzeroberfläche am PC programmiert werden. Derartige als ”Program and Play” bezeichnete Systeme basieren auf Parameterwerten, ihre Bewegungen können somit sehr leicht verändert und genau justiert werden. Oft sind diese Parameter-Systeme professionellen Entwicklungswerkzeugen nachempfunden und lassen somit auch das Entwerfen komplexerer Modelle zu. Allerdings unterscheiden sich solche Systeme untereinander in ihrem jeweiligen Interfacedesign und der Art und Weise, wie die Bewegungen eines Modells erstellt werden, weshalb sich neue Benutzer erst mühsam in das System einarbeiten müssen. Nachteilig ist dabei insbesondere, dass die eigentliche Generierung des Bewegungsablaufes völlig vom gebauten Modell entkoppelt ist.
  • In US 7,747,352 B2 ist ein als Topobo bekanntes Spiel beschrieben, welches ein 3D-Konstruktionssystem mit einem eingebautem kinetischem Speichermodul enthält, das Bewegungen aufzeichnen und abspielen kann. Es besteht aus insgesamt zehn Grundformen, die sich auf unterschiedlichste Art und Weise zusammenstecken lassen.
  • Nach US 6,636,781 B1 ist eine Steuerung von Modulen eines Spielzeugbaukastens bekannt, wobei mittels Aktuatoren Module bewegt werden können. Es können gleiche Module kombiniert werden, die Drehbewegungen ausführen.
  • Ferner ist in EP 1 287 869 B1 ein modulares System zur Herstellung eines Spielzeugroboters beschrieben, mit dem durch Zusammenstellung mehrer gleicher Module ein Spielzeug gestaltet werden kann. Die Module können eine Drehbewegung ausführen und werden mit Verbindungsplatten untereinander verbunden. Die Verbindungsplatten ermöglichen eine mechanische und elektrische Verbindung zwischen den Modulen.
  • Bei diesen Anordnungen ist nachteilig, dass nur gleichartige Module kombiniert werden können und diese nur Drehbewegungen ausführen.
  • Aus DE 296 10 158 U1 ist ein steuerbarer Spielzeugroboter bekannt, der aus Modulen besteht, in denen sich zur Bewegung und Steuerung erforderliche elektronische und mechanische Bauteile befinden. Der Roboter enthält neben den Modulen so genannte formgebende Bauteile, wie Seiten-, Boden- und Deckplatten. Die Bauteile können zusammengesteckt werden, wobei die elektrische Verbindung mittels Drähte erfolgt, die aus den Modulen herausragen. Aus Seitenplatten werden Achsen, Sensoren und dergleichen heraus geführt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Baukastensystem der eingangs genannten Art zu schaffen, mit dem bewegungsfähige Module aus einfachen Modulen gestaltet werden können, wobei mit den Modulen sowohl rotatorische als auch translatorische Bewegungen realisiert werden sollen und die Verbindung der Module durch einfaches Zusammenstecken erfolgen soll, ohne dass zusätzliche Arbeitsgänge erforderlich sind.
  • Erfindungsgemäß wird die Aufgabe mit einem Baukastensystem, welches die im Anspruch 1 angegebenen Merkmale enthält, gelöst.
  • Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
  • Das Konstruktionsspiel verfügt über mindestens ein Energiemodul, das im Allgemeinen einen Akkumulator enthält, mindestens ein Steuerungsmodul mit einem Mikrocontroller, mindestens ein Bewegungsmodul mit integriertem Servomotor und mehreren Verbindungsmodulen. Alle Module sind beliebig miteinander verbindbar. Neben dem Zusammenbau von beliebigen Modellen können die Anwender ihren Kreationen bestimmte Bewegungs- und Verhaltensweisen zuordnen. Zusammengebaut können alle erdenklichen Modelle, Geschöpfe, Tiere und Roboter zum Leben erweckt werden.
  • Ein einfaches Steckverbindungsprinzip ermöglicht den Daten- und Stromfluss zwischen allen aktiven und passiven Bauteilen. Diese Verkettung ermöglicht eine Vielzahl an Konstruktionsmodellen und Bewegungsmustern.
  • Das Baukastensystem zeichnet sich durch eine Reihe von Vorteilen aus. Hierzu zählen insbesondere:
    • – Das Bewegungsmodul ist sowohl aktiver Bewegungsantrieb für sich selbst und zum anderen steuert es über eine Daten- und Stromsteckverbindung zusätzlich Antriebe für andere Module.
    • – Es ist möglich, dass mindestens ein Bewegungsmodul und mindestens ein Energiemodul im zusammengesteckten Zustand Strom und Daten über eine Steckverbindung leiten, um ein fortbewegungsfähiges Modell zu schaffen, ohne den zwingenden Einsatz von passiven Bausteinen.
    • – Die Veränderung von Lage und Anordnung der Module untereinander ermöglicht ein Bewegungsmodul mit zwei integrierten, gelenkig verbundenen Bewegungsteilen. Das zusammengesteckte Modell bleibt dabei in seinem Verbund erhalten. Die Verbindungsflächen bewegen sich nicht gegeneinander. Die Bewegungen der Modelle des Baukastens werden in den Bewegungsmodulen erzeugt, indem sie ihre Form verändern.
    • – Die Bewegungsmodule sind um 90° versetzt steckbar und erzeugen damit unterschiedliche Bewegungsformen.
  • Ausführungsbeispiele der Erfindung werden im Folgenden anhand von Zeichnungen näher erläutert. Dabei zeigen:
  • 1 schematisch eine Übersicht über die Module des Baukastensystems,
  • 2 schematisch ein montiertes Bewegungsmodel,
  • 3 schematisch die Funktionsweise der Dreh-Steckverbindung,
  • 4 schematisch das Steckerteil einer Steckverbindung,
  • 5.1 bis 5.5 schematisch Ausführungsformen für Gelenkmodule,
  • 6 schematisch eine Baugruppe mit Solarmodulen,
  • 7 schematisch eine Ausführungsform von Bewegungsmodulen mit speziellen auf die Bewegungsmodule gesteckten Bausteinen,
  • 8 schematisch eine weitere Ausführungsform von Bewegungsmodulen mit speziellen auf die Bewegungsmodule gesteckten Bausteinen und
  • 9 schematisch ein Gehirnmodul.
  • Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
  • Das System besteht aus steuernden, verbindenden, stoppenden, Energie speichernden und kinematischen Modulen. Die zusammengesteckten Modelle bilden ein Bewegungsnetzwerk, das je nach Anordnung und Kombination der jeweiligen Modultypen und -formen unzählige Bewegungsvarianten in sich birgt.
  • Ferner ist es möglich, dass an den Modulen in üblicher Größe auch kleinere Passiv-Module angesteckt werden. Mit diesen Modulen ist es möglich, weitere Formen zu gestalten.
  • 1 zeigt die verwendeten Module. Im Einzelnen handelt es sich um:
    • – Bewegungsmodule 1, welche durch einen integrierten Servomotor bewegt werden. Im dargestellten Fall sind zwei Ausführungsformen vorgesehen: zum einen in Form eines Quaders, der sich in Bewegung zum Parallelepiped verschiebt, oder zum anderen in Form eines Zylindersteins, der aus zwei rotationsfähigen Teilzylindern besteht. Eine vorteilhafte Ausführung sieht vor, dass die Bewegungsmodule mit Lithium-Ionen Akkumulatoren ausgestattet werden. Ein integrierter On/Off Button am Bewegungsmodul unterbricht die Stromzufuhr aller angesteckten Bewegungsmodule und bei sich selbst. Es ist auch möglich, einen Mikro-Controller im Bewegungsmodul anzuordnen.
    • – Steuerungsmodule 2, welche jeweils über einen Microcontroller verfügen. Alle sechs Seitenflächen eines quaderförmigen Moduls sind mit Steckbuchsen ausgestattet, mit denen Bewegungsinformationen ausgegeben werden können.
    • – Energiemodule 3, welche als Stromlieferanten des Bewegungsmodells dienen. Mithilfe eines On-Off-Buttons kann der Stromfluss und somit der Bewegungsvorgang an- und abgeschaltet werden. Die Module sind in Würfel- oder Quaderform gestaltet und beherbergen in ihrem Inneren Lithium-Ionen-Akkus. Sie stellen das schwergewichtigste Element dar und können gleichzeitig als Schwerpunktmodul im Objektbau eingesetzt werden.
    • – Verbindungsmodule 4, welche in Gestalt von Würfel, Halbwürfel, Dreiecksprisma, Quader oder anderen geometrischen Formen ausgeführt sein können und die Verbindung zwischen Bewegungsmodul, Steuerungsmodul und Energiemodul herstellen. Sie erlauben dem Spieler, Modelle mit höherer Komplexität zu konstruieren und ermöglichen den ungehinderten Daten- und Stromdurchfluss.
    • – Stoppmodule 5, welche im Gegensatz zu den restlichen Modulen des Systems keinen Daten-, sondern lediglich den Stromfluss unterstützen. Sie können deshalb als Bewegung blockierendes Element eingesetzt werden. Damit werden innerhalb eines Bauobjekts mehrere voneinander unabhängige Bewegungsabläufe möglich.
  • In 2 ist ein montiertes Modell dargestellt.
  • Das Zusammenstecken eines Bewegungsmoduls 1 mit wenigen passiven Modulen lässt schon vier Bewegungsrichtungen zu. Um eine Bewegung zu genieren, sind lediglich erforderlich: Ein Energiemodul 3, das für die Energieversorgung zuständig ist und über einen On-Off-Button verfügt, um den Bewegungsvorgang an- und abzuschalten. Ein Steuerungsmodul 2 gibt die Bewegungsinformation für ein Bewegungsmodul 1 aus. Die beiden ersteren Module 2 und 3 sind passive Elemente, während das Bewegungsmodul 1 ein aktives Element des Baukastensystems darstellt. Hier spielt die Steckreihenfolge der einzelnen Module keine Rolle – es wird stets eine Bewegung ausgegeben, sobald Energiemodul 3 und Steuerungsmodul 2 verbaut werden. Diese Eigenschaft des Stecksystems schafft unzählige Kombinationsmöglichkeiten der Module und lässt den Benutzer somit zahllose Bewegungsabläufe im dreidimensionalen Raum erleben. Dazu wird eine magnetische 90-Grad-Dreh-Steckanordnung unter Verwendung von Klinken-Buchsen-Anschlüssen verwendet, welche der Steckverbindung einerseits Stabilität verleiht und ein leichtgängiges Einrasten im Drehvorgang erlaubt. Zudem wird ein innerer Daten-Strom-Fluss zwischen allen Modulen ermöglicht.
