DE102009003924A1 - Sensor nach dem Laufzeitprinzip mit einer Detektoreinheit für mechanisch-elastische Dichte-Wellen - Google Patents

Sensor nach dem Laufzeitprinzip mit einer Detektoreinheit für mechanisch-elastische Dichte-Wellen Download PDF

Info

Publication number
DE102009003924A1
DE102009003924A1 DE102009003924A DE102009003924A DE102009003924A1 DE 102009003924 A1 DE102009003924 A1 DE 102009003924A1 DE 102009003924 A DE102009003924 A DE 102009003924A DE 102009003924 A DE102009003924 A DE 102009003924A DE 102009003924 A1 DE102009003924 A1 DE 102009003924A1
Authority
DE
Germany
Prior art keywords
waveguide
sensor
villary
xmr
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102009003924A
Other languages
English (en)
Other versions
DE102009003924B4 (de
Inventor
Klaus Manfred Steinich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASM Automation Sensorik Messtechnik GmbH
Original Assignee
ASM Automation Sensorik Messtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASM Automation Sensorik Messtechnik GmbH filed Critical ASM Automation Sensorik Messtechnik GmbH
Priority to DE102009003924.4A priority Critical patent/DE102009003924B4/de
Priority to PCT/EP2009/068022 priority patent/WO2010076330A2/de
Priority to US13/141,300 priority patent/US9816843B2/en
Priority to CN200980152544.7A priority patent/CN102265120B/zh
Publication of DE102009003924A1 publication Critical patent/DE102009003924A1/de
Application granted granted Critical
Publication of DE102009003924B4 publication Critical patent/DE102009003924B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/48Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using wave or particle radiation means
    • G01D5/485Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using wave or particle radiation means using magnetostrictive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

Statt die mechano-elastische Dicht-Welle (MEDW) vom Wellenleiter oder dem Villary-Band mittels einer Detektor-Spule abzunehmen, wird die sich ändernde Feldstärke H von einem XMR-Sensor erfasst, der auf oder in der Nähe entweder des Wellenleiters oder eines Villary-Bandes positioniert ist.

Description

  • I. Anwendungsgebiet
  • Die Erfindung betrifft Positionssensoren, insbesondere deren Detektoreinheit, basierend auf dem Prinzip der Laufzeitmessung von mechanisch-elastischen Dichtewellen (MEDW) in einem Wellenleiter, die außer diesem Wellenleiter ein relativ hierzu bewegliches, die MEDW erzeugendes oder detektierendes, Positionselement umfassen.
  • II. Technischer Hintergrund
  • Der Wellenleiter besteht in der Regel aus einem Rohr, einem Draht oder einem Band, und kann auch als elektrischer Leiter dienen. Der Wellenleiter kann weiterhin in einem formgebenden, linearen oder kreisförmigen, Körper aus nichtmagnetischem Material, z. B. Kunststoff oder Metall zur Aufnahme und Lagerung des Wellenleiters angeordnet sein.
  • Basierend auf dem Wiedemann-Effekt erzeugt ein in den Wellenleiter eingespeister Strom-Impuls bei seiner Überlagerung mit einem lateral auf den magnetostriktiven Wellenleiter gerichteten externen Magnetfeld, welches vom Positionselement, insbesondere einem Positionsmagneten herrührt, einen Torsionsimpuls einer MEDW, der sich mit etwa – je nach E-Modul oder Scher-Modulen des verwendeten Wellenleitermateriales – 2.500 m/s–6.000 m/s vom Ort der Entstehung, also z. B. der Position des Positionselementes, in beide Richtungen im Wellenleiter ausbreitet.
  • An einer Stelle, üblicherweise an einem Ende des Wellenleiters, wird insbesondere der Torsionsanteil dieses mechanisch-elastischen Dichte-Impulses von einer Detektoreinheit, die sich meist in fester Position bezüglich des Wellenleiters befindet, erfasst. Die Zeitdauer zwischen der Auslösung des Erregerstromimpulses und dem Empfang dieser MEDW ist dabei ein Maß für den Abstand des verschiebbaren Positionselementes, z. B. des Positionsmagneten von der Detektoreinrichtung oder auch der Spule bzw. des Elektromagneten.
  • Ein solcher typischer Sensor ist im US-Patent 5590091 sowie 5736855 beschrieben.
  • Das Hauptaugenmerk der vorliegenden Erfindung liegt auf der Detektoreinrichtung.
  • Diese umfasst im Stand der Technik eine Detektor-Spule, die entweder um den Wellenleiter herum angeordnet ist oder als so genannter Villary-Detektor um ein Villary-Band herum angeordnet ist, welches quer, insbesondere im 90°-Winkel, vom Wellenleiter abstrebt und mit diesem so verbunden, insbesondere mechanisch fixiert, z. B. verschweißt ist, dass der in dem Wellenleiter laufende Torsionsimpuls im Villary-Band in eine longitudinale Welle transformiert wird. Eine solche longitudinale Welle staucht bzw. dehnt das magnetoelastische Element, also den Wellenleiter oder das Villary-Band, elastisch im kristallinen Bereich, und verändert daher dessen Permeabilität μ. Das Villary-Band bzw. der Wellenleiter besteht zu diesem Zweck aus Material mit möglichst hoher Änderung der magnetischen Permeabilität Δμr, z. B. aus Nickel oder einer Nickel-Legierung, oder aus anderen geeigneten Materialien. Als Kompromiss zwischen den gesuchten Eigenschaften haben sich dabei auch sogenannte Konstantmodul-Legierungen erwiesen, bei denen der Temperaturkoeffizient des E- und/oder Scher-Modules über weite Tem peraturbereiche beeinflussbar und insbesondere konstant gehalten werden kann. Dabei wird etwa die Form eines eigenstabilen Bandmaterials von etwa 0,05–0,2 mm Dicke und 0,5–1,5 mm Breite gewählt.
  • Wegen
    Figure 00030001
    ist
    Figure 00030002
    da die Werte für μ0, I, N, L als Konstante angenommen werden können.
  • Die ein magnetoelastisches Element, z. B. das Villary-Band, durchlaufende mechanisch-elastische Dichtewelle äußert sich somit in einer Spannungsänderung ΔU, die als Nutzsignal an der Detektorspule abgegriffen werden kann.
  • Wie ersichtlich, ist das Nutzsignal ΔU umso größer, je größer die Änderung der magnetischen Permeabilität Δμr ausfällt.
  • Zusätzlich ist als Arbeitspunkt bzw. Arbeitsbereich ein solcher Bereich der Kurve Δμr(H), also der magnetischen Permeabilität, aufgetragen über der magnetischen Feldstärke, erwünscht, in dem sich die magnetischen Permeabilität Δμr möglichst linear, relativ zur Ursache aber möglichst stark, verändert, weshalb versucht wird, die Funktion Δμr(H) in der Anstiegsflanke möglichst steil auszubilden und den Arbeitsbereich dort, im annähernd linearen Bereich, zu etablieren.
  • Im Stand der Technik wird zum Einstellen des Arbeitspunktes ein so genannter Bias-Magnet in Form eines Dauermagneten in räumlicher Nähe zur Detektorspule, z. B. parallel zum Villary-Band, angeordnet.
  • Der Arbeitspunkt der mechanisch-elastischen Detektoreinheit hängt neben den magnetischen Parametern des Bias-Magneten hauptsächlich von dessen Positionierung relativ zur Detektor-Spule ab.
  • Nachteilig ist jedoch, dass Detektorspulen relativ groß und nicht hochzuverlässig sind.
  • Wenn sie zusätzlich noch gegen Fremdeinwirkung von Magnetfeldern durch ein Gehäuse aus ferritischem Material geschützt werden sollen, bauen sie auch noch entsprechend groß.
  • Als magneto-resistive Elemente sind weiterhin Feldplatten, Hallsensoren und XMR-Sensoren bekannt. Diese sind jedoch wegen ihrer geringeren Empfindlichkeit und des höheren Hintergrundrauschens weniger effektiv und deshalb für die vorgenannte Anwendung bisher nicht eingesetzt worden.
  • Während Hallsensoren dabei auf die Änderung der magnetischen Induktion (B) ansprechen, reagieren XMR-Sensoren, also Dünnschichtsensoren, die unter Einfluss der magnetischen Feldstärke und Richtung ihren den Widerstand ändern, direkt auf die Veränderung der magnetischen Feldstärke (H) und deren Richtung.
  • Dabei ist der Begriff ”XMR”-Sensor ein Sammelbegriff für unterschiedliche Arten von magneto-resistiven (MR-)Sensoren, nämlich beispielsweise
    • – GMR-Sensoren, die den Giant-magnetoresistiven Effekt nutzen,
    • – AMR-Sensoren, die den anisotropen magentoresistiven Effekt nutzen,
    • – CMR-Sensoren, die den colossal-magnetoresistiven Effekt nutzen, und
    • – TMR-Sensoren, die den Terra-Effekt nutzen.
  • Den Nachteil der geringeren Empfindlichkeit steht jedoch der Vorteil einer einfachen Herstellbarkeit bzw. kostengünstigen Verfügbarkeit gegenüber sowie der einfachen Auswertbarkeit und einfachen mechanischen Handhabung solcher – in der Regel in Form eines Mikrochips vorliegender – XMR-Sensoren.
  • a) Aufgabenstellung
  • Es ist daher die Aufgabe gemäß der Erfindung, eine Detektoreinheit für einen Positionssensor nach dem Laufzeitprinzip zur Verfügung zu stellen sowie ein diesbezügliches Detektionsprinzip, welches einfach und kostengünstig herzustellen ist und zu handhaben ist.
  • b) Lösung der Aufgabe
  • Diese Aufgabe wird durch die Merkmale der Ansprüche 1 und 13 gelöst. Vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen.
  • Indem als Detektoranordnung bei einem gattungsgemäßen Positionssensor nach dem Laufzeitprinzip einer mechanisch-elastischen Welle ein XMR-Sensor verwendet wird, wird das technische Vorurteil überwunden, dass diese Sensoren eine zu geringe Empfindlichkeit und ein zu hohes Hintergrundrauschen aufweisen und deshalb für eine solche Anwendung nicht geeignet seien.
  • Zur einfacheren Herstellbarkeit eines Sensors wird ein solcher XMR-Sensor in der Regel in Form eines Mikrochips verwendet werden.
  • Um die genannten Nachteile zu kompensieren, werden vorzugsweise zusätzliche Maßnahmen vorgeschlagen, die das Nutzsignal relativ zum Hintergrundrauschen zu verbessern helfen:
    Der XMR-Sensor, der in der Regel flächig ausgebildet ist, wird mit seiner Hauptebene – oder falls er nicht flächig ausgebildet ist, mit seiner Haupt-Messrichtung – parallel zu dem abzutastenden magnetoelastischen Element, also dem Wellenleiter selbst oder einem daran befestigten, meist quer hiervon abstrebenden, Villary-Bandes, positioniert.
  • Der XMR-Sensor kann dabei im geringen Abstand zu dem abzutastenden magnetoelastischen Element angeordnet sein oder dieses auch direkt berühren.
  • Der XMR-Sensor ist in der Regel ein Silizium-Einkristall, der auf seiner Vorderseite Kontaktpunkte zum elektrischen Kontaktieren und Weiterleiten der Signale besitzt, so dass auf der Rückseite im Abstand oder kontaktierend das magnetoresistive Element angeordnet werden kann. Sofern der Sensorchip auf einer Sensorplatine angeordnet ist, kann dies auch auf der Rückseite der Sensorplatine geschehen.
  • Vorzugsweise ist der Sensorchip, ggf. zzgl. der ihn tragenden Platine, zusammen mit dem nahe daran angeordneten magnetoresistive Element gemeinsam geschützt in einem Gehäuse untergebracht, insbesondere darin gekapselt oder vergossen.
  • Eine andere Möglichkeit besteht darin, dass der XMR-Sensor wie das Villary-Band, vorzugsweise an der gleichen Längsposition, quer vom Wellenleiter abstrebend an diesem befestigt ist, und zwar in die gleiche Richtung, so dass zwischen dem freien Ende des XMR-Sensors einerseits und des Villary-Bandes andererseits ein verstärkender Bias-Magnet angeordnet werden kann, der diese beiden Elemente vorzugsweise berührt.
  • Eine weitere Möglichkeit besteht darin, den XMR-Sensor mittig auf dem Wellenleiter anzuordnen und zu befestigen, so dass seine Hauptebene parallel zur Richtung des Wellenleiters verläuft und ebenfalls parallel hierzu, vor zugsweise auf der vom Wellenleiter abgewandten Seite des Sensorchips bzw. der den Sensorchip tragenden Platine einen Bias-Magneten anzuordnen, dessen Polrichtung parallel oder im rechten Winkel zur Richtung des Wellenleiters verläuft.
  • Die analoge Lösung mit einem Villary-Band besteht darin, ein z. B. U-förmiges Villary-Band mit seinen beiden freien Enden am Wellenleiter an unterschiedlichen Axialpositionen zu befestigen, und den XMR-Sensor, ggf. mit zusätzlichem Bias-Magnet, wie zuvor zum Wellenleiter beschrieben, am mittleren Schenkel des Villary-Bandes anzuordnen.
  • Eine Signalverbesserung kann auch dadurch erzielt werden, dass entlang des Wellenleiters auf eine der vorbeschriebenen Arten, vorzugsweise durch direkte Anbringung auf dem Wellenleiter, an zwei verschiedenen Axialpositionen jeweils ein XMR-Sensor angeordnet wird. Dabei wird der Abstand in Axialrichtung vorzugsweise so gewählt, dass er einem ein- oder mehrfachen ganzzahligen Abstand von Wellental zu Wellenberg derjenigen magnetoelastischen Welle entspricht, die sich entlang des Wellenleiters bewegt und detektiert werden soll.
  • An dem Wellenleiter können auch an gleicher Axialposition zwei Villary-Bänder angeordnet sein, die auf gegenüberliegenden Seiten des Wellenleiters befestigt sind und in die gleiche Querrichtung abstreben, so dass zwischen die freien Enden der beiden Villary-Bänder dann ein XMR-Sensor gesetzt werden kann, der sich somit dann im Abstand zum Wellenleiter befindet und vorzugsweise mit den beiden Villary-Bändern verbunden ist.
  • Eine Signalverbesserung kann auch dadurch erzielt werden, dass der Wellenleiter selbst an der Abtaststelle eine einfache oder sogar mehrfache Krümmung oder Biegung vollzieht und der XMR-Sensor im Innenradius der Krümmung nahe am Wellenleiter angeordnet wird oder an einem an der entsprechenden Stelle vom Wellenleiter abstrebenden Villary-Bänder.
  • Vor allem wenn durch eine doppelte 90°-Biegung der Wellenleiter eine U-Form vollzieht, deren freier Innenraum der Größe des XMR-Sensors entspricht, und in diesem Innenraum der XMR-Sensor positioniert wird, lässt sich ein sehr gutes Nutzsignal erzielen, vor allem, wenn zusätzlich ein Bias-Magnet angeordnet wird, der mit seiner Polrichtung vorzugsweise parallel zur Hauptebene des XMR-Sensors verläuft, jedoch im rechten Winkel zur Hauptrichtung des Wellenleiters und zwischen den parallel zueinander verlaufenden Schenkeln des U-förmigen Wellenleiters.
  • Das erfindungsgemäße Verfahren besteht somit darin, die an der Abtastposition des Wellenleiters sich ändernde Größe oder Richtung der sich ändernden magnetischen Feldstärke H durch einen Sensor abzutasten, der hierauf reagiert, beispielsweise einem XMR-Sensor.
  • Alternativ dazu kann an dieser Position auch statt der Feldstärke H die sich nach der Formal B = μ × H ändernde magnetische Induktion direkt abgetastet werden durch einen entsprechenden Sensor.
  • c) Ausführungsbeispiele
  • Ausführungsformen gemäß der Erfindung sind im Folgenden beispielhaft näher beschrieben. Die Figuren zeigen die Anordnung des XMR-Sensors in:
  • 1: direkt auf dem Wellenleiter mit nur einem XMR-Sensor,
  • 2: am mittleren Schenkel eines U-förmigen Villary-Bandes,
  • 3: direkt am Wellenleiter mit zwei gegenüberliegenden Sensoren an gleicher Längsposition,
  • 4: direkt am Wellenleiter mit zwei gegenüberliegenden Sensoren in verschiedenen Längspositionen,
  • 5: in einer Biegung des Wellenleiters und/oder des Villary-Bandes,
  • 6: zwischen den freien Enden zweier Villary-Bänder in gleichen Längspositionen,
  • 7: zwischen den freien Enden zweier Villary-Bänder in unterschiedlichen Längspositionen,
  • 8: einem Villary-Band gegenüberliegend, und
  • 9: zwei in der gleichen Richtung abstrebenden, bezüglich des Wellenleiters gegenüberliegenden XMR-Sensoren.
  • 1a zeigt zunächst die Grundform eines Positionssensors nach dem Laufzeitprinzip einer mechanisch-elastischen Dichte-Welle (MEDW):
    Der gerade verlaufende Wellenleiter 3 mit dem in 1c sichtbaren runden, meist massiven Querschnitt in Form eines Stabes oder Drahtes ist an einer Längsposition mit einer Detektoranordnung 105 zum Detektieren einer MEDW ausgestattet, die ausgelöst wird durch einen in der Nähe des Wellenleiters 3 auf ihn einwirkenden Positionsmagneten 20, dessen Position bestimmt werden soll, da er entlang des Wellenleiters 20 in Längsrichtung verfahrbar ist und sich an einem hinsichtlich der Position zu detektierenden Maschinenbauteil befindet.
  • Die Detektoranordnung 105 befindet sich dabei meist am einen Ende des Wellenleiters 3, wobei in den folgenden Figuren nur diejenige Stelle des Wellenleiters 3 dargestellt ist, an der sich die Detektoranordnung 105 befindet, die erfindungsgemäß in den folgenden Zeichnungen immer wenigstens einen XMR-Sensor 1 in Form eines Sensorchips umfasst.
  • In 1 ist dieser plattenförmige XMR-Sensor 1 mit seiner Hauptebene 10 parallel zur Längsrichtung des Wellenleiters 3 tangential seitlich am Wellenleiter 3 angeordnet und befestigt, z. B. mittels Lötstellen 6, wie 1c zeigt. Sofern der XMR-Sensor 1 auf einer Platine 7 aufgebracht ist, ist die Platine 7 mit der vom Sensor 1 abgewandten Rückseite gegen den Umfang des Wellenleiters 3 befestigt, beispielsweise mittels Lötstellen 6 verlötet, so dass der Sensor 1 in Querrichtung zum Wellenleiter 3 einseitig oder beidseitig über den Querschnitt des Wellenleiters 3 vorsteht.
  • Da dieser Sensorchip 1 in der Regel nicht quadratisch, sondern rechteckig ist, kann er mit seiner Längsrichtung in Längsrichtung des Wellenleiters 1 angeordnet sein, wie in 1b dargestellt, oder rechtwinklig hierzu, wie in 1a dargestellt, wobei die Hauptmessrichtung des Sensorchips 1 in der Regel die größere Erstreckung seiner rechteckigen Grundform ist und diese Richtung mit der größten Empfindlichkeit des Sensors, vorzugsweise mit der Längsrichtung des abzutastenden Teiles, also Wellenleiter oder Villary-Band, übereinstimmen sollte.
  • Sofern der Sensor 1 nicht auf einer Platine 7 aufgebracht ist, kann er auch direkt mit dem mechano-elastischen Element verbunden sein, welches er hinsichtlich der Welle detektieren soll, in diesem Fall dem Wellenleiter.
  • Bei der Lösung der 2a ist das mechano-elastische Element, an dem der XMR-Sensor 1 befestigt ist, ein Villary-Band 4, jedoch gegenüber der normalen, einseitig vom Wellenleiter 3 auskragenden Bauform eines Willary-Bändchens hier ein U-förmiges Villary-Band 4', welches mit seinen beiden freien Enden am Wellenleiter 3 in unterschiedlichen Längspositionen befestigt ist, so dass sein verbindender Schenkel parallel zur Längsrichtung des Wellenleiters 3 verläuft.
  • An diesem verbindenden Schenkel ist wiederum auf einer der großflächigen Außenseiten des Villary-Bandes 4 der XMR-Sensor 1 aufgebracht, der hier zusätzlich zur Verstärkung des Signals einen Bias-Magneten 2 trägt, und zwar auf der vom Villary-Band 4' abgewandten Oberseite, auf der sich auch die Kontaktpunkte 5 zum Kontaktieren durch die Signalleitungen 8 für den XMR-Sensor 1 befinden.
  • 2b zeigt eine Lösung ebenfalls mit einem U-förmigen Villary-Band, welches mit seinen beiden Enden an dem Wellenleiter 3 befestigt ist, jedoch mit der Hauptebene der U-Form quer zur Verlaufsrichtung des Wellenleiters 3, so dass der verbindende Schenkel der U-Form nicht parallel, sondern windschief zur Längsrichtung des Wellenleiters 3 steht, an dem dann wiederum ein XMR-Sensor 1 und ggf. ein Bias-Magnet 2 angeordnet sind, entweder auf einander gegenüberliegenden Seiten des mittleren Schenkels des Villary-Bandes 4 oder auch aufeinander aufbauend, so dass sich Bias-Magnet 2 und Villary-Band 4 auf gegenüberliegenden Seiten des XMR-Sensors 1 befinden.
  • Auch bei der Lösung gemäß 1 kann – wie in 1c eingezeichnet – ebenfalls auf dem XMR-Sensor 1 ein Bias-Magnet 2 auf der vom Wellenleiter 3 gegenüberliegenden Seite angeordnet sein, der dann vorzugsweise zwischen den auf der gleichen Seite vorhandenen Kontaktpunkten 5 für die Signalleitungen 8 positioniert ist. Der Bias-Magnet ist, vorzugsweise mit seiner Polrichtung parallel zur Richtung der größten Empfindlichkeit des XMR-Sensors 1 angeordnet.
  • 3 zeigt eine Lösung, die sich von derjenigen der 1 dadurch unterscheidet, dass zwei XMR-Sensoren 1 parallel zueinander liegend auf einander gegenüberliegenden Seiten des Querschnittes des Wellenleiters 3 an diesem angeordnet sind, wobei zusätzlich ein Bias-Magnet 2 quer zur Hauptebene der beiden XMR-Sensoren 1 und die beiden mit seiner Polrichtung verbindend angeordnet sein kann.
  • 4 zeigt eine Lösung, bei der zwei XMR-Sensoren 1 ebenfalls auf einander gegenüberliegenden Seiten des Querschnittes des Wellenleiters 3 angeordnet sind, aber in Längsrichtung des Wellenleiters 3 an zwei verschiede nen Längspositionen. Der Abstand 9 der Längspositionen – gemessen von jeweils der Mitte des einen XMR-Sensors 1 zur Mitte des anderen XMR-Sensors 1 – ist dabei ein ganzzahliges Ein- oder Mehrfaches des Abstandes von Wellenberg zu Wellental derjenigen mechano-elastischen Dichte-Welle, die im Wellenleiter 3 entlanglaufend durch die Detektoranordnung 105 detektiert werden soll. Auch hier befinden sich die Kontaktpunkte 5 mit den davon ausgehenden Signalleitungen 8 auf der dem Wellenleiter 3 jeweils gegenüberliegenden Außenseite des Sensors 1.
  • 5 zeigt wiederum eine Lösung, bei der nur ein XMR-Sensor 1 zur Detektion verwendet wird, allerdings diesmal angeordnet in einem doppelt gekröpften und damit U-förmigen Bereich, vorzugsweise einem Endbereich, des Wellenleiters 3.
  • Der Freiraum im Inneren der U-Form ist dabei so bemessen, dass darin gerade der XMR-Sensor 1 mit seiner Hauptebene in der Hauptebene der U-Form liegend Platz findet, ggf. mit einem daneben liegenden oder darauf liegenden Bias-Magneten 2, dessen Polrichtung vorzugsweise quer zur Haupterstreckungsrichtung des Wellenleiters 3 angeordnet ist. Hier, wie auch in allen anderen Fällen, kann der XMR-Sensor 1 im geringen Abstand zum zu detektierenden mechano-elastischen Element – sei es der Wellenleiter 3 selbst oder ein Villary-Band 4 – positioniert und montiert sein, oder ihn kontaktierend.
  • Bei der Lösung gemäß 5b und 5c ist ein XMR-Sensor 1 ebenfalls in einer Biegung des zu überwachenden mechano-elastischen Elementes angeordnet, allerdings diesmal im Innenwinkel eines einfach um 90° gebogenen Villary-Bandes 4, welches mit seinem einen Ende wie üblich am Wellenleiter 3 fixiert ist.
  • Die durch die beiden Schenkel des gebogenen Villary-Bandes 4 aufgespannte Ebene steht dabei – wie 5b zeigt – quer zur Längsrichtung des Wellenleiters 3, und die Hauptebene des XMR-Sensors 1 verläuft parallel und vorzugsweise etwa auf Höhe des Wellenleiters 3 zwischen dem Wellenleiter 3 und dem vom Wellenleiter 3 weiter abliegenden gekröpften Schenkel des Villary-Bandes 4.
  • Dies kann erreicht werden, indem der XMR-Sensor 1 auf einer Platine 7 montiert ist, die mit dem einen Ende auf der Außenseite des Wellenleiters 3 und mit dem anderen Ende am gekröpften Schenkel des Villary-Bandes 4 befestigt ist. Wenn sich der XMR-Sensor 1 dann auf der gleichen Seite der Platine befindet wie der Wellenleiter 3, befinden sich beide etwa auf gleicher Höhe.
  • Zusätzlich kann dann auf der davon abgewandten Rückseite der Platine 7 wiederum ein Bias-Magnet 2 angeordnet sein, vorzugsweise wieder mit seiner Polrichtung quer zur Längsrichtung des Wellenleiters 3.
  • Die dadurch bewirkte Signalverbesserung wird noch zusätzlich positiv beeinflusst, wenn sich die gesamte Anordnung nahe einer Biegung des Wellenleiters 3 und in dessen Innenwinkel angeordnet ist, wie in 5c zu erkennen.
  • 6 zeigt dagegen eine Lösung, bei der am Querschnitt des Wellenleiters 3 an gleicher Längsposition auf den gegenüberliegenden Seiten jeweils ein Villary-Band 4 mit seinem einen Ende befestigt ist und mit dem anderen Ende in die jeweils gleiche Querrichtung abstrebt, so dass zwischen den beiden freien Enden ein XMR-Sensor 1 montiert werden kann, dessen Hauptebene somit parallel zur Längsrichtung des Wellenleiters 3, aber quer zu den Längsrichtungen des Villary-Bandes 4, steht.
  • Da die Erstreckung des XMR-Sensors 1 größer ist als der Querschnitt des Wellenleiters 3, sind die Villary-Bänder 4 vorzugsweise leicht gekröpft oder leicht V-förmig auseinander strebend, also nicht exakt gegenüberliegend, am Wellenleiter 3 befestigt.
  • Da der XMR-Sensor 1 somit nur an seinen Schmalseiten an den Villary-Bändern 4 befestigt ist, stehen seine Breitseiten einerseits zur Aufnahme der Kontaktpunkte 5 für die Signalleitungen 8 und auf der anderen Seite zur Aufnahme eines Bias-Magneten 2 zur Verfügung, dessen Polrichtung vorzugsweise wiederum quer zur Längsachse des Wellenleiters 3 verläuft.
  • 7 zeigt eine Lösung, die sich von derjenigen der 6 dadurch unterscheidet, dass sich die beiden Villary-Bänder 4 zwar ebenfalls auf einander gegenüberliegenden Seiten des Querschnittes des Wellenleiters 3 befinden, aber nicht an der gleichen Längsposition, sondern etwa um die Länge eines Bias-Magneten 2 versetzt, der analog zur 6 mit den beiden freien Enden der beiden Villary-Bänder 4 verbunden ist. Jedes Villary-Band 4 trägt einen eigenen XMR-Sensor 1, sodass eine redundante Bauform erzielt wird.
  • 8 zeigt eine Lösung, bei der – im Unterschied zur Lösung gemäß 6 – von den beiden einander gegenüberliegenden Seiten eines Querschnitts eines Wellenleiters 3 statt zweier Villary-Bänder ein Villary-Band 4 und ein XMR-Sensor 1 in die gleiche Richtung und etwas parallel zueinander abstreben, wobei dann zwischen den beiden frei auskragenden Enden dieser beiden Elemente vorzugsweise ein Bias-Magnet 2 – vorzugsweise wiederum mit seiner Polrichtung quer zur Längsrichtung der Hauptebenen von XMR-Sensor 1 bzw. Villary-Band 4 weisend – angeordnet ist.
  • Die Lösung der 9 zeigt in gleicher geometrischer Anordnung wie bei 6 statt der beiden Villary-Bänder 4 zwei XMR-Sensoren 1 wiederum mit zwischen den freien Enden angeordnetem Bias-Magneten 2. Die Kontaktpunkte 5 für die Datenleitungen 8 befinden sich dabei jeweils auf der vom Wellenleiter 3 abgewandten Seite der XMR-Sensoren 1.
  • 1
    XMR-Sensor, Sensorchip
    2
    Bias-Magnet
    3
    Wellenleiter
    4, 4'
    Villary-Band
    5
    Kontaktpunkt
    6
    Lötstelle
    7
    Platine
    8
    Signalleitung
    9
    Abstand
    10
    Hauptebene
    20
    Positionsmagnet
    105
    Detektoranordnung
    B
    magnetische Induktion
    H
    Feldstärke
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - US 5590091 [0005]
    • - US 5736855 [0005]

Claims (14)

  1. Positions-Sensor nach dem Laufzeitprinzip einer mechanisch-elastischen Dichte-Welle (MEDW) mit – einem Wellenleiter (3), – einem Positionselement, z. B. einem Positionsmagneten (20), welches insbesondere entlang des Wellenleiters (3) bewegbar ist, sowie – einer am Wellenleiter (3) angeordneten Detektoranordnung (105), dadurch gekennzeichnet, dass die Detektoranordnung (105) mindestens einen XMR-Sensor (1) umfasst.
  2. Sensor nach Anspruch 1, dadurch gekennzeichnet, dass der XMR-Sensor (1) als Mikrochip ausgebildet ist.
  3. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der XMR-Sensor (1) flächig ausgebildet ist und mit seiner Fläche parallel zur Verlaufsrichtung des Wellenleiters (3) verläuft oder bei Vorhandensein eines quer vom Wellenleiter (3) abstehenden, damit verbundenen magnetoelastischen Villary-Bandes (4) parallel zu diesem Villary-Band (4).
  4. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der XMR-Sensor (1) das abzutastende magnetoelastische Element, also den Wellenleiter (3) oder das Villary-Band (4), nicht berührt.
  5. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Villary-Band (4) und/oder Wellenleiter (3) direkt, insbesondere kontaktierend, auf den XMR-Sensor (1) oder der vom XMR-Sensor (1) abgewandten Rückseite der Sensorplatine aufgelegt und insbesondere zusammen mit dem XMR-Sensor (1) in einem Gehäuse untergebracht, insbesondere verkapselt und/oder vergossen, ist.
  6. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der XMR-Sensor (1) wie das Villary-Band (4) quer vom Wellenleiter (3) in die gleiche Richtung abstrebt, jedoch auf der vom Villary-Band (4) gegenüber liegenden Seite des Wellenleiters (3).
  7. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem XMR-Sensor (1) und dem Villary-Band (4), insbesondere die beiden Elemente kontaktierend, zwischen deren freien Enden ein Biasmagnet (2) angeordnet ist.
  8. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der XMR-Sensor (1) mittig quer auf dem Wellenleiter (3) angeordnet und mit dem Wellenleiter verbunden ist und parallel zur Hauptebene (10) des XMR-Sensors (1), insbesondere auf der vom Sensorchip (1) abgewandten Rückseite der Platine, ein Biasmagnet (2) angeordnet ist.
  9. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass entlang des Wellenleiters (3) in einem definierten Abstand, der dem ganzzahligen Ein- oder Mehrfachen des Abstandes von Wellental zu Wellenberg der im Wellenleiter (3) laufenden mechano-elastischen Dichte-Welle entspricht, zwei XMR-Sensoren jeweils nahe am Wellenleiter (3) und diesen insbesondere kontaktierend angeordnet sind, um ein doppeltes Signal mit definiertem Phasenversatz zu erhalten.
  10. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der XMR-Sensor (1) parallel zum Wellenleiter (3) und im Abstand hierzu angeordnet ist und mit dem Wellenleiter (3) beidseits je ein magnetoelastisches Band, insbesondere ein Villary-Band (4), verbunden ist.
  11. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Villary-Band (4) mit seinen beiden freien Enden am Wellenleiter (3) an unterschiedlichen Axialpositionen befestigt ist und der XMR-Sensor (1) im mittleren Bereich des Villary-Bandes (4) angeordnet ist.
  12. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wellenleiter (3) eine einfache oder insbesondere doppelte Krümmung oder Biegung vollzieht und der XMR-Sensor (1) im Innenradius der Krümmung angeordnet ist, insbesondere an einem dort vom Wellenleiter (3) abstrebenden Villary-Bandes (4) angeordnet ist.
  13. Verfahren zur Positionsbestimmung eines Positionselementes, insbesondere Positionsmagneten (20), relativ zu dem Wellenleiter (3) eines Positionssensors nach dem Laufzeitprinzip, dadurch gekennzeichnet, dass die durch das Positionselement an der Abtastposition des Wellenleiters (3) sich ändernde Feldstärke (H) und/oder dessen Richtung an der Abtaststelle durch einen Sensor, der auf die Änderung der Feldstärke (H) oder dessen Richtung reagiert, insbesondere einen positionierten XMR-Sensor (1) detektiert wird.
  14. Verfahren zur Positionsbestimmung eines Positionselementes, insbesondere Positionsmagneten (20), relativ zu dem Wellenleiter (3) eines Positionssensors nach dem Laufzeitprinzip, dadurch gekennzeichnet, dass die durch das Positionselement an der Abtastposition des Wellenleiters (3) die sich ändernde magnetische Induktion (B) durch einen Sensor, der auf die Änderung der Induktion (B) reagiert.
DE102009003924.4A 2009-01-02 2009-01-02 Sensor nach dem Laufzeitprinzip mit einer Detektoreinheit für mechanisch-elastische Dichte-Wellen Active DE102009003924B4 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102009003924.4A DE102009003924B4 (de) 2009-01-02 2009-01-02 Sensor nach dem Laufzeitprinzip mit einer Detektoreinheit für mechanisch-elastische Dichte-Wellen
PCT/EP2009/068022 WO2010076330A2 (de) 2009-01-02 2009-12-30 Sensor nach dem laufzeitprinzip mit einer detektoreinheit für mechanisch-elastische dichte-wellen
US13/141,300 US9816843B2 (en) 2009-01-02 2009-12-30 Magnetorestrictive position sensor according to the propagation time principle having a magnetorestrictive detector unit for mechanical-elastic density waves
CN200980152544.7A CN102265120B (zh) 2009-01-02 2009-12-30 根据传播时间原理的具有用于机械弹性密度波的磁阻检测器单元的磁致伸缩位置传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009003924.4A DE102009003924B4 (de) 2009-01-02 2009-01-02 Sensor nach dem Laufzeitprinzip mit einer Detektoreinheit für mechanisch-elastische Dichte-Wellen

Publications (2)

Publication Number Publication Date
DE102009003924A1 true DE102009003924A1 (de) 2010-07-08
DE102009003924B4 DE102009003924B4 (de) 2022-05-12

Family

ID=42234692

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009003924.4A Active DE102009003924B4 (de) 2009-01-02 2009-01-02 Sensor nach dem Laufzeitprinzip mit einer Detektoreinheit für mechanisch-elastische Dichte-Wellen

Country Status (4)

Country Link
US (1) US9816843B2 (de)
CN (1) CN102265120B (de)
DE (1) DE102009003924B4 (de)
WO (1) WO2010076330A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3919872A1 (de) * 2020-06-04 2021-12-08 ASM Automation Sensorik Messtechnik GmbH Magnetostriktiver positions-sensor mit detektorspule in einem chip

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111089660B (zh) * 2020-01-03 2024-03-22 河北工业大学 一种绝对式超声波磁致伸缩温度传感器
JP2022083556A (ja) * 2020-11-25 2022-06-06 日立Astemo株式会社 緩衝器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590091A (en) 1995-05-11 1996-12-31 Mts Systems Corporation Waveguide suspension device and modular construction for sonic waveguides
US5736855A (en) 1995-07-10 1998-04-07 Smith; Stephen Williams Local buffer circuit for sonic waveguides

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035762A (en) 1974-11-04 1977-07-12 The Charles Stark Draper Laboratory, Inc. Position sensing readout
US4634973A (en) 1983-06-29 1987-01-06 Wacom Co., Ltd. Position detecting apparatus
EP0363518B1 (de) 1988-10-14 1993-03-31 Robert Bosch Gmbh Entfernungsmessanordnung und -verfahren
US5017867A (en) * 1989-12-08 1991-05-21 Magnetek Controls Magnetostrictive linear position detector with reflection termination
US5367255A (en) 1991-12-02 1994-11-22 Mts System Corp Magnetostrictive position transducer with band passed mode converter output for rejecting mechanical noise
US5747986A (en) 1992-05-06 1998-05-05 Hristoforou; Evangelos Array sensors based on the magnetrostrictive delay line technique
JPH0626884A (ja) 1992-07-07 1994-02-04 San Tesuto Kk 位置検出装置
US5477143A (en) 1994-01-11 1995-12-19 Honeywell Inc. Sensor with magnetoresistors disposed on a plane which is parallel to and displaced from the magnetic axis of a permanent magnet
US5508611A (en) 1994-04-25 1996-04-16 General Motors Corporation Ultrathin magnetoresistive sensor package
US6026135A (en) * 1997-04-04 2000-02-15 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Multisensor vehicle-mounted mine detector
US6401883B1 (en) * 1999-09-22 2002-06-11 Mts Systems Corporation Vehicle suspension strut having a continuous position sensor
AU2002358803A1 (en) * 2001-12-31 2003-07-15 Asm Automation Sensorik Messtechnik Gmbh Magnetostrictive sensor element
DE10201880B4 (de) * 2001-12-31 2004-05-06 Asm Automation Sensorik Messtechnik Gmbh Magnetostriktives Sensor-Element
US6802218B2 (en) * 2002-09-09 2004-10-12 Ametek, Inc. Flexible level detection apparatus
US7292025B2 (en) * 2003-04-21 2007-11-06 Mts Systems Corporation Bipolar interrogation for magnetostrictive transducers
CN1836150A (zh) * 2003-08-14 2006-09-20 Asm自动传感器测量技术有限公司 波导管
DE10351650A1 (de) * 2003-08-14 2005-03-17 Asm Automation Sensorik Messtechnik Gmbh Vollwellenleiter (VWL) Basic
DE102005039662A1 (de) * 2005-08-22 2007-03-22 Asm Automation Sensorik Messtechnik Gmbh Positionssensor
DE102007029817B9 (de) 2007-06-28 2017-01-12 Infineon Technologies Ag Magnetfeldsensor und Verfahren zur Kalibration eines Magnetfeldsensors
JP2009121862A (ja) * 2007-11-13 2009-06-04 Komatsu Ltd 力センサ
US8427137B2 (en) * 2007-12-14 2013-04-23 Mts Systems Corporation Magnetostrictive displacement transducer with suppression of switching power supply noise
US8054066B2 (en) 2007-12-14 2011-11-08 Mts Systems Corporation Magnetostrictive displacement transducer with phase shifted bias burst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590091A (en) 1995-05-11 1996-12-31 Mts Systems Corporation Waveguide suspension device and modular construction for sonic waveguides
US5736855A (en) 1995-07-10 1998-04-07 Smith; Stephen Williams Local buffer circuit for sonic waveguides

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3919872A1 (de) * 2020-06-04 2021-12-08 ASM Automation Sensorik Messtechnik GmbH Magnetostriktiver positions-sensor mit detektorspule in einem chip
DE102020114882A1 (de) 2020-06-04 2021-12-09 Asm Automation Sensorik Messtechnik Gmbh Magnetostriktiver Positions-Sensor mit Detektorspule in einem Chip
US11867536B2 (en) 2020-06-04 2024-01-09 Asm Automation Sensorik Messtechnik Gmbh Magnetostrictive position sensor with detector coil in a chip

Also Published As

Publication number Publication date
WO2010076330A4 (de) 2011-05-12
CN102265120B (zh) 2014-06-04
US20120001622A1 (en) 2012-01-05
DE102009003924B4 (de) 2022-05-12
CN102265120A (zh) 2011-11-30
US9816843B2 (en) 2017-11-14
WO2010076330A3 (de) 2010-12-23
WO2010076330A2 (de) 2010-07-08

Similar Documents

Publication Publication Date Title
EP2564164B1 (de) Magnetisches längenmesssystem, längenmessverfahren sowie herstellungsverfahren eines magnetischen längenmesssystems
EP2965043B1 (de) Magnetischer linear- oder drehgeber
DE102018116101A1 (de) Stoßdämpfer mit Positionssensor
DE112009000497T5 (de) Ursprungspositions-Signaldetektor
EP0100429A2 (de) Messumformer
DE112016000720B4 (de) Sensoranordnung zur Positionserfassung und Verfahren zum Unterstützen des Bestimmens der Position eines Objekts
DE102018120400A1 (de) Belastungsmessvorrichtung und Belastungsmessverfahren
EP1508781A2 (de) Positionsmesssystem für Pneumatikzylinder
DE10234960B4 (de) Sensor nach dem Laufzeitprinzip mit einer Detektoreinheit für mechanisch-elastische Wellen
DE102013103445A1 (de) Magnetischer Linear- oder Drehgeber
DE102009003924A1 (de) Sensor nach dem Laufzeitprinzip mit einer Detektoreinheit für mechanisch-elastische Dichte-Wellen
DE102007033745A1 (de) Induktive Drehzahlerkennung
EP1592950B1 (de) Montagepaket für die herstellung eines magnetisch-induktiven durchflussmessers
DE4341890C2 (de) Magnetische Detektionseinrichtung
DE202007006955U1 (de) Vorrichtung zur Messung von Drehbewegungen
EP2343506A2 (de) Längenmessvorrichtung
EP2783225B1 (de) Anordnung und verfahren zur potentialgetrennten strommessung an einem elektrischen leiter
DE102005035799B4 (de) Kontaktloser Magnetpositionssensor
DE3417893A1 (de) Anordnung zum beruehrungslosen nachweis bzw. zur beruehrungslosen messung mechanischer spannungszustaende von maschinenteilen
DE202010007285U1 (de) Maßkörpervorrichtung für ein Positions-/Wegmesssystem, Positions-/Wegmesssystem und Anwendung, an welcher ein Positions-/Wegmesssystem montiert ist
DE102014012168A1 (de) Einrichtung zur Drehwinkelerfassung einer mechanischen Welle
EP2333496B1 (de) Coriolis-Massendurchflussmessgerät und Magnetanordnung für ein solches Messgerät
DE102016120468A1 (de) Magnetostriktive Wegmessvorrichtung
DE102004060920B4 (de) Stabmagnet für Meßeinrichtung, Meßeinrichtung
DE102009022751A1 (de) Messverfahren für Sensorik

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R016 Response to examination communication
R082 Change of representative

Representative=s name: PATENTANWAELTE WEICKMANN & WEICKMANN, DE

Representative=s name: WEICKMANN & WEICKMANN PATENTANWAELTE - RECHTSA, DE

Representative=s name: WEICKMANN & WEICKMANN PATENT- UND RECHTSANWAEL, DE

R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final