DE102006056427B4 - Method for applying a coating material to a substrate and use of the method - Google Patents

Method for applying a coating material to a substrate and use of the method Download PDF

Info

Publication number
DE102006056427B4
DE102006056427B4 DE102006056427.8A DE102006056427A DE102006056427B4 DE 102006056427 B4 DE102006056427 B4 DE 102006056427B4 DE 102006056427 A DE102006056427 A DE 102006056427A DE 102006056427 B4 DE102006056427 B4 DE 102006056427B4
Authority
DE
Germany
Prior art keywords
ceramic
metals
coating material
particles
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102006056427.8A
Other languages
German (de)
Other versions
DE102006056427A1 (en
Inventor
Dr. Goedicke Stefan
Dr. Sepeur Stefan
Dr. Frenzer Gerald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano X GmbH
Original Assignee
Nano X GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano X GmbH filed Critical Nano X GmbH
Priority to DE102006056427.8A priority Critical patent/DE102006056427B4/en
Priority to EP07846349A priority patent/EP2104655A1/en
Priority to PCT/DE2007/002087 priority patent/WO2008064647A1/en
Publication of DE102006056427A1 publication Critical patent/DE102006056427A1/en
Application granted granted Critical
Publication of DE102006056427B4 publication Critical patent/DE102006056427B4/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/49Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
    • C04B41/4905Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
    • C04B41/495Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as oligomers or polymers
    • C04B41/4961Polyorganosiloxanes, i.e. polymers with a Si-O-Si-O-chain; "silicones"
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/84Compounds having one or more carbon-to-metal of carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

Verfahren zum Aufbringen eines Beschichtungsmaterials, das keramische und/oder glasartige Partikel enthält, auf ein Substrat, dadurch gekennzeichnet, • daß die keramischen Partikel eine Größe von 10 nm bis 2 μm aufweisen, • daß die keramischen Partikel mit oberflächenmodifiziert sind mit Silanen, die ausgewählt sind aus der Gruppe bestehend aus Methyltriethoxysilan (MTEOS), Tetraethoxysilan (TEOS) und Octylsilan, • daß das keramische Beschichtungsmaterial zwischen 10% und 90% oxidierbare Bestandteile in Form von Metallen oder Halbmetallen enthält, die während des Brennens zu vollständig nicht flüchtigen Oxidationsprodukten aufoxidieren, • wobei die Metalle aus der Gruppe bestehend aus Aluminium, Zink, Zinn, Bronze, Kupfer, Messing, Magnesium, Aluminium-Magnesium, Aluminium-Zink, Edelstahl, Silber, Gold, Platin, Chrom, Molybdän, Nickel, Eisen, Mangan, Cer, Kobalt, Zirkonium, Rhodium, Ruthenium, Wolfram und Lanthan ausgewählt sind, • und die Halbmetalle aus der Gruppe bestehend aus Silizium, Bor, Antimon, Arsen, Wismut, Germanium, Polonium, Selen und Tellur ausgewählt sind. • daß die keramischen und/oder glasartigen Partikel sowie die oxidierbaren Bestandteile in Wasser oder Alkohol dispergiert sind und • wobei das Beschichtungsmaterial nach dem Aufbringen auf das Substrat unter einer reaktiven Atmosphäre bei Temperaturen von 500 bis 1.500°C gesintert wird.Method for applying a coating material containing ceramic and / or glassy particles to a substrate, characterized in that the ceramic particles have a size of 10 nm to 2 μm, that the ceramic particles are surface-modified with silanes selected are selected from the group consisting of methyltriethoxysilane (MTEOS), tetraethoxysilane (TEOS) and octylsilane, • that the ceramic coating material contains between 10% and 90% oxidizable constituents in the form of metals or semi-metals which oxidize to completely nonvolatile oxidation products during firing, • wherein the metals from the group consisting of aluminum, zinc, tin, bronze, copper, brass, magnesium, aluminum-magnesium, aluminum-zinc, stainless steel, silver, gold, platinum, chromium, molybdenum, nickel, iron, manganese, cerium , Cobalt, zirconium, rhodium, ruthenium, tungsten and lanthanum are selected, • and the semi-metals from the G consisting of silicon, boron, antimony, arsenic, bismuth, germanium, polonium, selenium and tellurium. That the ceramic and / or vitreous particles and the oxidisable constituents are dispersed in water or alcohol and wherein the coating material is sintered after application to the substrate under a reactive atmosphere at temperatures of 500 to 1500 ° C.