  • Die Größe der Module kann verschieden ausgeführt werden. Als zweckmäßig hat sich eine Seitenfläche der Module von 40 mm × 40 mm erwiesen. Es ist auch möglich, die Normgröße von Legobausteinen (31,8 mm × 31,8 mm oder 39,75 mm × 39,75 mm) zu verwenden. Damit wird eine vollkompatible Verknüpfung der beiden Baukastensysteme ermöglicht. Hierzu dient ein Adapterstein, der neben den bekannten Noppen auch Löcher für Achsen und Verbindungselemente besitzt.
  • Die Verbindung der Module untereinander erfolgt mit einer Steckverbindung.
  • Die in 3 dargestellte 90-Grad-Dreh-Steckverbindung weist Magnete und Klinken-Buchsen-Anschlüsse auf und ermöglicht eine schnelle Veränderung der Modulposition. Die Haltekraft wird durch Magnete bestimmt. Bestimmte Bewegungs- und Kräfteeinflüsse können die Magnete voneinander trennen und die Module somit verdrehen. Die Verbindung hält die Module zusammen und verleiht der Konstruktion Stabilität. Damit ist gewährleistet, dass auch bei den bewegenden Modellen die Module nicht abknicken oder sich verdrehen. In 90°-Schritten rasten die Module ein und lassen sich in den dazwischen liegenden 45°-Positionen leicht auseinander ziehen.
  • 4 erläutert die Daten- und Stromübertragung über die Steckverbindung. Der Strom für den Servomotor und den Mikrocontroller wird über eine Klinke oder zwei Metallstecker übertragen. Die Kontaktflächen der Stecker kontaktieren in den zugehörigen Buchsen Gegenkontakte. Die Dateninformationen für die Sensor- und Steuersignale können zusätzlich über die Klinke, zwei Metallstecker oder per Bluetooth übermittelt werden. Besonders vorteilhaft ist, dass die Steckverbindung neben dem Zusammenhalten der Module gleichzeitig den Strom- und Datenfluss übertragen kann.
  • Die Steckverbindungen bestehen aus dem in 4 dargestellten männlichen Teil mit nach außen weisenden Halte- und Kontaktstiften und einem weiblichen Teil mit nach innen weisenden Halte- und Kontaktöffnungen. Im Inneren der Module befinden sich Leiterplatinen, die mit dem männlichen oder weiblichen Teil der Steckverbindung elektrisch verbunden sind. Dies ermöglicht eine einfache Montage mit geringer Anzahl der Bauteile.
  • Eine weitere Möglichkeit besteht darin, die Steckverbindung auf die Modulflächen zu verteilen. Die Module werden hierbei durch verschiedene Metallpins, Kontaktstifte, Magnete zusammengehalten und übertragen den Strom- und Datenfluss.
  • Eine mögliche Ausführungsform für ein Bewegungsspiel besteht aus einem Mikrocontrollermodul und drei verschiedenen Bewegungsmodulen.
  • 5 zeigt verschiedene Ausführungsmöglichkeiten für Bewegungsmodule. Dargestellt sind in 5.1 ein Gelenkmodul, 5.2 ein Drehmodul, 5.3 ein Translationsmodul, 5.4 ein Linearmodul und 5.5 ein Rotationsmodul.
  • Die Bewegungsinformation für Winkelausschlag und Geschwindigkeit sendet ein Steuermodul an die Bewegungsmodule, sobald ein Energiemodul angesteckt ist. Integriert man einen Mikrocontroller in die Bewegungsmodule, kann jedes Bewegungsmodul individuell angesteuert werden.
  • Das Energiemodul enthält einen Akkumulator. Er sorgt für die Stromversorgung und besteht aus spielerisch-pädagogischen Gesichtspunkten aus einem einzelnen Modul. Er ermöglicht damit das Spiel mit dem Gleichgewicht, denn das Energiemodul ist der schwerste Baustein im Konstruktionsspiel. Neben den schweren Nickel-Metallhydrid-Akkus werden die Energiemodule vorteilhaft mit Lithium-Ionen-Akkumulatoren bestückt, um das Gewicht zu verringern und die Akkukapazität zu erhöhen. Im beschriebenen Beispiel werden zwei Lithium-Ionen-Akkumulatoren mit 3,7 Volt werden geschalten und verdoppeln die Kapazität. Ein Steil-Up-Wandel bringt die 3,7 Volt auf 5 Volt Betriebsspannung und versorgt den Mikrocontroller und die Bewegungsmodule mit Strom. Mithilfe einer USB-Lade- und Schutzschaltung wird das Energiemodul geladen und vor Kurzschluss geschützt. Zusätzlich verfügt das Energiemodul über einen An/Aus-Schalter, um den Stromkreis zu kontrollieren.
  • Ein handelsübliches Servomodul dient als Antriebsquelle für die Bewegungsmodule. Über eine Pulsweitenmodulation [PWM] wird das Servomodul vom Mikrocontroller angesteuert und kann als kompakte Antriebseinheit einfach montiert werden.
  • Eine spezielle Ausführung ist ein Konstruktionsspiel mit Energiemodulen, die Strom aus nachhaltigen Quellen beziehen. Es ermöglicht Kinder und Jugendlichen, kleine Kraftwerke zu bauen, die den Strom für ihre Leucht- und Bewegungsobjekte liefern. Das Set besteht aus Energie produzierenden und Energie verbrauchenden Modulen. Die Generator- und Akkumodule sowie Solar-, Windrad-, Kurbel-, Dreh- und Kabelmodule sind Strom produzierende Module. Wohingegen die Strom verbrauchenden Elemente die Bewegungs- und Leuchtmodule darstellen. Die geometrischen Module orientieren sich an den pädagogischen Grundformen wie Würfel, Quader, Zylinder und Dreiecksprismen. Die Nutzer erfahren auf spielerische Weise die Zusammenhänge der Energiegewinnung und des spezifischen Energieverbrauchs ihrer bewegenden und leuchtenden Modelle. Das Baukastensystem macht das Themengebiet der regenerativen Energieumwandlung für Kinder an ihren eigenen Kreationen erlebbar und intuitiv begreifbar.
  • 6 zeigt ein Beispiel für die Gestaltung und Verwendung von Solarmodulen.
  • Das Baukastensystem kann mit verschiedenen Schnittstellen ausgestattet werden.
  • 7 zeigt eine Ausführungsform, bei der spezielle Bausteine auf die Bewegungsmodule gesteckt und dadurch die Bewegungsparameter festlegt werden. Hierbei sind Amplituden-, Geschwindigkeit- und Verzögerungs-Potentiometer im Bewegungsmodul integriert, die durch das Gehirnmodul oder direkt am Bewegungsmodul verändert werden. Damit können die Bewegungsmodule programmiert werden.
  • Die Anordnung ermöglicht eine kinderfreundliche Manipulation der Bewegungsparameter mithilfe von einfachen Bausteinen. Die Amplitudensteine 7.1, Geschwindigkeitssteine 7.2 und die Verzögerungssteine 7.3 können direkt an das Bewegungsmodul gesteckt werden. Mit unterschiedlichen Geschwindigkeitssteinen 7.2 kann eine schnellere oder langsamere Bewegung der Gelenkmodule programmiert werden. Bei den Amplitudensteinen 7.1 kann beispielsweise ein Stein mit vier Noppenreihen eine Drehung um 45° und ein Stein mit fünf Noppen eine Drehung um 36° veranlassen. Jede Stecknoppe ist mit einem Farbsensor ausgestattet. Ein Verzögerungsstein 7.3 mit einer Noppe löst in diesem Beispiel einen zeitlichen Abstand von einer Millisekunde aus. Die Programmierung ist somit komplett steckbar.
  • Eine weitere Ausführungsmöglichkeit ist in 8 dargestellt. Hiermit kann eine Grundbewegung des Modells über das Verschieben der Bewegungsbausteine ausgeführt und gleichzeitig gespeichert werden, nachdem das Energiemodul angesteckt und der Programm-Button am Bewegungsmodul gedrückt wurde. Die Grundbewegungen der Bewegungsmodule werden mit den Händen erzeugt. Dabei können maximal zwei Bewegungsmodule mit den Händen kontrolliert verändert werden. Start- und Endwinkel, die Geschwindigkeit und die Verzögerung, d. h. welches Modul sich zuerst bewegt, wird mithilfe eines Drehpotentiometers ausgelesen und in einem EPROM-Chip gespeichert. Die eingespeicherten Bewegungen können anschließend direkt ausgeführt werden.
  • Die am Anfang noch intuitiv programmierten Bewegungsparameter können mithilfe von integrierten Amplituden-, Geschwindigkeit- und Verzögerungs-Potentiometer nachträglich verändert und an das Bewegungsmodell angepasst werden. Die Parameter können entweder über das Control-Center am Gehirnmodul oder über das Control-Center am Bewegungsmodul, welche z. B. integrierte Buttons, Schieberegler, Drehpotentiometer, Sensoren oder ein Touchscreen-Display besitzen, leicht verändert werden. Dabei wird der Programm-Button des zu manipulierenden Bewegungsmoduls gedrückt und das Control-Center am Gehirnmodul oder Bewegungsmodul geregelt. Es können auch mehrere Module in der Amplitude und Geschwindigkeit gleichzeitig verändert werden.
  • Das Control-Center enthält neben dem Eingabefeld auch ein 7-Segment-, Punktmatrix-, LED-Paneel oder Touchscreen-Display, welches die Parameter zusätzlich anzeigt und ein Feedback über die manipulierten Daten geben kann.
  • Das in 9 dargestellte Gehirnmodul bildet das Denkorgan. Es enthält einen Mikrocontroller und kann die Bewegungsparameter aller angesteckten Bewegungsmodule verändern, synchronisieren, anzeigen oder rhythmisch verzögern. Das Gehirnmodul synchronisiert alle angesteckten Bewegungsmodule mit den Bewegungsparametern, die in einem Modul verändert wurden. Das Gehirnmodul bildet die Kommunikationseinheit, wertet Sensordaten aus und steuert alle angesteckten Module. Es verfügt über eine Ampitudenanzeige 9.1, einen Programm-Button 9.2, einen Control-Center-Button 9.3, eine Geschwindigkeitsanzeige 9.4 und eine Verzögerungsanzeige 9.5. Mittels USB-Anschlüsse 9.6 können die Bewegungsparameter extern gesichert werden. Kleine Sensormodule können auf jedes Bewegungsmodul gesteckt werden und verändern dieses gesondert.
  • Bezugszeichenliste
  • 1
    Bewegungsmodul
    2
    Steuerungsmodul
    3
    Energiemodul
    4
    Verbindungsmodul
    5
    Stoppmodul
    7.1
    Amplitudenstein
    7.2
    Verzögerungsstein
    7.3
    Geschwindigkeitsstein
    8.1
    Amplitudenanzeige
    8.2
    Programm-Button
    8.3
    Control-Center-Button
    8.4
    Geschwindigkeitsanzeige
    8.5
    Verzögerungsanzeige
    8.6
    7-Segmentanzeige
    9.1
    Amplitudenanzeige
    9.2
    Programm-Button
    9.3
    Control-Center-Button
    9.4
    Geschwindigkeitsanzeige
    9.5
    Verzögerungsanzeige
    9.6
    USB-Anschluss
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 7747352 B2 [0007]
    • US 6636781 B1 [0008]
    • EP 1287869 B1 [0009]
    • DE 29610158 U1 [0011]

Claims (17)

  1. Baukastensystem mit zusammensteckbaren Modulen, bei denen sich zur Bewegung und Steuerung erforderliche elektronische und mechanische Bauteile in den Modulen befinden, dadurch gekennzeichnet, dass das Baukastensystem mindestens ein Energiemodul (3), mindestens ein Steuerungsmodul (2) mit einem Microcontroller, mindestens ein Bewegungsmodul (1) mit einem integrierten Servomotor und mehrere Verbindungsmodule (4) enthält, die beliebig miteinander verbindbar sind, wobei die Module (1, 2, 3, 4, 5) mittels Steckverbindungen verbindbar sind, welche den Stromfluss zwischen benachbarten Modulen ermöglichen.
  2. Baukastensystem nach Anspruch 1, dadurch gekennzeichnet, dass über die Steckverbindungen auch eine Datenübertragung erfolgt.
  3. Baukastensystem nach Anspruch 1, dadurch gekennzeichnet, dass das System mindestens ein Stoppmodul (5) enthält, welches nur den Stromfluss zwischen benachbarten Modulen ohne Datenübertragung ermöglicht.
  4. Baukastensystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steckverbindungen 90-Grad-Dreh-Steckverbindungen sind, welche Klinken-Buchsen-Anschlüsse aufweisen.
  5. Baukastensystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Module (1, 2, 3, 4, 5) würfel-, zylinder- oder quaderförmig ausgebildet sind, deren ebene Seitenflächen mit Steckverbindungselementen versehen sind.
  6. Baukastensystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Baukastensystem Energie erzeugende und Energie verbrauchende Module enthält.
  7. Baukastensystem nach Anspruch 6, dadurch gekennzeichnet, dass die Strom produzierenden Module elektrische Energie aus Solarenergie gewinnen.
  8. Baukastensystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bewegungsmodul (1) einen Servomotor enthält, bei dessen Betätigung zwei integrierte, gelenkig verbundene Bewegungsteile das Bewegungsmodul deformieren.
  9. Baukastensystem nach Anspruch 8, dadurch gekennzeichnet, dass das Bewegungsmodul (1) die Form eines Quaders aufweist, der bei Bewegung seine Längenausdehnung verändert oder zu einem Parallelepiped verschoben wird.
  10. Baukastensystem nach Anspruch 8, dadurch gekennzeichnet, dass das Bewegungsmodul (1) aus zwei rotationsfähigen zylindrischen Teilen besteht.
  11. Baukastensystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ebenen Seitenflächen der Steuerungsmodule (2) mit Steckbuchsen ausgestattet sind, mit denen Bewegungsinformationen ausgegeben werden können.
  12. Baukastensystem nach Anspruch 3, dadurch gekennzeichnet, dass die Steckverbindungen aus einem männlichen Teil mit nach außen weisenden Halte- und Kontaktstiften und einem weiblichen Teil mit nach innen weisenden Halte- und Kontaktöffnungen bestehen, die jeweils mit im Inneren der Module angeordneten Leiterplatinen elektrisch verbunden sind.
  13. Baukastensystem nach Anspruch 3, dadurch gekennzeichnet, dass die Steckverbindungen aus mehreren auf eine Modulfläche verteilten Kontaktelementen bestehen.
  14. Baukastensystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Module durch Magnete zusammengehalten werden.
  15. Baukastensystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf die Bewegungsmodule Bausteine steckbar sind, mit denen Bewegungsparameter festlegt werden.
  16. Baukastensystem nach Anspruch 15, dadurch gekennzeichnet, dass die aufsteckbaren Bausteine Potentiometer betätigen, die sich im Inneren der Bewegungsmodule befinden und mit denen die Amplitude und/oder die Geschwindigkeit und/oder die Verzögerung der vom Bewegungsmodul ausgeführten Bewegung gesteuert wird.
  17. Baukastensystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an den Modulen kleinere Passiv-Module angesteckt sind.
DE102010062217.6A 2010-01-22 2010-11-30 Baukastensystem mit bewegungsfähigen Modulen Expired - Fee Related DE102010062217B4 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102010062217.6A DE102010062217B4 (de) 2010-01-22 2010-11-30 Baukastensystem mit bewegungsfähigen Modulen
PCT/EP2011/050598 WO2011089109A1 (de) 2010-01-22 2011-01-18 Baukastensystem mit bewegungsfähigen modulen
EP11703159.1A EP2525883B1 (de) 2010-01-22 2011-01-18 Baukastensystem mit bewegungsfähigen modulen
JP2012549329A JP5840625B2 (ja) 2010-01-22 2011-01-18 可動モジュールを用いたビルディングブロックシステム
US13/548,611 US8851953B2 (en) 2010-01-22 2012-07-13 Building block system with moveable modules

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010005584 2010-01-22
DE102010005584.0 2010-01-22
DE102010062217.6A DE102010062217B4 (de) 2010-01-22 2010-11-30 Baukastensystem mit bewegungsfähigen Modulen

Publications (2)

Publication Number Publication Date
DE102010062217A1 true DE102010062217A1 (de) 2011-07-28
DE102010062217B4 DE102010062217B4 (de) 2018-11-22

Family

ID=43971425

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010062217.6A Expired - Fee Related DE102010062217B4 (de) 2010-01-22 2010-11-30 Baukastensystem mit bewegungsfähigen Modulen

Country Status (5)

Country Link
US (1) US8851953B2 (de)
EP (1) EP2525883B1 (de)
JP (1) JP5840625B2 (de)
DE (1) DE102010062217B4 (de)
WO (1) WO2011089109A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012017305A1 (de) 2012-09-03 2014-03-06 Leonhard Oschütz Verbindungskonstruktion zwischen Konstruktionselementen und Konstruktionselement
CN109966761A (zh) * 2019-05-10 2019-07-05 泛美科技(北京)有限公司 一种可以快速立体搭建的磁性积木

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9155961B2 (en) 2009-05-28 2015-10-13 Anki, Inc. Mobile agents for manipulating, moving, and/or reorienting components
US8742814B2 (en) 2009-07-15 2014-06-03 Yehuda Binder Sequentially operated modules
US20130217294A1 (en) * 2012-02-17 2013-08-22 Arjuna Ragunath Karunaratne Toy brick with sensing, actuation and control
US9403100B2 (en) 2012-02-17 2016-08-02 Technologyone, Inc. Baseplate assembly for use with toy pieces
CN103861298A (zh) * 2012-12-10 2014-06-18 浙江金马工艺品有限公司 一种带磁石和导向槽的积木机器人的组合方法
US10857669B2 (en) 2013-04-05 2020-12-08 Massachusetts Institute Of Technology Modular angular-momentum driven magnetically connected robots
CN103550937B (zh) * 2013-11-14 2015-06-17 郭翠兰 幼儿音视智能积木
US9393501B2 (en) * 2014-01-22 2016-07-19 Chau King Sze Power module and construction toy having a power module
EP3127588B1 (de) * 2014-03-31 2019-08-28 Artec Co., Ltd. Montageblock mit servomotor und montageblockkit
EP3583987B1 (de) * 2014-05-15 2021-06-23 Lego A/S Spielzeugkonstruktionssystem mit funktionskonstruktionselementen
US9345982B2 (en) 2014-09-01 2016-05-24 Joseph Farco Building block universal joint system
CN104383697A (zh) * 2014-11-25 2015-03-04 上海电机学院 电子积木以及电子积木组
US9592603B2 (en) * 2014-12-01 2017-03-14 Spin Master Ltd. Reconfigurable robotic system
GB2533314A (en) * 2014-12-15 2016-06-22 Indybo Ltd Modular robotic system
JP2018508847A (ja) 2015-01-05 2018-03-29 アンキ,インコーポレイテッド 適応データ解析サービス
US10232249B2 (en) 2015-02-12 2019-03-19 Geeknet, Inc. Building brick game using magnetic levitation
US10758836B2 (en) * 2015-05-20 2020-09-01 Robo Technologies Gmbh Connecting structures in a modular construction kit
CN106272398A (zh) * 2015-05-27 2017-01-04 鸿富锦精密工业(深圳)有限公司 机器人的驱动组件、机器人及机器人***
KR101605059B1 (ko) 2015-10-23 2016-03-21 골드래빗(주) 큐브형 모듈 조립체
DE102015015142A1 (de) 2015-11-25 2017-06-01 Kinematics Gmbh Baukastensystem und Verfahren zum lnformations- und/ oder Energieaustausch zwischen Modulen eines Baukastensystems
PH12016000037A1 (en) * 2016-01-19 2017-07-24 Power Oddette L Multidimensional building block and assembly thereof
WO2017144505A1 (en) * 2016-02-24 2017-08-31 Danmarks Tekniske Universitet A set of robotic building elements
TR201603645A2 (tr) 2016-03-22 2017-10-23 Dogus Cendek Modüler yeni̇den programlanabi̇li̇r roboti̇k i̇nşa ki̇ti̇
US10491380B2 (en) 2016-03-31 2019-11-26 Shenzhen Bell Creative Science and Education Co., Ltd. Firmware of modular assembly system
KR101696151B1 (ko) * 2016-06-09 2017-01-12 신재광 IoT 기반의 모듈러 로보틱스 시스템
CN107537165A (zh) * 2016-06-26 2018-01-05 温州正光智能科技有限公司 一种可编程智能电子积木模块
IL246551A (en) * 2016-06-30 2017-07-31 Algobrix Ltd Physical programming interface in the three-dimensional plane that includes multi-layer and parameters
US10376804B2 (en) * 2016-08-31 2019-08-13 Shao-Chun Lu Magnetic positioning light-emitting toy block
US11161052B2 (en) * 2016-12-09 2021-11-02 Jordan Naini Modeling device, method, and system
US9861906B1 (en) * 2017-02-08 2018-01-09 Graham Calvert Electrical toy block apparatus, system, and method for making the same
CN106890458A (zh) * 2017-03-24 2017-06-27 李峰 一种磁吸式智能积木、***、控制方法及使用方法
FR3066651A1 (fr) * 2017-05-16 2018-11-23 Mainbot Robot domestique comprenant un dispositif de connexion
CN107185259A (zh) * 2017-06-30 2017-09-22 美科科技(北京)有限公司 用于多方位连接的电子模块和模块化电子构建***
US10252176B1 (en) * 2017-10-02 2019-04-09 Elenco Electronics, Inc. Adapter for connecting a toy building block to a snap-together electronic toy
US20190143236A1 (en) * 2017-11-13 2019-05-16 Elenco Electronics, Inc. Multi-dimensional snap connector for a snap-together electronic toy set
CN108356806B (zh) * 2017-12-19 2020-12-18 北京可以科技有限公司 模块化机器人控制方法及***
CN108326847B (zh) * 2017-12-19 2020-12-18 北京可以科技有限公司 模块化机器人的校正方法、校正***及控制方法
US10717019B2 (en) * 2018-03-09 2020-07-21 Toyish Labs Inc. Flexible construction unit, kit, and method for constructing a structure
IL258915B (en) * 2018-04-24 2018-12-31 Algobrix Ltd A physical programming interface with a single chain of command
IT201800006207A1 (it) * 2018-06-11 2019-12-11 Modulo magnetico con superfici di ancoraggio attivabili e disattivabili magneticamente
CN109432799A (zh) * 2018-10-30 2019-03-08 上海创豆科技有限公司 电子积木及其控制方法、控制装置以及存储介质
US10668398B2 (en) * 2018-10-30 2020-06-02 Joel Allen Schulz Curiosity revealing or animating a shaped cavity
CN109603172A (zh) * 2018-12-20 2019-04-12 清华大学 一种用于搭建足式机器人的电子积木
WO2020156722A1 (en) * 2019-01-31 2020-08-06 Lego A/S Method of controlling an interacting toy construction model
DE202020000693U1 (de) 2020-02-19 2020-04-07 BUDDI UG (haftungsbeschränkt) Mehrteiliges Spielzeug
EP4095707A4 (de) * 2021-03-31 2023-07-26 Luxrobo Co., Ltd. Modulanordnung und multi-master-kommunikationsverfahren dafür
RU210408U1 (ru) * 2022-01-17 2022-04-14 Георгий Васильевич Белоусов Строительный блок для модульных конструкций

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29610158U1 (de) 1996-06-10 1996-09-19 Eder, Jürgen, 92224 Amberg Steuerbarer Spielzeug-Roboter
US6636781B1 (en) 2001-05-22 2003-10-21 University Of Southern California Distributed control and coordination of autonomous agents in a dynamic, reconfigurable system
EP1287869B1 (de) 2001-08-24 2009-07-15 Xerox Corporation Modulares System zur Herstellung eines Spielzeugroboters
US7747352B2 (en) 2004-04-20 2010-06-29 Massachusetts Institute Of Technology Physical modeling system for constructing and controlling articulated forms with motorized joints

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172000U (de) * 1985-04-16 1986-10-25
JPH0691062A (ja) * 1992-09-16 1994-04-05 Sankyo Seiki Mfg Co Ltd ブロック玩具用ブロック・ユニット
DK175561B1 (da) * 1999-01-11 2004-12-06 Lego As Legetöjsbyggesæt med system til overföring af energi mellem byggeelementer
US6575802B2 (en) * 2001-08-24 2003-06-10 Xerox Corporation Robotic toy modular system with distributed program
US6454624B1 (en) * 2001-08-24 2002-09-24 Xerox Corporation Robotic toy with posable joints
JP2004209060A (ja) * 2003-01-07 2004-07-29 Seiko Epson Corp ブロック体およびブロック体ユニット
WO2004062759A1 (en) * 2003-01-15 2004-07-29 Andrzej Pietrzyk A system of three-dimensional multipurpose elements
WO2006044859A2 (en) * 2004-10-19 2006-04-27 Mega Brands International, Luxembourg, Zug Branch Illuminated, three-dimensional modules with coaxial magnetic connectors for a toy construction kit
DK200401612A (da) * 2004-10-20 2006-04-21 Lego As Legetöjsbyggesystem med funktionsklodser
JP2006145928A (ja) * 2004-11-22 2006-06-08 Olympus Corp 光学ブロック及び光学ブロックシステム
JP2009513223A (ja) * 2005-10-27 2009-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 形状を変えるプレーイングピース
CN201067636Y (zh) * 2007-03-06 2008-06-04 陈斯宜 一种积木玩具
JP5563464B2 (ja) * 2007-10-11 2014-07-30 レゴ エー/エス 玩具構築システム
US7942717B2 (en) * 2008-12-15 2011-05-17 Ting-Shuo Chou Brick assembly with automatically recognizing connecting relationships
US8221182B2 (en) * 2009-12-16 2012-07-17 Elenco Electronics, Inc. Three-dimensional structures with electronic circuit paths and safety circuits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29610158U1 (de) 1996-06-10 1996-09-19 Eder, Jürgen, 92224 Amberg Steuerbarer Spielzeug-Roboter
US6636781B1 (en) 2001-05-22 2003-10-21 University Of Southern California Distributed control and coordination of autonomous agents in a dynamic, reconfigurable system
EP1287869B1 (de) 2001-08-24 2009-07-15 Xerox Corporation Modulares System zur Herstellung eines Spielzeugroboters
US7747352B2 (en) 2004-04-20 2010-06-29 Massachusetts Institute Of Technology Physical modeling system for constructing and controlling articulated forms with motorized joints

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012017305A1 (de) 2012-09-03 2014-03-06 Leonhard Oschütz Verbindungskonstruktion zwischen Konstruktionselementen und Konstruktionselement
CN109966761A (zh) * 2019-05-10 2019-07-05 泛美科技(北京)有限公司 一种可以快速立体搭建的磁性积木

Also Published As

Publication number Publication date
US8851953B2 (en) 2014-10-07
EP2525883B1 (de) 2015-10-14
WO2011089109A1 (de) 2011-07-28
US20130183882A1 (en) 2013-07-18
JP2013517077A (ja) 2013-05-16
EP2525883A1 (de) 2012-11-28
DE102010062217B4 (de) 2018-11-22
JP5840625B2 (ja) 2016-01-06

Similar Documents

Publication Publication Date Title
DE102010062217B4 (de) Baukastensystem mit bewegungsfähigen Modulen
CN104039406B (zh) 模块式运动学构造套件
DE2603014C3 (de) Modellbaukasten mit zusammensteckbaren Hohlkörpern
CH637245A5 (de) Vorrichtung mit solarzellen fuer aus bauteilen eines konstruktionsbaukastens zusammengesetzte modelle.
CN103208224B (zh) 一种六自由度中型串联教学机器人
DE19517852A1 (de) Multiblock Robot
EP1481847A2 (de) Universalleuchte
WO2018041991A1 (de) Steuerbarer drehknopf
DE3637258A1 (de) Programmierbare automatikanordnung, insbesondere zum nachahmen der koerperlichen, didaktischen, spielenden menschlichen taetigkeiten usw.
DE202004012584U1 (de) Roboter
DE1603326C3 (de) Spielbaustein
DE202018106674U1 (de) Vorrichtung zur Verbindung einer mit Niedervolt-Betriebsspannung zu betreibenden Leuchte mit einer Hochvolt-Stromschiene
CN206505640U (zh) 电子积木***
CN208848482U (zh) 一种机电教学用机电设备实训平台
DE2218827C2 (de) Motorpotentiometer
KR20150107126A (ko) 완구의 동작 프로그래밍 학습 키트
KR102012149B1 (ko) 모듈 조합형 무선조종 완구
CN206023474U (zh) 积木驱动电机模块构件
KR20160048328A (ko) 완구의 동작 프로그래밍 학습 키트
CN219554089U (zh) 一种教育机器人电机控制集线器
DE102019121402B4 (de) Modellierungsvorrichtung zur Ausbildung wenigstens einer ersten segmentierten Oberfläche
DE202017000197U1 (de) Modulares Bausteinsystem
DE4333866A1 (de) Elektromechanisch angetriebener Bewegungs- und Gehmechanismus als Basis für die Herstellung gehfähiger, menschen- und tierähnlicher Nachbildungen
DE4032403A1 (de) Mechanische, fuer unterrichtszwecke bestimmte funktionsmodelle computergesteuerter industriemaschinen
CN104258578A (zh) 一种拼接玩具

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: BOCKHORNI & KOLLEGEN, DE

R082 Change of representative

Representative=s name: BOCKHORNI & KOLLEGEN, DE

R081 Change of applicant/patentee

Owner name: LEONHARD OSCHUETZ, DE

Free format text: FORMER OWNER: BAUHAUS UNIVERSITAET WEIMAR, 99423 WEIMAR, DE

Effective date: 20120831

Owner name: KINEMATICS GMBH, DE

Free format text: FORMER OWNER: BAUHAUS UNIVERSITAET WEIMAR, 99423 WEIMAR, DE

Effective date: 20120831

Owner name: OSCHUETZ, LEONHARD, DE

Free format text: FORMER OWNER: BAUHAUS UNIVERSITAET WEIMAR, 99423 WEIMAR, DE

Effective date: 20120831

R082 Change of representative

Representative=s name: PATENTANWAELTE LIEDTKE & PARTNER, DE

Effective date: 20120529

Representative=s name: PATENTANWAELTE LIEDTKE & PARTNER, DE

Effective date: 20120831

Representative=s name: HECHT, JAN-DAVID, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20120529

Representative=s name: HECHT, JAN-DAVID, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20120831

Representative=s name: BOCKHORNI & KOLLEGEN, DE

Effective date: 20120529

Representative=s name: BOCKHORNI & KOLLEGEN, DE

Effective date: 20120831

R016 Response to examination communication
R016 Response to examination communication
R082 Change of representative

Representative=s name: PATENTANWAELTE LIEDTKE & PARTNER, DE

Representative=s name: HECHT, JAN-DAVID, DIPL.-PHYS. DR. RER. NAT., DE

R082 Change of representative

Representative=s name: HECHT, JAN-DAVID, DIPL.-PHYS. DR. RER. NAT., DE

R081 Change of applicant/patentee

Owner name: KINEMATICS GMBH, DE

Free format text: FORMER OWNER: OSCHUETZ, LEONHARD, 04177 LEIPZIG, DE

Effective date: 20140213

R082 Change of representative

Representative=s name: HECHT, JAN-DAVID, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20131125

Representative=s name: HECHT, JAN-DAVID, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20140213

Representative=s name: HECHT, JAN-DAVID, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20131203

R018 Grant decision by examination section/examining division
R082 Change of representative

Representative=s name: HECHT, JAN-DAVID, DIPL.-PHYS. DR. RER. NAT., DE

R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee