DE102009027392A1 - Zusammensetzung auf der Basis von Diisocyanaten aus nachwachsenden Rohstoffen - Google Patents

Zusammensetzung auf der Basis von Diisocyanaten aus nachwachsenden Rohstoffen Download PDF

Info

Publication number
DE102009027392A1
DE102009027392A1 DE102009027392A DE102009027392A DE102009027392A1 DE 102009027392 A1 DE102009027392 A1 DE 102009027392A1 DE 102009027392 A DE102009027392 A DE 102009027392A DE 102009027392 A DE102009027392 A DE 102009027392A DE 102009027392 A1 DE102009027392 A1 DE 102009027392A1
Authority
DE
Germany
Prior art keywords
component
composition according
diisocyanate
previous ones
nco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102009027392A
Other languages
English (en)
Inventor
Jan Dr. Pfeffer
Martina Dr. Ortelt
Emmanouil Dr. Spyrou
Thomas Dr. Haas
Uwe Dr. Korek
Harald Dr. Schmidt
Uwe Dr. Dingerdissen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Priority to DE102009027392A priority Critical patent/DE102009027392A1/de
Priority to US13/376,757 priority patent/US20120077932A1/en
Priority to AU2010268317A priority patent/AU2010268317A1/en
Priority to JP2012518835A priority patent/JP2012531507A/ja
Priority to CN2010800294081A priority patent/CN102471451A/zh
Priority to PCT/EP2010/055414 priority patent/WO2011000585A1/de
Priority to EP10715539A priority patent/EP2448988A1/de
Publication of DE102009027392A1 publication Critical patent/DE102009027392A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/771Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Die Erfindung betrifft Zusammensetzungen auf der Basis von 2,5-Diisocyanato-1,4:3,6-Dianhydro-2,5-Dideoxy-D-Manitol (I), 2,5-Diisocyanato-1,4:3,6-Dianhydro-2,5-Dideoxy-D-Glucitol (II) und/oder 2,5-Diisocyanato-1,4:3,6-Dianhydro-2,5-Dideoxy-L-Iditol (III), allein oder in beliebigen Mischungen.

Description

  • Die Erfindung betrifft Zusammensetzungen auf der Basis von 2,5-Diisocyanato-1,4:3,6-Dianhydro-2,5-Dideoxy-D-Manitol (I), 2,5-Diisocyanato-1,4:3,6-Dianhydro-2,5-Dideoxy-D-Glucitol (II) und/oder 2,5-Diisocyanato-1,4:3,6-Dianhydro-2,5-Dideoxy-L-Iditol (III), allein oder in beliebigen Mischungen.
  • Mit nachwachsenden Rohstoffen, sind land- und forstwirtschaftlich erzeugte Produkte gemeint, die nicht als Nahrungs- oder Futtermittel Verwendung finden. Sie werden stofflich, aber auch zur Erzeugung von Wärme, Strom oder Kraftstoffen genutzt.
  • Polyurethane aus üblichen in der Polyurethan-Chemie bekannten Isocyanaten und 1:4–3:6 Dianhydrohexitolen sind aus US 4,443,563 und DE-OS 31 11 093 bekannt. Nachteil ist die Beschränkung auf Dianhydrohexitole, was die Variationsbreite heutzutage üblicher Polyole und Polyolmischungen vermissen lässt.
  • Bekannt sind ebenfalls Polyurethane ausgehend von Diamino-dianhydro-dideoxy-hexitolen (J. Thiem in Makomol. Chemie 187, 2775–2778, 1986). Die hier beschriebene Vorgehensweise erfordert allerdings Phosgen oder Phosgenersatzstoffe, die aufgrund ihrer Toxizität einen beträchtlichen verfahrenstechnischen Aufwand erfordern.
  • Des Weiteren sind Polyurethane bestimmter Monoisocyanate auf Basis von 1:4–3:6 Dianhydrohexitolen bekannt (J. Thiem et al., Macromol. Rapid Comman. 19, 21–26, 1998). Solche Homopolymeren, in denen der Isocyanatbaustein und der Polyolbaustein fast identisch sind, bieten keinerlei Variationsbreite bei den Materialeigenschaften und werden daher heutzutage kommerziell nicht eingesetzt.
  • Polyurethane und Polyharnstoffe aus bestimmten Diisocyanaten von 1:4–3:6 Dianhydrohexitolen und einem kurzkettigen Diol – 1,4-Butandiol- und einem kurzkettigem Diamin – 1,4-Diaminobutan – sowie aus 1,4-Butandithiol sind bekannt (J. Thiem et al., Macromol. Chem. Phys. 202, 3410–3419, 2001).
  • Derartige Verbindungen sind allerdings nicht von technischer und industrieller Relevanz. Die Beschränkung auf ein einziges Monomer, das zudem weder Ester noch Carbonatgruppen trägt, führt zu einer sehr eingeschränkten Variationsbreite der Eigenschaften. Sie finden daher heutzutage fast keine Anwendungen.
  • Aufgabe der Erfindung war es, neue Zusammensetzungen auf Basis von Di- und Polyisocyanaten aus nachwachsenden Rohstoffen zu finden.
  • Die Aufgabe wurde gemäß den Patentansprüchen und der Beschreibung gelöst.
  • Gegenstand der Erfindung sind Zusammensetzungen, im Wesentlichen enthaltend ein Reaktionsprodukt von
    • A) 2,5-Diisocyanato-1,4:3,6-Dianhydro-2,5-Dideoxy-D-Manitol (I), 2,5-Diisocyanato-1,4:3,6-Dianhydro-2,5-Dideoxy-D-Glucitol (II) und/oder 2,5-Diisocyanato-1,4:3,6-Dianhydro-2,5-Dideoxy-L-Iditol (III), allein oder in beliebigen Mischungen, der Formeln
      Figure 00020001
      und
    • B) mindestens einer Verbindung mit mindestens einer gegenüber NCO-Gruppen reaktiven funktionellen Gruppe, wobei das Verhältnis zwischen der NCO-Komponente A) und der NCO-reaktiven funktionelle Gruppen haltigen Komponente B), berechnet als NCO/NCO-reaktiv = 0,3:1 bis 1,05:1 bevorzugt 0,5:1 bis 1:1 beträgt, und wobei der Einsatz von 1,4-Butandiol, 1,4-Butandithiol, 1,4-Butandiamin und 1,3-Diaminobenzol allein als Komponente B) ausgeschlossen ist.
  • Die hier zur Umsetzung gebrachten Diisocyanato-dianhydro-hexitole (I-III) gehören zu einer Gruppe von chemischen Derivaten aus sogenannten Nachwachsenden Rohstoffen, hier insbesondere (Poly)Sachariden, wozu z. B. auch Stärke (Maisstärke, Kartoffelstärke) und Zucker (Rohrzucker, Rübenzucker) gehören. Der besondere Vorteil dieser Verbindungen und der Anwendungsprodukte daraus beruht darauf, dass zu ihrer Herstellung zunehmend weniger fossile Rohstoffe wie Erdöl, Gas und Kohle zum Einsatz kommen, wodurch der CO2-Ausstoß verringert wird und somit der Übergang zu einer CO2-neutralen und fossile Rohstoffe schonenden Produktionsweise eingeleitet werden kann. Insbesondere die Verwendung der Diisocyanato-dianhydro-hexitole (I-III) in Polyurethanen eröffnet ein mengenmäßig großes Verwendungsfeld. Entsprechend hoch ist damit auch das Einsparpotential fossiler Rohstoffe.
  • Erfindungsgemäß werden als Komponente A) 2,5-Diisocyanato-1,4:3,6-Dianhydro-2,5-Dideoxy-D-Manitol (I), 2,5-Diisocyanato-1,4:3,6-Dianhydro-2,5-Dideoxy-D-Glucitol (II) und/oder 2,5-Diisocyanato-1,4:3,6-Dianhydro-2,5-Dideoxy-L-Iditol (111), allein oder in beliebigen Mischungen, der Formeln
    Figure 00040001
    eingesetzt. Es können beliebige Mischungen eingesetzt werden. Je nach Auswahl der Verbindung I–III können auf Grund Ihrer Stereochemie in den erfindungsgemäßen Zusammensetzungen bestimmte Eigenschaften, wie z. B. Kristallinität (Schmelzpunkt), Reaktivität, Selektivität erhalten werden.
  • Weiterhin werden auch vorzugsweise Oligo- oder Polyisocyanate verwendet, die sich aus den genannte Diisocyanaten oder deren Mischungen durch Verknüpfung mittels Urethan-, Allophanat-, Harnstoff-, Biuret-, Uretdion-, Amid-, Isocyanurat-, Carbodiimid-, Uretonimin-, Oxadiazintrion- oder Iminooxadiazindion-Strukturen herstellen lassen. Besonders geeignet sind Isocyanurate und Uretdione.
  • Die erfindungsgemäße Komponente A) kann auch kettenverlängert sein.
  • Kettenverlängerer und gegebenenfalls Monoaminen und/oder Monoalkoholen als Kettenabbrecher und wurde schon häufig beschrieben ( EP 0 669 353 , EP 0 669 354 , DE 30 30 572 , EP 0 639 598 oder EP 0 803 524 ). Bevorzugt werden Polyester und Polyamine als Kettenverlängerer und monomere Dialkohole als Kettenabbrecher.
  • Als Kettenverlängerer-Komponente können Polyester, wie sie weiter unten beschrieben werden, eingesetzt werden.
  • Als Kettenverlängerer-Komponente können Polyamine mit zwei oder mehreren gegenüber Polyisocyanaten reaktiven Amino-Gruppen eingesetzt werden. Geeignete Polyamine sind z. B. Adipinsäuredihydrazid, Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetraethylen-pentamin, Pentaethylenhexamin, Dipropylentriamin, Hexamethylendiamin, Hydrazin, Isophorondiamin, N-(2-Aminoethyl)-2-aminoethanol, 1,3- und 1,4-Phenylendiamin, 4,4'-Diphenylmethandiamin, aminofunktionelle Polyethylenoxide bzw. Polypropylenoxide, Addukte aus Salzen der 2-Acrylamido-2-methylpropan-1-sulfonsäure und Ethylendiamin oder beliebige Kombinationen von Polyaminen.
  • Die Komponente A) kann auch zusätzliche Di- und Polyisocyanate enthalten. Die eingesetzten Di- und Polyisocyanate können aus beliebigen aromatischen, aliphatischen, cycloaliphatischen und/oder (cyclo)aliphatischen Di- und/oder Polyisocyanaten bestehen.
  • Als aromatische Di- oder Polyisocyanate sind prinzipiell alle bekannten Verbindungen geeignet. Besonders geeignet sind 1,3- und 1,4-Phenylendiisocyanat, 1,5-Naphthylen-diisocyanat, Tolidindiisocyanat, 2,6-Toluylendiisocyanat, 2,4-Toluylendiisocyanat (2,4-TDI), 2,4'-Diphenylmethandiisocyanat (2,4'-MDI), 4,4'-Diphenylmethandiisocyanat, die Mischungen aus monomeren Diphenylmethandiisocyanaten (MDI) und oligomeren Diphenylmethandiisocyanaten (Polymer-MDI), Xylylendiisocyanat, Tetramethylxylylendiisocyanat und Triisocyanatotoluol.
  • Geeignete aliphatische Di- oder Polyisocyanate besitzen vorteilhafterweise 3 bis 16 Kohlenstoffatome, vorzugsweise 4 bis 12 Kohlenstoffatome, im linearen oder verzweigten Alkylenrest und geeignete cycloaliphatische oder (cyclo)aliphatische Diisocyanate vorteilhafterweise 4 bis 18 Kohlenstoffatome, vorzugsweise 6 bis 15 Kohlenstoffatome, im Cycloalkylenrest. Unter (cyclo)aliphatischen Diisocyanaten versteht der Fachmann hinlänglich gleichzeitig cyclisch und aliphatisch gebundene NCO-Gruppen, wie es z. B. beim Isophorondiisocyanat der Fall ist. Demgegenüber versteht man unter cycloaliphatischen Diisocyanaten solche, die nur direkt am cycloaliphatischen Ring gebundene NCO-Gruppen aufweisen, z. B. H12MDI. Beispiele sind Cyclohexandiisocyanat, Methylcyclohexandiisocyanat, Ethylcyclohexandiisocyanat, Propylcyclohexandiisocyanat, Methyldiethylcyclohexandiisocyanat, Propandiisocyanat, Butandiisocyanat, Pentandiisocyanat, Hexandiisocyanat, Heptandiisocyanat, Octandiisocyanat, Nonandiisocyanat, Nonantriisocyanat, wie 4-Isocyanatomethyl-1,8-octandiisocyanat (TIN), Dekandi- und triisocyanat, Undekandi- und -triisocyanat, Dodecandi- und -triisocyanate.
  • Bevorzugt werden Isophorondiisocyanat (IPDI), Hexamethylendiisocyanat (HDI), Diisocyanatodicyclohexylmethan (H12MDI), 2-Methylpentandiisocyanat (MPDI), 2,2,4-Trimethylhexamethylendiisocyanat/2,4,4-Trimethylhexamethylendiisocyanat (TMDI), Norbornandiisocyanat (NBDI). Ganz besonders bevorzugt werden IPDI, HDI, TMDI und/oder H12MDI eingesetzt, wobei auch die Isocyanurate und Uretdione bevorzugt einsetzbar sind.
  • Ebenfalls geeignet sind 4-Methyl-cyclohexan-1,3-diisocyanat, 2-Butyl-2-ethylpentamethylen-diisocyanat, 3(4)-Isocyanatomethyl-1-methylcyclohexylisocyanat, 2-Isocyanatopropylcyclohexylisocyanat, 2,4'-Methylen-bis(cyclohexyl)diisocyanat, 1,4-Diisocyanato-4-methyl-pentan.
  • Selbstverständlich können auch Gemische der Di- und Polyisocyanate eingesetzt werden.
  • Die Isocyanate der Komponente A) können teilweise oder vollständig blockiert sein. Als Blockierungsmittel können alle Blockierungsmittel eingesetzt werden. Beispielsweise können Phenole wie Phenol, und p-Chlorphenol, Alkohole wie Benzylakohol, Oxime wie Acetonoxim, Methylethylketoxim, Cyclopentanonoxim, Cyclohexanonoxim, Methylisobutylketoxim, Methyl-tert.-butylketoxim, Diisopropylketoxim, Diisobutylketoxim oder Acetophenonoxim, N-Hydroxy-Verbindungen wie N-Hydroxysuccinimid oder Hydroxypyridine, Lactame wie ε-Caprolactam, CH-acide Verbindungen wie Acetessigsäureethylester oder Malonsäureester, Amine wie Diisopropylamin, heterocyclische Verbindungen mit mindestens einem Heteroatom wie Mercaptane, Piperidine, Piperazine, Pyrazole, Imidazole, Triazole und Tetrazole, α-Hydroxybenzoesäureester wie Glykolsäureester oder Hydroxamsäureester wie Benzylmethacrylohydroxamat verwendet werden.
  • Als Blockierungsmittel besonders geeignet sind Acetonoxim, Methylethylketoxim, Acetophenonoxim, Diisopropylamin, 3,5-Dimethylpyrazol, 1,2,4-Triazol, ε-Caprolactam, Glykolsäurebutylester, Benzylmethacylohydroxamat oder p-Hydroxybenzoesäuremethylester.
  • Als Verbindungen B) sind prinzipiell alle geeignet die über mindestens eine, bevorzugt mindestens zwei gegenüber NCO-Gruppen reaktive funktionelle Gruppen aufweisen. Geeignet sind als funktionelle Gruppen: OH-, NH2-, NH-, SH-, CH-acide Gruppen. Bevorzugt enthalten die Verbindungen B) 2 bis 4 funktionelle Gruppen. Besonders bevorzugt sind Alkoholgruppen und Aminogruppen.
  • Als Diamine und Polyamine sind prinzipiell geeignet: 1,2-Ethylendiamin, 1,2-Propylendiamin, 1,3-Propylendiamin, 1,2-Butylendiamin, 1,3-Butylendiamin, 1,4-Butylendiamin, 2-(Ethylamino)ethylamin, 3-(Methylamino)propylamin, 3-(Cyclohexylamino)propylamin, 4,4'-Diaminodicyclohexylmethan, Isophorondiamin, 4,7-Dioxadecan-1,10-diamin, N-(2-Aminoethyl)-1,2-ethandiamin, N-(3-Aminopropyl)-1,3-propandiamin, N,N''-1,2-Ethandiylbis-(1,3-propandiamin), Adipinsäuredihydrazid, Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Pentaethylenhexamin, Dipropylentriamin, Hydrazin, 1,3- und 1,4-Phenylendiamin, 4,4'-Diphenylmethandiamin, aminofunktionelle Polyethylenoxide bzw. Polypropylenoxide, Addukte aus Salzen der 2-Acrylamido-2-methylpropan-1-sulfonsäure sowie Hexamethylendiamine, die auch einen oder mehrere C1-C4-Alkylreste tragen können, genannt. Des Weiteren können auch disekundäre oder primäre/sekundäre Diamine, wie sie z. B. in bekannter Weise aus den entsprechenden diprimären Diaminen durch Reaktion mit einer Carbonylverbindung, wie z. B. einem Keton oder Aldehyd, und nachfolgender Hydrierung oder durch Addition von diprimären Diaminen an Acrylsäureester oder an Maleinsäurederivate gewonnen werden, eingesetzt werden.
  • Auch Mischungen der genannten Polyamine sind verwendbar. 1,4-Diaminobutan (1,4-Butylendiamin) wird nur in Mischungen eingesetzt.
  • Als Aminoalkohole seien beispielhaft Monoethanolamin, 3-Amino-1-propanol, Isopropanolamin, Aminoethoxyethanol, N-(2-Aminoethyl)ethanolamin, N-Ethylethanolamin, N-Butylethanolamin, Diethanolamin, 3-(Hydroxyethylamino)-1-propanol und Diisopropanolamin auch als Mischungen genannt.
  • CH-acide Verbindungen. Als CH-acide Verbindungen sind beispielsweise Derivate von Malonsäureestern, Acetylaceton und/oder Acetessigester geeignet.
  • Als Verbindungen B) eignen sich besonders alle in der PUR-Chemie üblicherweise eingesetzten Diole und Polyole mit mindestens zwei OH-Gruppen.
  • Als Diole und Polyole werden z. B. Ethylenglykol, 1,2-, 1,3-Propandiol, Diethylen-, Dipropylen-, Triethylen-, Tetraethylenglykol, 1,2-, 1,4-Butandiol, 1,3-Butylethylpropandiol, 1,3-Methylpropandiol, 1,5-Pentandiol, Bis-(1,4-hydroxymethyl)cyclohexan (Cyclohexandimethanol), Glycerin, Hexandiol, Neopentylglykol, Trimethylolethan, Trimethylolpropan, Pentaerythrit, Bisphenol A, B, C, F, Norbornylenglykol, 1,4-Benzyldimethanol, -ethanol, 2,4-Dimethyl-2-ethylhexan-1,3-diol, 1,4- und 2,3-Butylenglykol, Di-β-hydroxyethylbutandiol, 1,5-Pentandiol, 1,6-Hexandiol, 1,8-Octandiol, Decandiol, Dodecandiol, Neopentylglykol, Cyclohexandiol, 3(4),8(9)-Bis(hydroxymethyl)-tricyclo[5.2.1.02,6]decan (Dicidol), 2,2-Bis-(4-hydroxycyclohexyl)propan, 2,2-Bis-[4-(β-hydroxyethoxy)-phenyl]propan, 2-Methyl-propandiol-1,3, 2-Methylpentandiol-1,5, 2,2,4(2,4,4)-Trimethylhexandiol-1,6, Hexantiol-1,2,6, Butantriol-1,2,4, Tris-(β-hydroxyethyl)isocyanurat, Mannit, Sorbit, Polypropylenglykole, Polybutylenglykole, Xylylenglykol oder Hydroxypivalinsäureneopentylglykolester, Hydroxyacrylate, allein oder in Mischungen, eingesetzt.
  • Besonders bevorzugt sind 1,4-Butandiol, 1,2-Propandiol, Cyclohexandimethanol, Hexandiol, Neopentylglykol, Decandiol, Dodecandiol, Trimethylolpropan, Ethylenglykol, Triethylenglykol, Pentandiol-1,5, Hexandiol-1,6, 3-Methylpentandiol-1,5, Neopentylglykol, 2,2,4 (2,4,4)-Trimethylhexandiol sowie Hydroxypivalinsäureneopentylglykolester. Sie werden allein oder in Mischungen verwendet. 1,4-Butandiol wird nur in Mischungen eingesetzt.
  • Als Verbindungen B) eignen sich auch Diole und Polyole, die weitere funktionelle Gruppen enthalten. Hierbei handelt es sich um die an sich bekannten linearen oder schwach verzweigten hydroxylgruppenhaltigen Polyester, Polycarbonate, Polycaprolactone, Polyether, Polythioether, Polyesteramide, Polyacrylate, Polyvinylalkohole, Polyurethane oder Polyacetale. Sie weisen vorzugsweise ein zahlenmittleres Molekulargewicht von 134 bis 20000 g/mol besonders bevorzugt 134–4000 g/mol auf. Bei den hydroxylgruppenhaltigen Polymeren werden bevorzugt Polyester, Polyether, Polyacrylate, Polyurethane, Polyvinylalkohole und/oder Polycarbonate mit einer OH-Zahl von 5–500 (in mg KOH/Gramm) eingesetzt.
  • Bevorzugt sind lineare oder schwach verzweigte hydroxylgruppenhaltige Polyester – Polyesterpolyole – oder Gemische solcher Polyester. Sie werden z. B. durch Umsetzung von Diolen mit unterschüssigen Mengen an Dicarbonsäuren, entsprechenden Dicarbonsäureanhydriden, entsprechenden Dicarbonsäureestern von niederen Alkoholen, Lactonen oder Hydroxycarbonsäuren hergestellt.
  • Zur Herstellung der bevorzugten Polyesterpolyole geeignete Diole und Polyole sind neben den oben genannten Diolen und Polyolen auch 2-Methylpropandiol, 2,2-Dimethylpropandiol, Diethylenglykol, Dodecandiol-1,12, 1,4-Cyclohexandimethanol und 1,2- und 1,4-Cyclohexandiol.
  • Bevorzugt werden 1,4-Butandiol, 1,2-Propandiol, Cyclohexandimethanol, Hexandiol, Neopentylglykol, Decandiol, Dodecandiol, Trimethylolpropan, Ethylenglykol, Triethylenglykol, Pentandiol-1,5, Hexandiol-1,6, 3-Methylpentandiol-1,5, Neopentylglykol, 2,2,4 (2,4,4)-Trimethylhexandiol sowie Hydroxypivalinsäureneopentylglykolester zur Herstellung der Polyesterpolyole eingesetzt.
  • Zur Herstellung der Polyesterpolyole geeignete Dicarbonsäuren oder Derivate können aliphatischer, cycloaliphatischer, aromatischer und/oder heteroaromatischer Natur sein und gegebenenfalls, z. B. durch Halogenatome, substituiert und/oder ungesättigt sein.
  • Zu den bevorzugten Dicarbonsäuren oder Derivaten zählen Bernstein-, Adipin-, Kork-, Azelain- und Sebacinsäure, 2,2,4 (2,4,4)-Trimethyladipinsäure, Phthalsäure, Phthalsäureanhydrid, Isophthalsäure, Terephthalsäure, Terephthalsäuredimethylester, Tetrahydrophthalsäure, Maleinsäure, Maleinsäureanhydrid und dimere Fettsäuren.
  • Geeignete Polyesterpolyole sind auch solche, die sich in bekannter Weise durch Ringöffnung aus Lactonen, wie -Caprolacton, und einfachen Diolen als Startermoleküle herstellen lassen. Auch Mono- und Polyester aus Lactonen, z. B. ε-Caprolacton oder Hydroxycarbonsäuren, z. B. Hydroxypivalinsäure, ε-Hydroxydecansäure, ε-Hydroxycapronsäure, Thioglykolsäure, können als Ausgangsstoffe für die Herstellung der Polymere G) eingesetzt werden. Polyester aus den oben (S. 6) genannten Polycarbonsäuren bzw. deren Derivaten und Polyphenolen, die Hydrochinon, Bisphenol-A, 4,4'-Dihydroxybiphenyl oder Bis-(4-hydroxyphenyl)-sulfon; Polyester der Kohlensäure, die aus Hydrochinon, Diphenylolpropan, p-Xylylenglykol, Ethylenglykol, Butandiol oder Hexandiol-1,6 und anderen Polyolen durch übliche Kondensationsreaktionen, z. B. mit Phosgen oder Diethyl- bzw. Diphenylcarbonat, oder aus cyclischen Carbonaten, wie Glykolcarbonat oder Vinylidencarbonat, durch Polymerisation in bekannter Weise erhältlich sind; Polyester der Kieselsäure, Polyester der Phosphorsäure, z. B. aus Methan-, Ethan-, β-Chlorethan-, Benzol- oder Styrolphosphorsäure oder deren Derivate, wie z. B., Phosphorsäurechloride oder Phosphorsäureester und Polyalkoholen oder Polyphenolen der oben genannten Art; Polyester der Borsäure; Polysiloxane, wie z. B. die durch Hydrolyse von Dialkyldichlorsilanen mit Wasser und nachfolgende Behandlung mit Polyalkoholen, die durch Anlagerung von Polysiloxandihydriden an Olefinen, wie Allylalkohol oder Acrylsäure, erhältlichen Produkte, sind geeignet als Ausgangsstoffe für die Herstellung der Verbindungen B).
  • Die Polyester können auf an sich bekannte Weise durch Kondensation in einer Inertgasatmosphäre bei Temperaturen von 100 bis 260°C, vorzugsweise 130 bis 220°C, in der Schmelze oder in azeotroper Fahrweise gewonnen werden, wie es z. B. in Methoden der Organischen Chemie (Houben-Weyl); Band 14/2, Seiten 1 bis 5, 21 bis 23, 40 bis 44, Georg Thieme Verlag, Stuttgart, 1963, oder bei C. R. Martens, Alkyd Resins, Seiten 51 bis 59, Reinhold Plastics Appl. Series, Reinhold Publishing Corp., New York, 1961, beschrieben ist.
  • Ebenfalls bevorzugt einsetzbar sind OH-Gruppen haltige (Meth-)Acrylate und Poly(meth)acrylate. Sei werden hergestellt durch die Co-Polymerisation von (Meth-)Acrylaten, wobei einzelne Komponenten OH-Gruppen tragen andere hingegen nicht. So wird ein statistisch verteiltes OH-Gruppen haltiges Polymer erzeugt, welches keine, eine oder viele OH-Gruppen trägt. Solche Polymere werden beschreiben unter High solids hydroxy acrylics with tightly controlled molecular weight. van Leeuwen, Ben. SC Johnson Polymer, Neth. PPCJ, Polymers Paint Colour Journal (1997), 187(4392), 11–13;
    Special techniques for synthesis of high solid resins and applications in surface coatings. Chakrabarti, Suhas; Ray, Somnath. Berger Paints India Ltd., Howrah, India. Paintindia (2003), 53(1), 33–34, 36, 38–40;
    VOC protocols and high solid acrylic coatings. Chattopadhyay, Dipak K.; Narayan, Ramanuj; Raju, K. V. S. N. Organic Coatings and Polymers Division, Indian Institute of Chemical Technology, Hyderabad, India. Paintindia (2001), 51(10), 31–42.
  • Die zur Herstellung der Polyesterpolyole verwendeten Diole und Dicarbonsäuren bzw. deren Derivate können in beliebigen Mischungen eingesetzt werden.
  • Es können auch Mischungen aus Polyesterpolyolen und Diolen eingesetzt werden.
  • Geeignete Verbindungen B) sind auch die Reaktionsprodukte von Polycarbonsäuren und Glycidverbindungen, wie sie z. B. in der DE-OS 24 10 513 beschrieben sind.
  • Beispiele für Glycidylverbindungen, die verwendet werden können, sind Ester des 2,3-Epoxy-1-propanols mit monobasischen Säuren, die 4 bis 18 Kohlenstoffatome haben, wie Glycidylpalmitat, Glycidyllaurat und Glycidylstearat, Alkylenoxide mit 4 bis 18 Kohlenstoffatomen, wie Butylenoxid, und Glycidylether, wie Octylglycidylether.
  • Verbindungen B) sind auch solche, die neben einer Epoxidgruppe noch mindestens eine weitere funktionelle Gruppe tragen, wie z. B. Carboxyl-, Hydroxyl-, Mercapto- oder Aminogruppen, die zur Reaktion mit einer Isocyanatgruppe befähigt ist. Besonders bevorzugt sind 2,3-Epoxy-1-propanol und epoxidiertes Sojaöl.
  • Es können beliebige Kombinationen der Verbindungen B) eingesetzt werden.
  • Herstellung
  • Die Umsetzung der Komponenten A) und B) kann in geeigneten Aggregaten, Rührkesseln, Statikmischern, Rohrreaktoren, Knetern, Extrudern oder sonstigen Reaktionsräumen mit oder ohne Mischfunktion durchgeführt werden. Die Reaktion wird bei Temperaturen zwischen Raumtemperatur und 220°C, bevorzugt zwischen 40°C und 120°C durchgeführt und dauert je nach Temperatur und Reaktionskomponenten A) und B) zwischen wenigen Sekunden und mehreren Wochen. Bevorzugt wird eine Reaktionsdauer zwischen 30 min und 24 h. Das Verhältnis zwischen der NCO-Komponente A) und der NCO-reaktiven funktionelle Gruppen haltigen Komponente B) beträgt, berechnet als NCO/NCO-reaktiv = 0,3:1 bis 1,05:1 bevorzugt 0,5:1 bis 1:1.
  • Das Endprodukt verfügt über keine nennenswerten freien NCO-Gruppen (< 0,5 Gew.-%).
  • Zur Beschleunigung der Polyadditionsreaktion können die in der PUR-Chemie üblichen Katalysatoren verwendet werden. Sie werden in einer Konzentration von 0,001 bis 2 Gew.-%, vorzugsweise von 0,01 bis 0,5 Gew.-%, bezogen auf die eingesetzten Reaktionskomponenten, eingesetzt. Katalysatoren sind beispielsweise tert. Amine wie Triethylamin, Pyridin oder N,N-Dimethylaminocyclohexan oder Metallsalze wie Eisen(III)-chlorid, Molybdänglykolat und Zinkchlorid. Als besonders geeignet erwiesen sich Zinn-II- und -IV-Verbindungen. Genannt seien hier besonders Dibutylzinndilaurat (DBTL) und Zinnoctoat.
  • Die erfindungsgemäßen Zusammensetzungen können fest, viskos, flüssig und auch pulverförmig vorliegen.
  • Außerdem können die Zusammensetzungen auch Hilfs- und Zusatzstoffe, ausgewählt aus Inhibitoren, organischen Lösemitteln, die gegebenenfalls ungesättigte Gruppierungen enthalten, grenzflächenaktiven Substanzen, Sauerstoff- und/oder Radikalfängern, Katalysatoren, Lichtschutzmitteln, Farbaufhellern, Photoinitiatoren, Photosensibilisatoren, Thixotropiermitteln, Hautverhinderungsmitteln, Entschäumern, Farbstoffen, Pigmenten, Füllstoffen und Mattierungsmittel, enthalten. Die Menge variiert stark von Einsatzgebiet und Art des Hilfs- und Zusatzstoffes.
  • Als organischen Lösemittel kommen alle flüssigen Substanzen in Frage, die nicht mit anderen Inhaltstuffen reagieren, z. B. Aceton, Ethylacetat, Butylacetat, Xylol, Solvesso 100, Solvesso 150, Methoxypropylacetat und Dibasicester.
  • Ebenfalls können die üblichen Zusatzstoffe, wie Verlaufsmittel, z. B. Polysilicone oder Acrylate, Lichtschutzmittel, z. B. sterisch gehinderte Amine, oder andere Hilfsmittel, wie sie z. B. in EP 0 669 353 beschrieben wurden, in einer Gesamtmenge von 0,05 bis 5 Gew.-% zugesetzt werden. Füllstoffe und Pigmente wie z. B. Titandioxid können in einer Menge bis zu 50 Gew.-% der Gesamtzusammensetzung zugesetzt werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - US 4443563 [0003]
    • - DE 3111093 A [0003]
    • - EP 0669353 [0015, 0055]
    • - EP 0669354 [0015]
    • - DE 3030572 [0015]
    • - EP 0639598 [0015]
    • - EP 0803524 [0015]
    • - DE 2410513 A [0045]
  • Zitierte Nicht-Patentliteratur
    • - J. Thiem in Makomol. Chemie 187, 2775–2778, 1986 [0004]
    • - J. Thiem et al., Macromol. Rapid Comman. 19, 21–26, 1998 [0005]
    • - J. Thiem et al., Macromol. Chem. Phys. 202, 3410–3419, 2001 [0006]
    • - Methoden der Organischen Chemie (Houben-Weyl); Band 14/2, Seiten 1 bis 5, 21 bis 23, 40 bis 44, Georg Thieme Verlag, Stuttgart, 1963 [0041]
    • - C. R. Martens, Alkyd Resins, Seiten 51 bis 59, Reinhold Plastics Appl. Series, Reinhold Publishing Corp., New York, 1961 [0041]
    • - High solids hydroxy acrylics with tightly controlled molecular weight. van Leeuwen, Ben. SC Johnson Polymer, Neth. PPCJ, Polymers Paint Colour Journal (1997), 187(4392), 11–13 [0042]
    • - Special techniques for synthesis of high solid resins and applications in surface coatings. Chakrabarti, Suhas; Ray, Somnath. Berger Paints India Ltd., Howrah, India. Paintindia (2003), 53(1), 33–34, 36, 38–40 [0042]
    • - VOC protocols and high solid acrylic coatings. Chattopadhyay, Dipak K.; Narayan, Ramanuj; Raju, K. V. S. N. Organic Coatings and Polymers Division, Indian Institute of Chemical Technology, Hyderabad, India. Paintindia (2001), 51(10), 31–42 [0042]

Claims (20)

  1. Zusammensetzungen, im Wesentlichen enthaltend ein Reaktionsprodukt von A) 2,5-Diisocyanato-1,4:3,6-Dianhydro-2,5-Dideoxy-D-Manitol (I), 2,5-Diisocyanato-1,4:3,6-Dianhydro-2,5-Dideoxy-D-Glucitol (II) und/oder 2,5-Diisocyanato-1,4:3,6-Dianhydro-2,5-Dideoxy-L-Iditol (III), allein oder in beliebigen Mischungen, der Formeln
    Figure 00140001
    und B) mindestens einer Verbindung mit mindestens einer gegenüber NCO-Gruppen reaktiven funktionellen Gruppe, wobei das Verhältnis zwischen der NCO-Komponente A) und der NCO-reaktiven funktionelle Gruppen haltigen Komponente B), berechnet als NCO/NCO-reaktiv = 0,3:1 bis 1,05:1 bevorzugt 0,5:1 bis 1:1 beträgt, und wobei der Einsatz von 1,4-Butandiol, 1,4-Butandithiol, 1,4-Butandiamin und 1,3-Diaminobenzol allein als Komponente B) ausgeschlossen ist.
  2. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, dass Oligo- oder Polyisocyanate eingesetzt werden, insbesondere die, die sich aus den genannte Diisocyanaten oder deren Mischungen durch Verknüpfung mittels Urethan-, Allophanat-, Harnstoff-, Biuret-, Uretdion-, Amid-, Isocyanurat-, Carbodiimid-, Uretonimin-, Oxadiazintrion- oder Iminooxadiazindion-Strukturen herstellen lassen, besonders bevorzugt Isocyanurate und Uretdione.
  3. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Komponente A) kettenverlängert ist.
  4. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Komponente A) blockiert ist.
  5. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Komponente A) zusätzliche Di- und Polyisocyanate aus beliebigen aromatischen, aliphatischen, cycloaliphatischen und/oder (cyclo)aliphatischen Di- und/oder Polyisocyanaten, enthält.
  6. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass 1,3- und 1,4-Phenylendiisocyanat, 1,5-Naphthylen-diisocyanat, Tolidindiisocyanat, 2,6-Toluylendiisocyanat, 2,4-Toluylendiisocyanat (2,4-TDI), 2,4'-Diphenylmethandiisocyanat (2,4'-MDI), 4,4'-Diphenylmethandiisocyanat, die Mischungen aus monomeren Diphenylmethandiisocyanaten (MDI) und oligomeren Diphenylmethandiisocyanaten (Polymer-MDI), Xylylendiisocyanat, Tetramethylxylylendiisocyanat und Triisocyanatotoluol in der Komponente A) enthalten sind.
  7. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass Isophorondiisocyanat (IPDI), Hexamethylendiisocyanat (HDI), Diisocyanatodicyclohexylmethan (H12MDI), 2-Methylpentandiisocyanat (MPDI), 2,2,4-Trimethylhexamethylendiisocyanat/2,4,4-Trimethylhexamethylendiisocyanat (TMDI), Norbornandiisocyanat (NBDI), besonders bevorzugt IPDI, HDI, TMDI und/oder H12MDI, wobei auch die Isocyanurate und Uretdione bevorzugt einsetzbar sind, in der Komponente A) enthalten sind.
  8. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Verbindungen B) mindestens zwei gegenüber NCO-Gruppen reaktive funktionelle Gruppen aufweisen, ausgewählt aus OH-, NH2-, NH-, SH-, CH-acide Gruppen, bevorzugt Alkoholgruppen und Aminogruppen.
  9. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als Diamine und Polyamine 1,2-Ethylendiamin, 1,2-Propylendiamin, 1,3-Propylendiamin, 1,2-Butylendiamin, 1,3-Butylendiamin, 1,4-Butylendiamin, 2-(Ethylamino)ethylamin, 3-(Methylamino)propylamin, 3-(Cyclohexylamino)propylamin, 4,4'-Diaminodicyclohexylmethan, Isophorondiamin, 4,7-Dioxadecan-1,10-diamin, N-(2-Aminoethyl)-1,2-ethandiamin, N-(3-Aminopropyl)-1,3-propandiamin, N,N''-1,2-Ethandiylbis-(1,3-propandiamin), Adipinsäuredihydrazid, Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Pentaethylenhexamin, Dipropylentriamin, Hydrazin, 1,3- und 1,4-Phenylendiamin, 4,4'-Diphenylmethandiamin, aminofunktionelle Polyethylenoxide bzw. Polypropylenoxide, Addukte aus Salzen der 2-Acrylamido-2-methylpropan-1-sulfonsäuresowie Hexamethylendiamine, die auch einen oder mehrere C1-C4-Alkylreste tragen können, als Komponente B) eingesetzt werden.
  10. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als Aminoalkohole Monoethanolamin, 3-Amino-1-propanol, Isopropanolamin, Aminoethoxyethanol, N-(2-Aminoethyl)ethanolamin, N-Ethylethanolamin, N-Butylethanolamin, Diethanolamin, 3-(Hydroxyethylamino)-1-propanol und Diisopropanolamin auch als Mischungen, als Komponente B) eingesetzt werden.
  11. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als CN-acide Verbindungen Derivate von Malonsäureestern, Acetylaceton und/oder Acetessigester als Komponente B) eingesetzt werden.
  12. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als Diole und Polyole Ethylenglykol, 1,2-, 1,3-Propandiol, Diethylen-, Dipropylen-, Triethylen-, Tetraethylenglykol, 1,2-, 1,4-Butandiol, 1,3-Butylethylpropandiol, 1,3-Methylpropandiol, 1,5-Pentandiol, Bis-(1,4-hydroxymethyl)cyclohexan (Cyclohexandimethanol), Glycerin, Hexandiol, Neopentylglykol, Trimethylolethan, Trimethylolpropan, Pentaerythrit, Bisphenol A, B, C, F, Norbornylenglykol, 1,4-Benzyldimethanol, -ethanol, 2,4-Dimethyl-2-ethylhexan-1,3-diol, 1,4- und 2,3-Butylenglykol, Di-β-hydroxyethylbutandiol, 1,5-Pentandiol, 1,6-Hexandiol, 1,8-Octandiol, Decandiol, Dodecandiol, Neopentylglykol, Cyclohexandiol, 3(4),8(9)-Bis(hydroxymethyl)-tricyclo[5.2.1.02,6]decan (Dicidol), 2,2-Bis-(4-hydroxycyclohexyl)propan, 2,2-Bis-[4-(β-hydroxyethoxy)-phenyl]propan, 2-Methyl-propandiol-1,3, 2-Methylpentandiol-1,5, 2,2,4(2,4,4)-Trimethylhexandiol-1,6, Hexantiol-1,2,6, Butantriol-1,2,4, Tris-(β-hydroxyethyl)isocyanurat, Mannit, Sorbit, Polypropylenglykole, Polybutylenglykole, Xylylenglykol oder Hydroxypivalinsäureneopentylglykolester, Hydroxyacrylate, allein oder in Mischungen, als Komponente B) eingesetzt werden.
  13. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass 1,4-Butandiol, 1,2-Propandiol, Cyclohexandimethanol, Hexandiol, Neopentylglykol, Decandiol, Dodecandiol, Trimethylolpropan, Ethylenglykol, Triethylenglykol, Pentandiol-1,5, Hexandiol-1,6, 3-Methylpentandiol-1,5, Neopentylglykol, 2,2,4 (2,4,4)-Trimethylhexandiol und/oder Hydroxypivalinsäureneopentylglykolester als Komponente B) eingesetzt werden.
  14. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass Diole und Polyole, die weitere funktionelle Gruppen enthalten lineare oder schwach verzweigte hydroxylgruppenhaltige Polyester, Polycarbonate, Polycaprolactone, Polyether, Polyvinylalkohole, Polythioether, Polyesteramide, Polyacrylate, Polyurethane und/oder Polyacetale, vorzugsweise mit einem zahlenmittleren Molekulargewicht von 134 bis 20000 g/mol, besonders bevorzugt 134–4000 g/mol.
  15. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass Polyesterpolyole hergestellt aus 1,4-Butandiol, 1,2-Propandiol, Cyclohexandimethanol, Hexandiol, Neopentylglykol, Decandiol, Dodecandiol, Trimethylolpropan, Ethylenglykol, Triethylenglykol, Pentandiol-1,5, Hexandiol-1,6, 3-Methylpentandiol-1,5, Neopentylglykol, 2,2,4 (2,4,4)-Trimethylhexandiol sowie Hydroxypivalinsäureneopentylglykolester und Bernstein-, Adipin-, Kork-, Azelain- und Sebacinsäure, 2,2,4 (2,4,4)-Trimethyladipinsäure, Phthalsäure, Phthalsäureanhydrid, Isophthalsäure, Terephthalsäure, Terephthalsäuredimethylester, Tetrahydrophthalsäure, Maleinsäure, Maleinsäureanhydrid und dimere Fettsäuren als Komponente B) eingesetzt werden.
  16. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass hydroxylgruppenhaltige Polyester, Polyether, Polyacrylate, Polyurethane, Polyvinylalkohole und/oder Polycarbonate mit einer OH-Zahl von 5–500 (in mg KOH/Gramm) als Komponente B) eingesetzt.
  17. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass OH-Gruppen haltige (Meth-)Acrylate und Poly(meth)acrylate als Komponente B) eingesetzt werden.
  18. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass Reaktionsprodukte von Polycarbonsäuren und Glycidverbindungen als Komponente B) enthalten sind.
  19. Zusammensetzung nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass als Verbindungen B) solche enthalten sind, die neben einer Epoxidgruppe noch mindestens eine weitere funktionelle Gruppe tragen, bevorzugt Carboxyl-, Hydroxyl-, Mercapto- oder Aminogruppen, die zur Reaktion mit einer Isocyanatgruppe befähigt sind, besonders bevorzugt 2,3-Epoxy-1-propanol und epoxidiertes Sojaöl.
  20. Verfahren zur Herstellung von Zusammensetzungen nach mindestens einem der Ansprüche 1 bis 19, durch Umsetzung von A) und B), wobei das Verhältnis zwischen der NCO-Komponente A) und der NCO-reaktiven funktionelle Gruppen haltigen Komponente B), berechnet als NCO/NCO-reaktiv = 0,3:1 bis 1,05:1 bevorzugt 0,5:1 bis 1:1, beträgt, bei Temperaturen zwischen Raumtemperatur und 220°C, bevorzugt zwischen 40°C und 120°C.
DE102009027392A 2009-07-01 2009-07-01 Zusammensetzung auf der Basis von Diisocyanaten aus nachwachsenden Rohstoffen Withdrawn DE102009027392A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102009027392A DE102009027392A1 (de) 2009-07-01 2009-07-01 Zusammensetzung auf der Basis von Diisocyanaten aus nachwachsenden Rohstoffen
US13/376,757 US20120077932A1 (en) 2009-07-01 2010-04-23 Compositions based on diisocyanates obtained from renewable raw materials
AU2010268317A AU2010268317A1 (en) 2009-07-01 2010-04-23 Compositions based on diisocyanates obtained from renewable raw materials
JP2012518835A JP2012531507A (ja) 2009-07-01 2010-04-23 再生原料からのジイソシアネートをベースとする組成物
CN2010800294081A CN102471451A (zh) 2009-07-01 2010-04-23 基于得自可再生原料的二异氰酸酯的组合物
PCT/EP2010/055414 WO2011000585A1 (de) 2009-07-01 2010-04-23 Zusammensetzungen auf der basis von diisocyanaten aus nachwachsenden rohstoffen
EP10715539A EP2448988A1 (de) 2009-07-01 2010-04-23 Zusammensetzungen auf der basis von diisocyanaten aus nachwachsenden rohstoffen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009027392A DE102009027392A1 (de) 2009-07-01 2009-07-01 Zusammensetzung auf der Basis von Diisocyanaten aus nachwachsenden Rohstoffen

Publications (1)

Publication Number Publication Date
DE102009027392A1 true DE102009027392A1 (de) 2011-01-05

Family

ID=42236497

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009027392A Withdrawn DE102009027392A1 (de) 2009-07-01 2009-07-01 Zusammensetzung auf der Basis von Diisocyanaten aus nachwachsenden Rohstoffen

Country Status (7)

Country Link
US (1) US20120077932A1 (de)
EP (1) EP2448988A1 (de)
JP (1) JP2012531507A (de)
CN (1) CN102471451A (de)
AU (1) AU2010268317A1 (de)
DE (1) DE102009027392A1 (de)
WO (1) WO2011000585A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007060705A1 (de) 2007-12-17 2009-06-18 Evonik Degussa Gmbh ω-Aminocarbonsäuren oder ihre Lactame, herstellende, rekombinante Zellen
DE102008002715A1 (de) 2008-06-27 2009-12-31 Evonik Röhm Gmbh 2-Hydroxyisobuttersäure produzierende rekombinante Zelle
DE102010015807A1 (de) 2010-04-20 2011-10-20 Evonik Degussa Gmbh Biokatalytisches Oxidationsverfahren mit alkL-Genprodukt
DE102010041247A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Verfahren zur Herstellung von lagerstabilen Polyurethan-Prepregs und daraus hergestellte Formkörper aus Polyurethanzusammensetzung in Lösung
DE102010043470A1 (de) 2010-11-05 2012-05-10 Evonik Degussa Gmbh Zusammensetzung aus Polyamiden mit niedriger Konzentration an Carbonsäureamidgruppen und elektrisch leitfähigem Kohlenstoff
DE102011006163A1 (de) 2011-03-25 2012-09-27 Evonik Degussa Gmbh Lagerstabile Polyurethan-Prepregs und daraus hergestellte Formkörper aus Polyurethanzusammensetzung mit flüssigen Harzkomponenten
EP2631298A1 (de) 2012-02-22 2013-08-28 Evonik Industries AG Biotechnologisches Verfahren zur Herstellung von Butanol und Buttersäure
EP2639308A1 (de) 2012-03-12 2013-09-18 Evonik Industries AG Enzymatische omega-Oxidation und -Aminierung von Fettsäuren
WO2014030742A1 (ja) 2012-08-23 2014-02-27 イーグル工業株式会社 密封装置
DE102012219324A1 (de) 2012-10-23 2014-04-24 Evonik Industries Ag Zusammensetzungen umfassend alkoxysilanhaltige Isocyanateund saure Stabilisatoren
EP2945994B1 (de) 2013-01-18 2018-07-11 Basf Se Beschichtungszusammensetzungen auf basis von acryldispersionen
KR101602467B1 (ko) * 2015-08-24 2016-03-15 로움하이텍 주식회사 신규한 폴리우레탄 화합물 및 이를 포함하는 반사방지막 조성물
EP3263616B8 (de) 2016-06-27 2020-01-15 Evonik Operations GmbH Alkoxysilan-funktionalisierte allophanat-haltige beschichtungsmittel
EP3263619A1 (de) * 2016-06-27 2018-01-03 Evonik Degussa GmbH Alkoxysilan- und allophanat-funktionalisierte beschichtungsmittel
EP3401344B1 (de) 2017-05-09 2020-04-08 Evonik Operations GmbH Verfahren zur herstellung von trimeren und/oder oligomeren von diisocyanaten

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2410513A1 (de) 1973-03-05 1974-09-26 Du Pont Diester von dibasischen ungesaettigten saeuren und glycidylestern
DE3030572A1 (de) 1980-08-13 1982-03-18 Chemische Werke Hüls AG, 4370 Marl Verfahren zur herstellung von uretdiongruppenhaltigen polyadditionsprodukten sowie die danach hergestellten produkte
DE3111093A1 (de) 1981-03-20 1982-10-07 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von gegebenenfalls zellfoermigen polyurethankunststoffen unter verwendung von diolen der dianhydro-hexit-reihe
US4443563A (en) 1983-06-08 1984-04-17 The Dow Chemical Company Polyurethanes based on 1;4-3:6 dianhydrohexitols
EP0639598A1 (de) 1993-08-17 1995-02-22 Bayer Ag Uretdion Pulverlackvernetzer mit niedriger Schmelzviskosität
EP0669354A1 (de) 1994-02-28 1995-08-30 Hüls Aktiengesellschaft Verfahren zur Herstellung von uretdiongruppenhaltigen Polyadditionsprodukten und deren Verwendung in Polyurethan-Lacksystemen
EP0669353A1 (de) 1994-02-28 1995-08-30 Hüls Aktiengesellschaft Hydroxyl- und uretdiongruppenhaltige Polyadditionsprodukte und Verfahren zu ihrer Herstellung sowie deren Verwendung zur Herstellung abspaltfreier Polyurethan-Pulverlacke hoher Reaktivität und die danach hergestellten Polyurethan-Pulverlacke
EP0803524A1 (de) 1996-04-25 1997-10-29 Bayer Ag Abspalterfreier Polyurethan-Pulverlack mit niedriger Einbrenntemperatur

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2410513A1 (de) 1973-03-05 1974-09-26 Du Pont Diester von dibasischen ungesaettigten saeuren und glycidylestern
DE3030572A1 (de) 1980-08-13 1982-03-18 Chemische Werke Hüls AG, 4370 Marl Verfahren zur herstellung von uretdiongruppenhaltigen polyadditionsprodukten sowie die danach hergestellten produkte
DE3111093A1 (de) 1981-03-20 1982-10-07 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von gegebenenfalls zellfoermigen polyurethankunststoffen unter verwendung von diolen der dianhydro-hexit-reihe
US4443563A (en) 1983-06-08 1984-04-17 The Dow Chemical Company Polyurethanes based on 1;4-3:6 dianhydrohexitols
EP0639598A1 (de) 1993-08-17 1995-02-22 Bayer Ag Uretdion Pulverlackvernetzer mit niedriger Schmelzviskosität
EP0669354A1 (de) 1994-02-28 1995-08-30 Hüls Aktiengesellschaft Verfahren zur Herstellung von uretdiongruppenhaltigen Polyadditionsprodukten und deren Verwendung in Polyurethan-Lacksystemen
EP0669353A1 (de) 1994-02-28 1995-08-30 Hüls Aktiengesellschaft Hydroxyl- und uretdiongruppenhaltige Polyadditionsprodukte und Verfahren zu ihrer Herstellung sowie deren Verwendung zur Herstellung abspaltfreier Polyurethan-Pulverlacke hoher Reaktivität und die danach hergestellten Polyurethan-Pulverlacke
EP0803524A1 (de) 1996-04-25 1997-10-29 Bayer Ag Abspalterfreier Polyurethan-Pulverlack mit niedriger Einbrenntemperatur

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
C. R. Martens, Alkyd Resins, Seiten 51 bis 59, Reinhold Plastics Appl. Series, Reinhold Publishing Corp., New York, 1961
High solids hydroxy acrylics with tightly controlled molecular weight. van Leeuwen, Ben. SC Johnson Polymer, Neth. PPCJ, Polymers Paint Colour Journal (1997), 187(4392), 11-13
J. Thiem et al., Macromol. Chem. Phys. 202, 3410-3419, 2001
J. Thiem et al., Macromol. Rapid Comman. 19, 21-26, 1998
J. Thiem in Makomol. Chemie 187, 2775-2778, 1986
Methoden der Organischen Chemie (Houben-Weyl); Band 14/2, Seiten 1 bis 5, 21 bis 23, 40 bis 44, Georg Thieme Verlag, Stuttgart, 1963
Special techniques for synthesis of high solid resins and applications in surface coatings. Chakrabarti, Suhas; Ray, Somnath. Berger Paints India Ltd., Howrah, India. Paintindia (2003), 53(1), 33-34, 36, 38-40
VOC protocols and high solid acrylic coatings. Chattopadhyay, Dipak K.; Narayan, Ramanuj; Raju, K. V. S. N. Organic Coatings and Polymers Division, Indian Institute of Chemical Technology, Hyderabad, India. Paintindia (2001), 51(10), 31-42

Also Published As

Publication number Publication date
AU2010268317A1 (en) 2011-12-15
JP2012531507A (ja) 2012-12-10
US20120077932A1 (en) 2012-03-29
EP2448988A1 (de) 2012-05-09
CN102471451A (zh) 2012-05-23
WO2011000585A1 (de) 2011-01-06

Similar Documents

Publication Publication Date Title
DE102009027392A1 (de) Zusammensetzung auf der Basis von Diisocyanaten aus nachwachsenden Rohstoffen
DE102009027394A1 (de) Verwendung von Isocyanaten auf der Basis von nachwachsenden Rohstoffen
EP1856193B1 (de) Polyurethanharnstoff-lösungen
EP2890690B1 (de) Bindemittel mit cyclischen carbonatstrukturen
DE102009027395A1 (de) Reaktive Derivate auf Basis Dianhydrohexitol basierender Isocyanate
DE20122890U1 (de) Hochfunktionelle Polyisocyanate
EP1169370A1 (de) Polyurethanlösungen mit alkoxysilanstruktureinheiten
DE102007062316A1 (de) Reaktive Isocyanatzusammensetzungen
WO2016116376A1 (de) Kristallisationsstabile polyesterprepolymere
EP1924625B1 (de) 2k pur-systeme enthaltend oh-funktionelle polydimethylsiloxane
EP2209838B1 (de) Polysiloxanmodifizierte polyisocyanate
EP3263619A1 (de) Alkoxysilan- und allophanat-funktionalisierte beschichtungsmittel
EP2448987B1 (de) Verfahren zur herstellung eines polyurethan-polymers mit sekundären hydroxyl-endgruppen umfassenden polyesterpolyolen
EP1362873A1 (de) Pulverlacke auf der Basis von Polyestern und mit Duroplast modifizierten Polyestern
EP3263617A1 (de) Alkoxysilan-funktionalisierte und allophanat-funktionalisierte urethane
DE102005040465A1 (de) Polyurethane, deren Herstellung und Verwendung
EP1902082A1 (de) Beschichtungsmassen enthaltend 2,4&#39;-diisocyanatodiphenylmethan
EP1645601B1 (de) Hybride Decklacke
EP3288993B1 (de) Polyurethanummantelungen mit verminderter wasseraufnahme und deren verwendung
EP2305727A1 (de) Neue 2K-PUR-Systeme
EP2804883B1 (de) Kompakte, lichtechte polyurethanformteile
EP3628694A1 (de) Lösemittelarme beschichtungssysteme für textilien
EP3568423A1 (de) Lösemittelarme beschichtungssysteme für textilien
WO2011069746A1 (de) Reaktive zusammensetzungen auf basis der transveresterung
EP1047719A1 (de) Diisocyanate mit allophanatgruppen abgeleitet von alicyclischen alkoholen

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20150203