Description

Die Erfindung betrifft ein Verfahren zum Aufbringen eines Beschichtungsmaterials, das keramische und/oder glasartige Partikel enthält, auf ein Substrat und die Verwendung des Verfahrens.The invention relates to a method for applying a coating material containing ceramic and / or glassy particles to a substrate and the use of the method.

Im Stand der Technik sind keramische Beschichtungen bekannt, die dadurch entstehen, daß man keramische Partikel oberflächenmodifiziert, auf Oberflächen (Grünkörper) aufträgt und bei Temperaturen zwischen 600 und 1.300°C sintert. Die Oberflächenmodifizierung brennt dadurch weg und die Partikel verbinden sich zu einer mehr oder weniger dichten Matrix. In der Regel verwendet man für solche Beschichtungen Materialien wie Zirkoniumoxid oder Aluminiumoxid. Je nach Partikelgröße, Brenndauer und Temperatur kann man die Porosität der Beschichtung gezielt einstellen.In the prior art, ceramic coatings are known, which are surface-modified by ceramic particles, applied to surfaces (green body) and sintered at temperatures between 600 and 1300 ° C. The surface modification burns away and the particles combine to form a more or less dense matrix. As a rule, materials such as zirconium oxide or aluminum oxide are used for such coatings. Depending on the particle size, burning time and temperature you can set the porosity of the coating targeted.

Bei all diesen Prozessen kommt es durch das Ausbrennen der organischen Bestandteile und das Sintern der Partikel zu einer Schrumpfung in der Schicht, welche größer ist als die thermische Schrumpfung des Substrates. Dies führt besonders bei etwas dickeren Schichtungen zu Spannungen im Substrat, was für viele Anwendungen unerwünscht ist.In all of these processes, the burning out of the organic constituents and the sintering of the particles leads to a shrinkage in the layer, which is greater than the thermal shrinkage of the substrate. This leads to stresses in the substrate, especially in the case of somewhat thicker layers, which is undesirable for many applications.

Aus der DE 696 17 705 T2 ist ein Substrat auf der Basis von Glas, Keramik oder Vitrokeramik, das in wenigstens einem Teil mindestens einer seiner Seiten mit einer Beschichtung mit photokatalytischen Eigenschaften versehen ist, wobei unter der Beschichtung mindestens eine dünne Schicht angeordnet ist, die als Barriere gegen die Migration des aus dem Substrat stammenden Alkalis dient.From the DE 696 17 705 T2 is a substrate based on glass, ceramic or vitroceramic material, which is provided in at least part of at least one of its sides with a coating having photocatalytic properties, wherein under the coating at least one thin layer is arranged, which acts as a barrier against the migration of serving the substrate derived alkali.

Die CH 599 069 A5 beschreibt ein Verfahren zur Oberflächenbehandlung von aus Keramik hergestellten Bauteilen, wobei zur Erhöhung der Oxidationsbeständigkeit des Keramikbauteils auf dieses ein Metall aufgebracht wird, das sich ins Netz der SiO2-Glasschicht einbauen läßt und das Bauteil anschließend wärmebehandelt wird.The CH 599 069 A5 describes a method for the surface treatment of ceramic-made components, wherein a metal is applied to increase the oxidation resistance of the ceramic component, which can be installed in the network of SiO 2 glass layer and the component is subsequently heat-treated.

Aus der EP 1 279 643 A2 ist eine Dispersion für Keramik bekannt, welche einen Film mit hydrophilen Eigenschaften ausbildet.From the EP 1 279 643 A2 For example, a dispersion for ceramics which forms a film having hydrophilic properties is known.

Die DE 102 25 972 B3 beschreibt ein Verfahren zum Aufschleuderbeschichten einer dicken Keramikschicht mit einem Sol-Gel-Verfahren, wobei dem mit Lösungsmittel versehenen Sol ein Keramikpulver beigegeben wird, durch Lösungsmittelentzug das Sol nach Auftrag auf das Substrat zu einer Schicht mit Gelstruktur gewandelt wird, durch Pyrolyse des Gels die Keramikschicht erzeugt wird und gemahlenes Glas vor der Pyrolyse zugegeben wird.The DE 102 25 972 B3 describes a method for spin-coating a thick ceramic layer with a sol-gel method, wherein the solvent sol is added to a ceramic powder by solvent removal, the sol is converted after application to the substrate to a layer with gel structure, by pyrolysis of the gel, the ceramic layer is generated and ground glass is added prior to pyrolysis.

Die DE 103 59 884 A1 betrifft ein Verfahren zur Herstellung eines Substrats, insbesondere eines Metall-, Keramik-, Kunststoff- oder Glassubstrats, mit einer teiltransparenten und/oder spiegelnden Beschichtung aus Titandioxid mit easy-to-clean-Eigenschaften.The DE 103 59 884 A1 relates to a process for producing a substrate, in particular a metal, ceramic, plastic or glass substrate, with a partially transparent and / or reflective coating of titanium dioxide with easy-to-clean properties.

Aus der DE 43 15 382 A1 sind hydrophobe, fließfähige Aufbaugranulate mit einer mittleren Korngröße von 5 bis 150 μm, die aus einem bzw. vorzugsweise mehreren hydrophilen, anorganischen Pulvern mit einer Korngröße von > 0 bis 30 μm bestehen und ein bzw. mehrere hydrophobe Polyorganosiloxane in einer Menge von 0,03 bis 15 Gew.-% enthalten, bekannt.From the DE 43 15 382 A1 are hydrophobic, flowable building granules having an average particle size of 5 to 150 microns, which consist of one or preferably more hydrophilic inorganic powders with a particle size of> 0 to 30 microns and one or more hydrophobic polyorganosiloxanes in an amount of 0.03 to 15 wt .-%, known.

Aufgabe der Erfindung ist es somit, ein keramisches Beschichtungsmaterial zu erzeugen, das während des Brennens keine Volumenveränderung oder aber eine Volumenzunahme zeigt.The object of the invention is therefore to produce a ceramic coating material which does not show a change in volume or an increase in volume during firing.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst,

  • • daß die keramischen Partikel eine Größe von 10 nm bis 2 μm aufweisen,
  • • daß die keramischen Partikel mit oberflächenmodifiziert sind mit Silanen, die ausgewählt sind aus der Gruppe bestehend aus Methyltriethoxysilan (MTEOS), Tetraethoxysilan (TEOS) und Octylsilan,
  • • daß das keramische Beschichtungsmaterial zwischen 10% und 90% oxidierbare Bestandteile in Form von Metallen oder Halbmetallen enthält, die während des Brennens zu vollständig nicht flüchtigen Oxidationsprodukten aufoxidieren, wobei die Metalle aus der Gruppe bestehend aus Aluminium, Zink, Zinn, Bronze, Kupfer, Messing, Magnesium, Aluminium-Magnesium, Aluminium-Zink, Edelstahl, Silber,
  • • Gold, Platin, Chrom, Molybdän, Nickel, Eisen, Mangan, Cer, Kobalt, Zirkonium, Rhodium, Ruthenium, Wolfram und Lanthan ausgewählt sind,
  • • und die Halbmetalle aus der Gruppe bestehend aus Silizium, Bor, Antimon, Arsen, Wismut, Germanium, Polonium, Selen und Tellur ausgewählt sind.
  • • daß die keramischen und/oder glasartigen Partikel sowie die oxidierbaren Bestandteile in Wasser oder Alkohol dispergiert sind und
  • • wobei das Beschichtungsmaterial nach dem Aufbringen auf das Substrat unter einer reaktiven Atmosphäre bei Temperaturen von 500 bis 1.500°C gesintert wird.
This object is achieved according to the invention
  • That the ceramic particles have a size of 10 nm to 2 μm,
  • That the ceramic particles are surface-modified with silanes selected from the group consisting of methyltriethoxysilane (MTEOS), tetraethoxysilane (TEOS) and octylsilane,
  • The ceramic coating material contains between 10% and 90% oxidizable constituents in the form of metals or semimetals which oxidize to completely non-volatile oxidation products during firing, the metals being selected from the group consisting of aluminum, zinc, tin, bronze, copper, Brass, magnesium, aluminum-magnesium, aluminum-zinc, stainless steel, silver,
  • • gold, platinum, chromium, molybdenum, nickel, iron, manganese, cerium, cobalt, zirconium, rhodium, ruthenium, tungsten and lanthanum are selected,
  • And the semimetals are selected from the group consisting of silicon, boron, antimony, arsenic, bismuth, germanium, polonium, selenium and tellurium.
  • • that the ceramic and / or glassy particles and the oxidizable constituents are dispersed in water or alcohol, and
  • Wherein the coating material is sintered after application to the substrate under a reactive atmosphere at temperatures of 500 to 1500 ° C.

Hierdurch kommt es zu einem Volumenausgleich bzw. zu einer Volumenzunahme während des Brennens, da die oxidierbaren Bestandteile während des Brennens mit Luftsauerstoff oder einer anderen Atmosphäre aufoxidieren. Zudem ist es möglich, die Porosität der keramischen Beschichtung gezielt einzustellen, wobei Porengrößen von 20 nm bis 1 μm, vorzugsweise von 50 nm bis 250 nm erreicht werden. Zudem erfolgt die Oxidation in Abhängigkeit von der Partikelgröße bei sehr niedrigen Temperaturen.This results in a volume balance or an increase in volume during firing, since the oxidizable constituents oxidize during firing with atmospheric oxygen or another atmosphere. In addition, it is possible to adjust the porosity of the ceramic coating in a targeted manner, pore sizes of from 20 nm to 1 μm, preferably from 50 nm to 250 nm, being achieved. In addition, the oxidation takes place depending on the particle size at very low temperatures.

Es liegt im Rahmen der Erfindung, daß die keramischen Partikel entweder aus einem Halbmetall und einem Nichtmetall oder aus einem Metall und einem Nichtmetall bestehen.It is within the scope of the invention that the ceramic particles consist of either a semi-metal and a non-metal or a metal and a non-metal.

In diesem Zusammenhang ist es zweckmäßig, daß die keramischen Partikel aus der Gruppe bestehend aus Al2O3, TiO2, ZrO2, SiO2, ZnO, MgO, CeO2, TiN, BN und SiC ausgewählt sind.In this connection, it is expedient that the ceramic particles are selected from the group consisting of Al 2 O 3 , TiO 2 , ZrO 2 , SiO 2 , ZnO, MgO, CeO 2 , TiN, BN and SiC.

Es ist erfindungsgemäß, daß die oxidierbaren Bestandteile eine Größe von 2 nm bis 100 μm, vorzugsweise von 10 nm bis 5 μm, aufweisen.It is according to the invention that the oxidizable constituents have a size of 2 nm to 100 .mu.m, preferably from 10 nm to 5 .mu.m.

Schließlich ist es auch erfindungsgemäß, daß das Beschichtungsmaterial temperaturbeständige anorganische Festschmierstoffe aus der Gruppe bestehend aus Graphit, Molybdändisulfid, hexagonalem Bornitrid und Graphitfluorid enthält.Finally, it is also according to the invention that the coating material contains temperature-resistant inorganic solid lubricants from the group consisting of graphite, molybdenum disulfide, hexagonal boron nitride and graphite fluoride.

Weiterhin ist es zweckmäßig, daß die reaktive Atmosphäre Gase, insbesondere Sauerstoff oder Chlor, enthält, die während des Sintervorgangs mit den oxidierbaren Partikeln reagieren.Furthermore, it is expedient that the reactive atmosphere contains gases, in particular oxygen or chlorine, which react with the oxidisable particles during the sintering process.

Während des Sinterprozesses reagieren die oxidierbaren Bestandteile mit den in der reaktiven Atmosphäre enthaltenen Gasen, wodurch eine Volumenvergrößerung der oxidierbaren Bestandteile hervorgerufen wird.During the sintering process, the oxidizable constituents react with the gases contained in the reactive atmosphere, causing an increase in volume of the oxidizable constituents.

Schließlich liegt auch die Verwendung des erfindungsgemäßen Verfahrens auf Substraten aus Metallen, Glas oder Keramik im Rahmen der Erfindung.Finally, the use of the method according to the invention on substrates of metals, glass or ceramic is within the scope of the invention.

Es liegt ebenfalls im Rahmen der Erfindung, das erfindungsgemäße Verfahren zur Herstellung von Kratzfestschichten, Korrosionsschutzschichten, tribologischen Schichten oder katalytischen Schichten zu verwenden.It is also within the scope of the invention to use the method according to the invention for the production of scratch-resistant layers, anticorrosion layers, tribological layers or catalytic layers.

Diese Beschichtungen können beispielsweise Anwendung finden in Kraftwerken, Verrohrungen, Motorteilen als Ofenbeschichtungen oder als Filtermaterialien. Es ist auch möglich, aus dem Beschichtungsmaterial Formkörper herzustellen.These coatings can be used, for example, in power plants, piping, engine parts as furnace coatings or as filter materials. It is also possible to produce moldings from the coating material.

Die Vorteile der Erfindung bestehen im wesentlichen darin, daß Spannungen in dem Substrat aufgrund der Schwindung des Beschichtungsmaterials während des Brennens vermieden werden. Das Beschichtungsmaterial kann auch auf bereits beschichtete Substrate aufgebracht werden.Essentially, the advantages of the invention are that stresses in the substrate due to the shrinkage of the coating material during firing are avoided. The coating material can also be applied to already coated substrates.

Nachfolgend werden zwei nicht zur Erfindung gehörende Beispiele näher beschrieben.Hereinafter, two not belonging to the invention examples will be described in more detail.

Beispiel 1:Example 1:

In 100 g einer Silikonharzlösung (Baysilone M 120 XB) werden 50 g Aluminiumpulver MEP 027 (Fa. Mepura) mit einem langsam laufenden Flügelrührer über Nacht eindispergiert. Zu dem Ansatz werden 50 g einer 40%igen Lösung des Polyacrylats Paraloid B 67 (Röhm und Haas) in p-Xylol zugegeben und homogen eingerührt. Zu dem Lackansatz wird 1 g Verlaufsadditiv Byk 360 (Fa. Byk Chemie) unter Rühren zugegeben.50 g of aluminum powder MEP 027 (Mepura) are dispersed in 100 g of a silicone resin solution (Baysilone M 120 XB) overnight with a slow-moving paddle stirrer. 50 g of a 40% solution of the polyacrylate Paraloid B 67 (Röhm and Haas) in p-xylene are added to the batch and stirred in homogeneously. 1 g of the leveling additive Byk 360 (from Byk Chemie) is added to the lacquer batch while stirring.

Der Lack wird mit einer Druckluft-Lackierpistole (Fa. Sata, Düse 1,4 mm) auf ein Stahlblech mit einer Naßfilmdicke von ca. 50 μm homogen aufgespritzt. Der Lackfilm wird zunächst 15 min bei 200°C vorgetrocknet und anschließend nochmals 30 min bei 800°C unter Luftatmosphäre gesintert. Man erhält eine chemikalienbeständige keramische Schutzschicht.The paint is sprayed with a compressed air spray gun (Sata, nozzle 1.4 mm) on a steel sheet with a wet film thickness of about 50 microns homogeneously sprayed. The paint film is first pre-dried for 15 min at 200 ° C and then sintered again for 30 min at 800 ° C under air atmosphere. This gives a chemical-resistant ceramic protective layer.

Beispiel 2:Example 2:

Zu einer Mischung aus 178 g Methyltriethoxysilan (z. B. Dynasylan MTES, Fa. Degussa) und 50 g Glycidyloxypropyltriethoxysilan (Dynasylan Glyeo) werden 74 g 10%ige Essigsäure gegeben und über Nacht kräftig gerührt. Am folgenden Tag wird zu dem nun einphasigen Hydrolysat 25 g Eisen(II)-oxalat zugegeben und unter Rühren gelöst.To a mixture of 178 g of methyltriethoxysilane (eg Dynasylan MTES, Degussa) and 50 g of glycidyloxypropyltriethoxysilane (Dynasylan Glyeo) are added 74 g of 10% acetic acid and stirred vigorously overnight. On the following day, 25 g of iron (II) oxalate are added to the now single-phase hydrolyzate and dissolved with stirring.

Das Beschichtungsmaterial wird mit einer Rakel auf ein Stahlblech aufgetragen und zunächst 15 min bei 200°C vorgetrocknet und anschließend nochmals 30 min bei 800°C unter Luftatmosphäre gesintert. Man erhält eine chemikalienbeständige keramische Schutzschicht.The coating material is applied with a doctor blade to a steel sheet and first pre-dried for 15 min at 200 ° C and then sintered again for 30 min at 800 ° C under air atmosphere. This gives a chemical-resistant ceramic protective layer.

Claims (8)

Verfahren zum Aufbringen eines Beschichtungsmaterials, das keramische und/oder glasartige Partikel enthält, auf ein Substrat, dadurch gekennzeichnet, • daß die keramischen Partikel eine Größe von 10 nm bis 2 μm aufweisen, • daß die keramischen Partikel mit oberflächenmodifiziert sind mit Silanen, die ausgewählt sind aus der Gruppe bestehend aus Methyltriethoxysilan (MTEOS), Tetraethoxysilan (TEOS) und Octylsilan, • daß das keramische Beschichtungsmaterial zwischen 10% und 90% oxidierbare Bestandteile in Form von Metallen oder Halbmetallen enthält, die während des Brennens zu vollständig nicht flüchtigen Oxidationsprodukten aufoxidieren, • wobei die Metalle aus der Gruppe bestehend aus Aluminium, Zink, Zinn, Bronze, Kupfer, Messing, Magnesium, Aluminium-Magnesium, Aluminium-Zink, Edelstahl, Silber, Gold, Platin, Chrom, Molybdän, Nickel, Eisen, Mangan, Cer, Kobalt, Zirkonium, Rhodium, Ruthenium, Wolfram und Lanthan ausgewählt sind, • und die Halbmetalle aus der Gruppe bestehend aus Silizium, Bor, Antimon, Arsen, Wismut, Germanium, Polonium, Selen und Tellur ausgewählt sind. • daß die keramischen und/oder glasartigen Partikel sowie die oxidierbaren Bestandteile in Wasser oder Alkohol dispergiert sind und • wobei das Beschichtungsmaterial nach dem Aufbringen auf das Substrat unter einer reaktiven Atmosphäre bei Temperaturen von 500 bis 1.500°C gesintert wird.Method for applying a coating material containing ceramic and / or glassy particles to a substrate, characterized in that the ceramic particles have a size of 10 nm to 2 μm, that the ceramic particles are surface-modified with silanes selected are selected from the group consisting of methyltriethoxysilane (MTEOS), tetraethoxysilane (TEOS) and octylsilane, • that the ceramic coating material contains between 10% and 90% oxidizable constituents in the form of metals or semi-metals which oxidize to completely nonvolatile oxidation products during firing, Where the metals are selected from the group consisting of aluminum, zinc, tin, bronze, copper, Brass, magnesium, aluminum-magnesium, aluminum-zinc, stainless steel, silver, gold, platinum, chromium, molybdenum, nickel, iron, manganese, cerium, cobalt, zirconium, rhodium, ruthenium, tungsten and lanthanum are selected • and the semi-metals selected from the group consisting of silicon, boron, antimony, arsenic, bismuth, germanium, polonium, selenium and tellurium. That the ceramic and / or vitreous particles and the oxidisable constituents are dispersed in water or alcohol and wherein the coating material is sintered after application to the substrate under a reactive atmosphere at temperatures of 500 to 1500 ° C. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die keramischen Partikel entweder aus einem Halbmetall und einem Nichtmetall oder aus einem Metall und einem Nichtmetall bestehen.A method according to claim 1, characterized in that the ceramic particles consist of either a semi-metal and a non-metal or a metal and a non-metal. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die keramischen Partikel aus der Gruppe bestehend aus Al2O3, TiO2, ZrO2, SiO2, ZnO, MgO, CeO2, TiN, BN und SiC ausgewählt sind.A method according to claim 1, characterized in that the ceramic particles are selected from the group consisting of Al 2 O 3 , TiO 2 , ZrO 2 , SiO 2 , ZnO, MgO, CeO 2 , TiN, BN and SiC. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die oxidierbaren Bestandteile eine Größe von 2 nm bis 100 μm, vorzugsweise von 10 nm bis 5 μm, aufweisen.A method according to claim 1, characterized in that the oxidizable constituents have a size of 2 nm to 100 microns, preferably from 10 nm to 5 microns. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das Beschichtungsmaterial temperaturbeständige anorganische Festschmierstoffe aus der Gruppe bestehend aus Graphit, Molybdändisulfid, hexagonalem Bornitrid und Graphitfluorid enthält.A method according to claim 1, characterized in that the coating material contains temperature resistant inorganic solid lubricants selected from the group consisting of graphite, molybdenum disulfide, hexagonal boron nitride and graphite fluoride. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die reaktive Atmosphäre Gase, insbesondere Sauerstoff oder Chlor, enthält, die während des Sintervorgangs mit den oxidierbaren Partikeln reagieren.Process according to Claim 1, characterized in that the reactive atmosphere contains gases, in particular oxygen or chlorine, which react with the oxidisable particles during the sintering process. Verwendung des Verfahrens gemäß den Ansprüchen 1 bis 6 auf Substraten aus Metallen, Glas oder Keramik.Use of the method according to claims 1 to 6 on substrates of metals, glass or ceramic. Verwendung des Verfahrens gemäß den Ansprüchen 1 bis 6 zum Herstellen von Kratzfestschichten, Korrosionsschutzschichten, tribologischen Schichten oder katalytischen Schichten.Use of the method according to claims 1 to 6 for the production of scratch-resistant layers, anticorrosion layers, tribological layers or catalytic layers.
DE102006056427.8A 2006-11-28 2006-11-28 Method for applying a coating material to a substrate and use of the method Expired - Fee Related DE102006056427B4 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102006056427.8A DE102006056427B4 (en) 2006-11-28 2006-11-28 Method for applying a coating material to a substrate and use of the method
EP07846349A EP2104655A1 (en) 2006-11-28 2007-11-19 Ceramic coating material
PCT/DE2007/002087 WO2008064647A1 (en) 2006-11-28 2007-11-19 Ceramic coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006056427.8A DE102006056427B4 (en) 2006-11-28 2006-11-28 Method for applying a coating material to a substrate and use of the method

Publications (2)

Publication Number Publication Date
DE102006056427A1 DE102006056427A1 (en) 2008-05-29
DE102006056427B4 true DE102006056427B4 (en) 2016-01-21

Family

ID=39125236

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102006056427.8A Expired - Fee Related DE102006056427B4 (en) 2006-11-28 2006-11-28 Method for applying a coating material to a substrate and use of the method

Country Status (3)

Country Link
EP (1) EP2104655A1 (en)
DE (1) DE102006056427B4 (en)
WO (1) WO2008064647A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016115746A1 (en) 2016-08-24 2018-03-01 Dechema-Forschungsinstitut Multilayer scale protection system for press-hardenable steels
DE102020107749A1 (en) 2020-03-20 2021-09-23 Peter Amborn Method for avoiding oxidation of the surface of a metallic substrate and metallic substrate produced according to the method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008039326A1 (en) * 2008-08-22 2010-02-25 IWT Stiftung Institut für Werkstofftechnik Preparing electrically insulated electric sheet, to prepare laminated magnetic core, comprises coating one side of sheet using liquid mixture comprising hydrolyzed and condensed metal organic monomer, and heat treating coated sheet
CN102190461A (en) * 2010-03-16 2011-09-21 广东工业大学 Protective coating capable of resisting fused alusil alloy corrosion in solar thermal power generation and preparation method thereof
WO2013099341A1 (en) * 2011-12-28 2013-07-04 本田技研工業株式会社 Piston for internal combustion engine
RU2015150550A (en) * 2013-06-06 2017-07-17 Порвэйр Плс CERAMIC FOAM FILTERS WITH BN OR Y2O3 COATING APPLICABLE FOR FILTERING ALUMINUM-LITHIUM ALLOYS AND OTHER REACTIVE ALLOYS
CN204330461U (en) 2014-12-29 2015-05-13 徕卡显微***(上海)有限公司 Embedding machine
CN113999556B (en) * 2021-08-24 2023-01-31 旭贞新能源科技(上海)有限公司 Anti-corrosion and anti-coking ceramic coating convenient for state recognition and used for coal-fired boiler and preparation method thereof
CN114634724A (en) * 2022-03-29 2022-06-17 武汉苏泊尔炊具有限公司 Modified spray material, non-stick material and cooker
CN114773998B (en) * 2022-04-26 2023-04-11 中海石油(中国)有限公司天津分公司 Corrosion-resistant and scouring-resistant surface protection method for oil well packer
CN115304363B (en) * 2022-08-11 2023-08-18 昆明理工大学 Heat-resistant steel oxidation-resistant protective coating material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH599069A5 (en) * 1975-03-13 1978-05-12 Richard Grunke
DE4315382A1 (en) * 1992-06-18 1993-12-23 Bayer Italia Spa Hydrophobic free-flowing build=up granules for coating ceramics etc. - contain hydrophilic inorganic powders, hydrophobic poly-organo:siloxane] and opt. temporary and/or permanent binder
DE69617705T2 (en) * 1995-09-15 2002-08-08 Saint Gobain SUBSTRATE WITH PHOTOCATALYTIC COATING
EP1279643A2 (en) * 2001-07-19 2003-01-29 Sumitomo Chemical Co.,Ltd. ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
DE10225972B3 (en) * 2002-06-11 2004-03-04 Fachhochschule Kiel Process for spin coating a thick ceramic layer using a sol-gel process
DE10359884A1 (en) * 2003-12-19 2005-07-21 Ferro Gmbh Substrates with a transparent, reflective metal oxide partial coating, their preparation and application

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2500952A1 (en) * 1981-02-27 1982-09-03 Thomson Csf METHOD FOR MANUFACTURING A THICK-LAYER VARISTANCE OF COMPENSATION-REMOVED CERAMIC, AND VARISTENCE THUS OBTAINED
JPS60131241A (en) * 1983-12-20 1985-07-12 さくら工業株式会社 Surface protective structure of metallic blank
JP2002213705A (en) * 2001-01-19 2002-07-31 Shikoku Electric Power Co Inc Steel product for boiler non-flame exposure part
JP2003119422A (en) * 2001-10-11 2003-04-23 Honda Motor Co Ltd Heat-resistant coating material
KR20050038497A (en) * 2003-10-22 2005-04-27 삼성코닝 주식회사 Coating solution for surface treating metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH599069A5 (en) * 1975-03-13 1978-05-12 Richard Grunke
DE4315382A1 (en) * 1992-06-18 1993-12-23 Bayer Italia Spa Hydrophobic free-flowing build=up granules for coating ceramics etc. - contain hydrophilic inorganic powders, hydrophobic poly-organo:siloxane] and opt. temporary and/or permanent binder
DE69617705T2 (en) * 1995-09-15 2002-08-08 Saint Gobain SUBSTRATE WITH PHOTOCATALYTIC COATING
EP1279643A2 (en) * 2001-07-19 2003-01-29 Sumitomo Chemical Co.,Ltd. ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
DE10225972B3 (en) * 2002-06-11 2004-03-04 Fachhochschule Kiel Process for spin coating a thick ceramic layer using a sol-gel process
DE10359884A1 (en) * 2003-12-19 2005-07-21 Ferro Gmbh Substrates with a transparent, reflective metal oxide partial coating, their preparation and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016115746A1 (en) 2016-08-24 2018-03-01 Dechema-Forschungsinstitut Multilayer scale protection system for press-hardenable steels
DE102020107749A1 (en) 2020-03-20 2021-09-23 Peter Amborn Method for avoiding oxidation of the surface of a metallic substrate and metallic substrate produced according to the method

Also Published As

Publication number Publication date
EP2104655A1 (en) 2009-09-30
DE102006056427A1 (en) 2008-05-29
WO2008064647A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
DE102006056427B4 (en) Method for applying a coating material to a substrate and use of the method
EP1284307B1 (en) Method for providing a metal surface with a vitreous layer
EP1186640B1 (en) Coating composition for multifunctional superphobic coatings
EP1383940B1 (en) Functional ceramic layers based on a support layer produced with crystalline nanoparticles
DE10324519B4 (en) Ceramic molded article with photocatalytic coating and method of making the same
EP2141133B1 (en) Decorative coating for glass and ceramic-glass items
EP2041228B1 (en) Alkali-resistant coating on non-ferrous metal surfaces
DE102008031426B4 (en) Method for producing a sealing layer for decorative layers, glass or glass ceramic articles and their use
EP2553502B9 (en) Reflector having high resistance against weather and corrosion effects and method for producing same
DE102007029668A1 (en) Ultra-hard composite coatings on metal surfaces and process for their preparation
EP1979399A2 (en) Pyrolysis resistant coating finish
EP2922981A2 (en) Highly abrasion-resistant anti-lime layers with high chemical resistance
EP2379657B1 (en) Alkali-resistance, wear-resistant and dishwasher-safe coating on a substrate
WO2005063645A1 (en) Substrates with a transparent, reflecting metal oxide partial coating, production and use thereof
DE10127494B4 (en) High temperature stable inorganic boron nitride layers
DE102004063428B4 (en) Ceramic molded body with photocatalytically active coating and method for producing the same
DE102010012841A1 (en) Method for applying an antireflection coating and glass with an antireflection coating
DE102007026866A1 (en) Coating composition for producing photocatalytically active layer for cleaning air and water, comprises mixture of nanocrystalline titanium dioxide material and sol of photocatalytically active metal oxide
WO2018130534A1 (en) Coating material for a self-cleaning coating, and method for producing same
KR102081263B1 (en) Functional ceramic accessories containing gold component and method of manufacture thereof
DE202007019602U1 (en) Photocatalytically active layer and composition for its preparation
DE102009039872A1 (en) Handle with surface coating and process for its preparation

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8181 Inventor (new situation)

Inventor name: SEPEUR, STEFAN, DR., 66787 WADGASSEN, DE

Inventor name: FRENZER, GERALD, DR., 66130 SAARBRUECKEN, DE

Inventor name: GOEDICKE, STEFAN, DR., 66540 NEUNKIRCHEN, DE

R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee