DE102009015035A1 - Method of operating a fossil power plant and power plant - Google Patents

Method of operating a fossil power plant and power plant Download PDF

Info

Publication number
DE102009015035A1
DE102009015035A1 DE102009015035A DE102009015035A DE102009015035A1 DE 102009015035 A1 DE102009015035 A1 DE 102009015035A1 DE 102009015035 A DE102009015035 A DE 102009015035A DE 102009015035 A DE102009015035 A DE 102009015035A DE 102009015035 A1 DE102009015035 A1 DE 102009015035A1
Authority
DE
Germany
Prior art keywords
power plant
membrane
reaction
carbon dioxide
plant according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102009015035A
Other languages
German (de)
Inventor
Heinrich Dr. Zeininger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE102009015035A priority Critical patent/DE102009015035A1/en
Priority to PCT/EP2010/053875 priority patent/WO2010108974A1/en
Publication of DE102009015035A1 publication Critical patent/DE102009015035A1/en
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Verminderung des Kohlendioxidausstoßes bei fossil betriebenen Kraftwerken. Dazu wird in einer auf die eigentliche Verbrennung folgenden Reaktion das gasförmige Produkt durch eine Membran, die Kohlendioxid absorbiert, geführt.The invention relates to a device and a method for reducing carbon dioxide emissions in fossil-fueled power plants. For this purpose, in a reaction following the actual combustion, the gaseous product is passed through a membrane which absorbs carbon dioxide.

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Verminderung des Kohlendioxidausstoßes bei fossil betriebenen Kraftwerken.The The invention relates to a device and a method for reduction of carbon dioxide emissions in fossil power plants.

Die globale Kohlendioxid Konzentration in der Atmosphäre nimmt seit Jahrzehnten zu. Kohlendioxid ist ein Treibhausgas und wird unter anderem für die globale Erderwärmung verantwortlich gemacht.The global carbon dioxide concentration in the atmosphere decreases for decades too. Carbon dioxide is a greenhouse gas and will for, among other global warming responsible.

Bislang wird zwar Kohlendioxid-Abtrennung bei Kraftwerken erforscht, aber es gibt noch keine Vorrichtung und kein Verfahren mit dem der Anteil an Kohlendioxidausstoß bei fossil betriebenen Kraftwerken signifikant erniedrigt wird. Der Anteil an Kohlendioxid im Kraftwerkabgas ist jedoch signifikant und liegt bei ca. 25% des gesamten Abgases.So far Although carbon dioxide separation is explored in power plants, but There is still no device and no method with which the proportion at carbon dioxide emissions fossil-fueled power plants is significantly reduced. Of the However, the share of carbon dioxide in power plant exhaust gas is significant and is about 25% of the total exhaust gas.

Derzeit wird großtechnisch die Aminwäsche in Demonstratorkraftwerken getestet, bei der CO2 aus Rauchgasen in einem aufwändigen Verfahren absorbiert und anschließend nach Erwärmung hochrein gewonnen wird. Der Nachteil des Verfahrens liegt im hohen Energieaufwand. Der Wirkungsgrad des Kraftwerks wird durch die CO2 Abtrennung bei Integration der Aminwäsche um ca. 10–14% reduziert, wobei wertvolle Ressourcen an fossilen Brennstoffen verbraucht werden.Currently, the amine scrubbing is being tested on a large scale in demonstrator power plants, in which CO 2 from flue gases is absorbed in a complex process and then obtained highly purified after heating. The disadvantage of the method is the high energy consumption. The efficiency of the power plant is reduced by the CO 2 separation with integration of amine scrubbing by about 10-14%, whereby valuable resources are consumed on fossil fuels.

Ein Hauptproblem bei der CO2-Abtrennung aus Kraftwerken liegt darin, dass die Effizienz des Kraftwerks durch die Abtrennung möglichst wenig beeinträchtigt wird.A major problem with CO 2 separation from power plants is that the efficiency of the power plant is affected as little as possible by the separation.

Aufgabe der vorliegenden Erfindung ist daher, einen Verfahren und eine Vorrichtung zur Abtrennung von Kohlendioxid aus einem fossil betriebenen Kraftwerk zu schaffen.task The present invention is therefore a method and an apparatus for the removal of carbon dioxide from a fossil-fueled power plant to accomplish.

Lösung der Aufgabe und Gegenstand der Erfindung sind in der vorliegenden Beschreibung, der Figur und den Ansprüchen offenbart.Solution of Object and subject of the invention are in the present description, the figure and the claims disclosed.

Demnach ist es Gegenstand der Erfindung ein Verfahren zum Betreiben eines Kraftwerks, bei dem in einem auf die Vergasung des Brennstoffs folgenden Prozessschritt das Abgas aus dem Kraftwerk einer Reaktion (im Folgenden auch ”Folge-Reaktion” genannt) unterworfen wird, wobei das gasförmige Produkt dieser Reaktion in eine Membran eingeleitet wird. Außerdem ist Gegenstand der Erfindung ein Kraftwerk zur Verbrennung fossiler Brennstoffe, bei dem in der Ablassöffnung der Reaktionskammer für eine an die eigentliche Verbrennung anschließende Reaktion eine Membran vorgesehen ist.Therefore it is the subject of the invention, a method for operating a Power plant at which in one following on the gasification of the fuel Process step the exhaust gas from the power plant of a reaction (hereinafter also called "follow-up reaction") is subjected, wherein the gaseous product this reaction is introduced into a membrane. Besides that is The invention relates to a power plant for burning fossil Fuels in which in the discharge opening of the reaction chamber for one reaction following the actual combustion, a membrane is provided.

Nach einer vorteilhaften Ausführungsform der Erfindung ist die Membran eine Siloxanmembran, insbesondere bevorzugt ist es eine Polydimethylsiloxanmembran.To an advantageous embodiment of the Invention, the membrane is a siloxane membrane, particularly preferred it is a polydimethylsiloxane membrane.

Nach einer weiteren vorteilhaften Ausführungsform der Erfindung ist die Membran gekoppelt mit einem porösen katalytisch aktiven Träger, beispielsweise einer Mischoxidschicht. Diese kann selbsttragend oder auch auf einer Trägerfolie aufgebracht sein. Nach einer besonders bevorzugten Ausführungsform ist die Mischoxidschicht eine Mischung aus ausgewählt aus den folgenden Oxiden: Zinkoxid, Aluminiumoxid, Zirkonoxid, Titanoxid, sowie weiterer Nebengruppenmetalloxide und/oder der Oxide der Gruppe der seltenen Erden.To a further advantageous embodiment of the invention the membrane coupled with a porous catalytically active support, for example a mixed oxide layer. This can be self-supporting or even on one support film be upset. According to a particularly preferred embodiment the mixed oxide layer is a mixture of selected from the following oxides: zinc oxide, aluminum oxide, zirconium oxide, titanium oxide, and other minor group metal oxides and / or the oxides of the group rare earth.

Nach einer besonders bevorzugten Ausführungsform ist die Oberfläche des Mischoxid-Trägers noch mit einem Katalysator dotiert, damit das in der Membranschicht abgetrennte Kohlendioxid mit dem bei der Abtrennung ebenfalls anfallenden Wasserstoff am Mischoxidträger, bevorzugt bei den in der CO-Shift Reaktionskammer vorliegenden Temperaturen, gleich in Precursor-Chemikalien umsetzbar ist. Als Katalysator eigenen sich beispielsweise Kupfer, Platin, Palladium, und andere, bevorzugt auf der Oberfläche fein verteilte Edelmetalle.To a particularly preferred embodiment is the surface of mixed oxide carrier yet doped with a catalyst so that the separated in the membrane layer Carbon dioxide with the hydrogen also obtained during the separation on the mixed oxide carrier, preferred in the CO shift Reaction chamber present temperatures, equal in precursor chemicals is feasible. For example, copper, platinum, Palladium, and others, preferably on the surface finely dispersed precious metals.

Vorzugsweise wird eine asymmetrische Membran eingesetzt, in der die Membranschicht zur Abtrennung des Kohlendioxids auf der porösen Mischoxidschicht aufgebracht ist.Preferably an asymmetric membrane is used in which the membrane layer applied to the separation of the carbon dioxide on the porous mixed oxide layer is.

Durch die hier beschriebene Membrantechnologie mit vorzugsweise asymmetrischen Membranen wird aus dem Gasgemisch, das die Reaktionskammer der Folge-Reaktion, bevorzugt der CO-Shift-Reaktion, verlässt, Wasserstoff plus Kohlendioxid im Permeat angereichert. Die Temperatur der Folge-Reaktion liegt zwischen 200°C und 400°C, insbesondere zwischen 230°C und 380°C und besonders bevorzugt zwischen 280°C und 320°C.By the membrane technology described here with preferably asymmetric Membranes are made from the gas mixture, which is the reaction chamber of the reaction sequence, prefers the CO shift reaction, leaves, Hydrogen plus carbon dioxide enriched in permeate. The temperature of the Follow-up reaction is between 200 ° C and 400 ° C, in particular between 230 ° C and 380 ° C and more preferably between 280 ° C and 320 ° C.

Vorteilhafterweise liegt das Abgas aus der Folge-Reaktion unter einem hohen Druck vor, insbesondere von 25 bis 45 bar.advantageously, is the exhaust gas from the sequence reaction under a high pressure, in particular from 25 to 45 bar.

In der Reaktionskammer für die CO Shift Reaktion entstehen Wasserstoff, Kohlendioxid und Wasser. Der Anteil von Kohlenmonoxid liegt dort im Abgas beispielsweise nur noch 3 bis 10%. Eine Abtrennung vom Kohlendioxid an der Stelle im Kraftwerksprozess ist im Vergleich etwa zum Post Combustion Prozess wegen eines dort möglichen hohen Gasdrucks nach der CO Shift Reaktion von ca. > 25 bar, insbesondere von > 30 bar sehr günstig.In the reaction chamber for The CO shift reaction produces hydrogen, carbon dioxide and water. The proportion of carbon monoxide is there in the exhaust, for example only 3 to 10%. A separation of carbon dioxide at the site In comparison to the post-combustion process in the power plant process, for example because of a possible there high gas pressure after the CO shift reaction of about> 25 bar, in particular from> 30 bar very much Cheap.

Des Weiteren ist bevorzugt, dass das Abgas aus der Reaktionskammer der Reaktion einen relativ hohen Kohlendioxidanteil von bis zu 60%, insbesondere ca. 35 bis 50%, insbesondere von 40 bis 45% hat und daher für die Kohlendioxidabscheidung sehr günstig ist.Furthermore, it is preferred that the exhaust gas from the reaction chamber of the reaction has a relatively high carbon dioxide content of up to 60%, in particular about 35 to 50%, in particular from 40 to 45%. and therefore is very favorable for the carbon dioxide separation.

Das Abgas aus der Reaktionskammer der Folge-Reaktion wird bevorzugt mit einem für die Durchleitung durch eine Membran günstigen relativ geringen Fluss von beispielsweise ca. 5 bis 20 m3/s, insbesondere von ca. 10 m3/s, geführt werden.The exhaust gas from the reaction chamber of the reaction sequence is preferably with a favorable for the passage through a membrane relatively low flow of, for example, about 5 to 20 m 3 / s, in particular of about 10 m 3 / s, out.

Vorteilhafterweise reichen bei hohen Drücken bereits relativ geringe Selektivitäten der Membranen von CO2/H2 > 5, vorzugsweise > 10 und insbesondere > 15 aus.Advantageously, at high pressures already relatively low selectivities of the membranes of CO 2 / H 2 > 5, preferably> 10 and in particular> 15 from.

Nach einer vorteilhaften Ausführungsform wird durch die Membran, da es sich um eine Bulkmethode handelt, gleichzeitig Wasserstoff mit abgetrennt. Dies kann beispielsweise in einer Menge von bis zu 30% erfolgen. In der Membran wird dann eine Mischung aus Kohlendioxid und Wasserstoff gehalten, die sich zur Umsetzung an Katalysatoren zu Produkten wie Methanol und Wasser oder anderen industriellen Precursormaterialien direkt anbieten.To an advantageous embodiment is through the membrane, since it is a Bulk method, simultaneously Hydrogen separated with. This can for example be in a crowd up to 30%. The membrane then becomes a mixture made of carbon dioxide and hydrogen, which is used for the reaction on catalysts to products such as methanol and water or others directly offer industrial precursor materials.

Größte Triebkraft ist die bereits bestehende Druckdifferenz zwischen Feedstrom und Permeat von > 25, insbesondere > 30 bar. Dadurch verringert sich die Kohlendioxid Konzentration im Retentat. Der relativ geringe Fluss erlaubt die großtechnische Nutzung der Membrantechnologie.Greatest driving force is the existing pressure difference between feed stream and Permeate of> 25, in particular> 30 bar. This reduces the carbon dioxide concentration in the retentate. The relatively low flow allows the large-scale use of membrane technology.

Die Membran kann aus verschiedenen Kunststoffen, die thermisch stabil sind, gegen saure Gase inert und Kohlendioxid binden, sein. Insbesondere ist die Membran aus Siloxan oder einem ähnlichen synthetisch geschaffenen Kunststoff oder einem Kunststoffgemisch. Insbesondere geeignet ist unter anderen die Polydimethylsiloxanmembran, weil sie bis ca. 330°C thermisch stabil ist und gegen die sauren Umgebungsbedingungen inert. Durch Modifikationen, insbesondere auch eine chemische Modifikationen, also Bindung anderer Oberflächengruppen, kann die Selektivität der Polydimethylsiloxanmembran erhöht werden.The Membrane can be made of different plastics that are thermally stable are inert to acid gases and bind carbon dioxide, be. Especially is the membrane of siloxane or a similar synthetically created Plastic or a plastic mixture. Particularly suitable is under other the polydimethylsiloxane membrane, because they thermally to about 330 ° C. is stable and inert to the acidic environment. By Modifications, in particular also chemical modifications, So binding of other surface groups, can the selectivity the polydimethylsiloxane membrane are increased.

Die Membran selbst ist bevorzugt auf einer Trägerfolie aufgebracht, so beispielsweise auf einer Metall-, Kunststoff-Glas- oder Keramikfolie.The Membrane itself is preferably applied to a carrier film, such as for example on a metal, plastic-glass or ceramic foil.

Zwischen der Membran und der Trägerfolie ist bevorzugt ein Katalysator zur Umsetzung der durch die Membran gebundenen Gase vorgesehen. Insbesondere bevorzugt wird ein Mischoxid zwischen der Trägerfolie und der Membran angeordnet. Insbesondere bevorzugt wird das Mischoxid dabei noch mit einem Katalysator dotiert sein, so dass ein Mischoxid-Katalysator vorliegt. Nach einer besonders bevorzugten Ausführungsform ist dieser Mischoxid-Katalysator noch porös gestaltet, so dass eine hohe Oberfläche, an der die Reaktion aus der Gasphase stattfinden kann, resultiert.Between the membrane and the carrier film is preferably a catalyst for the reaction of bound by the membrane Gases provided. Particularly preferred is a mixed oxide between the support film and the membrane arranged. Especially preferred is the mixed oxide while still being doped with a catalyst, so that a mixed oxide catalyst is present. According to a particularly preferred embodiment, this mixed oxide catalyst still porous designed so that a high surface at which the reaction is off the gas phase can take place results.

Die Figur zeigt eine Prinzipskizze einer asymmetrischen Membran nach einer beispielhaften Ausführungsform der Erfindung.The Figure shows a schematic diagram of an asymmetric membrane an exemplary embodiment the invention.

Zu sehen ist eine asymmetrische Membran zur Kohlendioxid-Abtrennung und katalytischen Umwandlung von Kohlendioxid und Wasserstoff in Methanol.To see is an asymmetric membrane for carbon dioxide separation and catalytic Conversion of carbon dioxide and hydrogen into methanol.

Der Schichtaufbau der asymmetrischen Membran zeigt von unten nach oben folgende Abfolgt:
Die Trägerfolie 1 ist ganz unten gezeigt, sie ist beispielsweise aus Metall, Keramik und/oder Kunststoff. Die Trägerfolie 1 kann auch ein Laminat verschiedener Folien sein. Darauffolgend ist ein poröser Mischoxid-Katalysator 2 angeordnet. Die Dicke der Mischoxid-Katalysatorschicht ist nicht ganz so groß wie die Dicke der Trägerfolie. Auf der Mischoxid-Katalysatorschicht 2 liegt die eigentliche Membranschicht 3, deren Dicke beispielsweise im Bereich von 30 bis 150 nm, insbesondere von 50 bis 120 nm, insbesondere kleiner 100 nm ist.
The layer structure of the asymmetric membrane shows the following from bottom to top:
The carrier foil 1 is shown at the bottom, it is for example made of metal, ceramic and / or plastic. The carrier foil 1 may also be a laminate of different films. Subsequently, a porous mixed oxide catalyst 2 arranged. The thickness of the mixed oxide catalyst layer is not quite as great as the thickness of the carrier film. On the mixed oxide catalyst layer 2 lies the actual membrane layer 3 whose thickness is, for example, in the range from 30 to 150 nm, in particular from 50 to 120 nm, in particular less than 100 nm.

Beispielsweise werden mit modifizierten Polydimethylsiloxanmembranen Selektivitäten von > 10, vorzugsweise > 20 erreicht.For example Selectivities of> 10, preferably> 20 are achieved with modified polydimethylsiloxane membranes.

Das restliche Kohlendioxid bleibt nach der Kondensation der katalytisch unterstützten Reaktionsprodukte als sauberes Gas zurück. Es kann beliebig genutzt werden, beispielsweise verflüssigt oder einer weiteren Umsetzung zugeführt werden.The residual carbon dioxide remains after the condensation of the catalytic supported Reaction products as clean gas back. It can be used as you like be liquefied, for example or be supplied to a further implementation.

Im durch die Membran geleiteten Abgas verbleiben Spurengase der Verbrennung, insbesondere Sox, NOx, oder ähnliche. Die CO2 Abtrennung über die Membran verringert den Wasserstoffdruck im Retentat für die GuD nicht.In the guided through the membrane exhaust trace gases of combustion remain, in particular So x , NO x , or the like. CO 2 separation across the membrane does not reduce the hydrogen pressure in the retentate for the gas.

Beim Einsatz von dünnen Polydimethylsiloxanmembranen können > 70% des Kohlendioxids abgetrennt werden.At the Use of thin Polydimethylsiloxane membranes can separate> 70% of the carbon dioxide become.

Der mit abgetrennte Wasserstoff ist als Brennstoff zur Methanolproduktion genutzt, eventuelle Überreste können auch später noch zur Energiegewinnung nutzbar gemacht werden. Als Methanol kann Wasserstoff beispielsweise in der Brennstoffzelle eingesetzt werden. Methanol ist so zu sagen ein ”chemischer Speicher” für Wasserstoff.Of the with separated hydrogen is used as fuel for methanol production used, any remains can even later still be harnessed for energy. As methanol can Hydrogen are used for example in the fuel cell. Methanol is a "chemical Storage tank "for hydrogen.

Die Eigenschaften des Retentats werden bei der Abtrennung über die asymmetrische Polydimethylsiloxanmembran nicht geändert: der Feed-Druck bleibt im Retentat unverändert bestehen und die nachfolgende Oxidation von Wasserstoff wird nicht beeinträchtigt. Für die Prozessführung ist es sogar vorteilhaft, wenn Wasserstoff, wie nach dem Verfahren gemäß der Erfindung möglich, noch verdünnt vorliegt.The properties of the retentate are not changed in the separation via the asymmetric polydimethylsiloxane membrane: the feed pressure remains unchanged in the retentate and the subsequent oxidation of hydrogen is not impaired. It is even for the litigation advantageous if hydrogen, as still possible according to the method according to the invention, is still present in a diluted form.

Nach vorliegenden Versuchen und Berechnungen wird der Wirkungsgrad eines fossil betriebenen Kraftwerks durch die Kohlendioxid-Abtrennung weniger als 5% belastet. Eine Optimierung des Gesamtverbrauchs durch Integration von beispielsweise Brennstoffzellen ist denkbar.To Present experiments and calculations will increase the efficiency of a fossil-fueled power plant by the carbon dioxide separation less charged as 5%. An optimization of the total consumption through integration For example, fuel cells is conceivable.

Das noch vorhandene Kohlendioxid kann beliebig weiter genutzt werden.The Any remaining carbon dioxide can be used as desired.

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Verminderung des Kohlendioxidausstoßes bei fossil betriebenen Kraftwerken. Dazu wird in einer auf die eigentliche Verbrennung folgenden Reaktion das gasförmige Produkt durch eine Membran, die Kohlendioxid absorbiert, geführt.The The invention relates to a device and a method for reduction of carbon dioxide emissions in fossil power plants. This is done in one on the actual Combustion following reaction the gaseous product through a membrane, which absorbs carbon dioxide, led.

Claims (12)

Verfahren zum Betreiben eines Kraftwerks, bei dem in einem auf die Vergasung des Brennstoffs folgenden Prozessschritt das Abgas aus dem Kraftwerk einer Reaktion unterworfen wird, wobei das gasförmige Produkt dieser Reaktion in eine Membran eingeleitet wird.Method for operating a power plant, in which in a process step following the gasification of the fuel the exhaust gas from the power plant is subjected to a reaction, wherein the gaseous Product of this reaction is introduced into a membrane. Verfahren nach Anspruch 1, wobei die Reaktion eine CO-Shift Reaktion ist.The method of claim 1, wherein the reaction is a CO shift reaction is. Verfahren nach Anspruch 1 oder 2, wobei die Reaktion bei einer Temperatur von 200°C bis 400°C durchgeführt wird.The method of claim 1 or 2, wherein the reaction at a temperature of 200 ° C up to 400 ° C is performed. Verfahren nach einem der vorstehenden Ansprüche, wobei das Abgas aus der Reaktion einen Kohlendioxid-Anteil von zumindest 35% hat.Method according to one of the preceding claims, wherein the exhaust gas from the reaction has a carbon dioxide content of at least 35% has. Verfahren nach einem der vorstehenden Ansprüche, wobei das Abgas aus der Reaktion unter einem Druck von zumindest 25 bar vorliegt.Method according to one of the preceding claims, wherein the exhaust gas from the reaction under a pressure of at least 25 bar is present. Kraftwerk zur Verbrennung fossiler Brennstoffe, bei dem in einer Ablassöffnung der Reaktionskammer für eine auf die eigentliche Verbrennung folgende Reaktion eine Membran vorgesehen ist.Power plant for burning fossil fuels, at in a drain opening the reaction chamber for a reaction following the actual combustion is a membrane is provided. Kraftwerk nach Anspruch 6, bei dem die Membran eine Siloxanmembran, insbesondere eine Polydimethylsiloxanmembran ist.Power plant according to claim 6, wherein the membrane is a Siloxane membrane, in particular a polydimethylsiloxane membrane. Kraftwerk nach Anspruch 6 oder 7, bei dem die Membran noch ein Mischoxid umfasst.Power plant according to claim 6 or 7, wherein the membrane still includes a mixed oxide. Kraftwerk nach einem der Ansprüche 6 bis 8, bei dem das Mischoxid Oxide aus der Gruppe folgender Metalloxide umfasst: Zinkoxid, Aluminiumoxid, Zirkonoxid, Titanoxid, sowie weite rer Nebengruppenmetalloxide und/oder der Oxide der Gruppe der seltenen Erden.Power plant according to one of claims 6 to 8, wherein the mixed oxide Oxides from the group of the following metal oxides comprises: zinc oxide, aluminum oxide, zirconium oxide, Titanium oxide, and other rer Nebengruppenmetalloxide and / or oxides the group of rare earths. Kraftwerk nach einem der Ansprüche 6 bis 9, bei dem das Mischoxid mit einem Katalysator dotiert ist.Power plant according to one of claims 6 to 9, wherein the mixed oxide doped with a catalyst. Kraftwerk nach Anspruch 6 bis 10, bei dem der Katalysator ausgewählt ist aus der Reihe Kupfer, Platin, Palladium, und/oder anderer Edelmetalle.Power plant according to claim 6 to 10, wherein the catalyst selected is from the series copper, platinum, palladium, and / or other precious metals. Kraftwerk nach einem der vorstehenden Ansprüche 6 bis 11, wobei die Membran eine Trägerfolie umfasst.Power plant according to one of the preceding claims 6 to 11, wherein the membrane comprises a carrier film.
DE102009015035A 2009-03-26 2009-03-26 Method of operating a fossil power plant and power plant Ceased DE102009015035A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102009015035A DE102009015035A1 (en) 2009-03-26 2009-03-26 Method of operating a fossil power plant and power plant
PCT/EP2010/053875 WO2010108974A1 (en) 2009-03-26 2010-03-25 Method for operating a fossil power plant and power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009015035A DE102009015035A1 (en) 2009-03-26 2009-03-26 Method of operating a fossil power plant and power plant

Publications (1)

Publication Number Publication Date
DE102009015035A1 true DE102009015035A1 (en) 2010-09-30

Family

ID=42269854

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009015035A Ceased DE102009015035A1 (en) 2009-03-26 2009-03-26 Method of operating a fossil power plant and power plant

Country Status (2)

Country Link
DE (1) DE102009015035A1 (en)
WO (1) WO2010108974A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8420364B2 (en) 2010-06-30 2013-04-16 Codexis, Inc. Highly stable beta-class carbonic anhydrases useful in carbon capture systems
WO2012003277A2 (en) 2010-06-30 2012-01-05 Codexis, Inc. Highly stable beta-class carbonic anhydrases useful in carbon capture systems
US8354262B2 (en) 2010-06-30 2013-01-15 Codexis, Inc. Chemically modified carbonic anhydrases useful in carbon capture systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19817534A1 (en) * 1998-04-16 1999-10-21 Mannesmann Ag Production of electrical energy from hydrogen-rich crude gas
US20080282882A1 (en) * 2006-11-08 2008-11-20 John Charles Saukaitis gas separation membrane comprising a substrate with a layer of coated inorganic oxide particles and an overlayer of a gas-selective material, and its manufacture and use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181675A (en) * 1978-09-19 1980-01-01 Monsanto Company Process for methanol production
JP2003530999A (en) * 2000-04-20 2003-10-21 メンブラナ ムンディ ゲゼルシャフト ミット ベシュレンクテル ハフツング Separation of fluid mixtures using filmed sorbents
ITRM20070446A1 (en) * 2007-08-20 2009-02-21 Ast Engineering S R L MODULAR PLANT FOR FELLING THE POLLUTANTS CONTAINED IN INDUSTRIAL FUMES

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19817534A1 (en) * 1998-04-16 1999-10-21 Mannesmann Ag Production of electrical energy from hydrogen-rich crude gas
US20080282882A1 (en) * 2006-11-08 2008-11-20 John Charles Saukaitis gas separation membrane comprising a substrate with a layer of coated inorganic oxide particles and an overlayer of a gas-selective material, and its manufacture and use

Also Published As

Publication number Publication date
WO2010108974A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
EP2099921B1 (en) Process for the biological generation of methane
EP3034485B1 (en) Reaction of carbon dioxide with hydrogen using a permselective membrane
CN101069844B (en) Calcium-titanium-ore type composite oxide La1-xSrxMO3-0.5 beta F beta and its preparation method and uses
EP0787679A1 (en) Process and apparatus for the recovery of a gas rich in hydrogen and poor in carbon monoxide
EP0754172A1 (en) Diaphragm reactor for converting gaseous base materials
WO2014106533A1 (en) Elimination of ammonia and lower alkanes and/or hydrogen from waste gas streams in industrial plants
EP1967491A2 (en) Method and device for separating hydrogen from gas streams containing oxygen
DE102011016759A1 (en) Preparing ammonia comprises conducting alkane dehydrogenation to produce hydrogen-rich stream, purifying the stream, optionally mixing purified nitrogen with hydrogen-rich stream, compressing the stream, preparing ammonia and liquefying
DE102009015035A1 (en) Method of operating a fossil power plant and power plant
Ghaib Das Power-to-Methane-Konzept
EP1306351B1 (en) Method for the preparation of a low-sulfur reformate gas for use in a fuel cell system
Rocha et al. Olive mill wastewater valorization through steam reforming using multifunctional reactors: challenges of the process intensification
AT516101A1 (en) method
DE102014212972A1 (en) Process and plant for hydrogen production
Plou et al. Pure hydrogen from lighter fractions of bio-oil by steam-iron process: Effect of composition of bio-oil, temperature and number of cycles
WO2019201974A1 (en) Reactor for performing equilibrium-reduced reactions
DE3918190C2 (en)
EP1887071A1 (en) Process for the production of synthetic hydrocarbons and derivatives from carbon dioxide and hydrogen used as synthesis gas
DE102018106076A1 (en) Process and arrangement for methanol synthesis
He et al. A novel energy-efficient process for production of nitrogen from air via a reaction-driven membrane reactor
DE60309071T2 (en) PROCESS FOR GENERATING SYNTHESEGAS BY CATALYTIC PARTICIDATION
AT515137B1 (en) Process for the separation, purification and concentration of gas mixtures
EP2438980A1 (en) Method and device for preparing and using hydrogen-based methanol for denitrification
DE1567890C3 (en) Continuous process for converting nitrogen oxides in an exhaust gas stream
DE102011013271A1 (en) Process and plant for the reduction of nitrogen oxide emissions during steam reforming

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final

Effective date: 20121016

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20121002