DE102005044734A1 - Federelement - Google Patents

Federelement Download PDF

Info

Publication number
DE102005044734A1
DE102005044734A1 DE200510044734 DE102005044734A DE102005044734A1 DE 102005044734 A1 DE102005044734 A1 DE 102005044734A1 DE 200510044734 DE200510044734 DE 200510044734 DE 102005044734 A DE102005044734 A DE 102005044734A DE 102005044734 A1 DE102005044734 A1 DE 102005044734A1
Authority
DE
Germany
Prior art keywords
height
unit
spring element
damping element
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE200510044734
Other languages
English (en)
Inventor
Stefan Haupt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE200510044734 priority Critical patent/DE102005044734A1/de
Publication of DE102005044734A1 publication Critical patent/DE102005044734A1/de
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/38Covers for protection or appearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/58Stroke limiting stops, e.g. arranged on the piston rod outside the cylinder

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Federelement, basierend auf einem hohlen zylindrischen Dämpfungselement (i) auf der Basis von Polyisocyanat-Polyadditionsprodukten, dadurch gekennzeichnet, dass das Verhältnis von Höhe (ii) des Dämpfungselementes (i) dividiert durch den maximalen äußeren Durchmesser (iii) des Dämpfungselementes (i) mindestens 2,5 beträgt.

Description

  • Die Erfindung betrifft Federelemente basierend auf einem hohlen zylindrischen Dämpfungselement (i) auf der Basis von Polyisocyanat-Polyadditionsprodukten, bevorzugt auf der Basis von zelligen Polyurethanelastomeren, die ggf. Polyharnstoffstrukturen enthalten können, besonders bevorzugt auf der Basis von zelligen Polyurethanelastomeren, bevorzugt mit einer Dichte nach DIN 53 420 von 200 bis 1100, bevorzugt 300 bis 800 kg/m3, einer Zugfestigkeit nach DIN 53571 von ≥ 2, bevorzugt 2 bis 8 N/mm2, einer Dehnung nach DIN 53571 von ≥ 300, bevorzugt 300 bis 700 % und einer Weiterreißfestigkeit nach DIN 53515 von ≥ 8, bevorzugt 8 bis 25 N/mm, wobei das Verhältnis von Höhe (ii) des Dämpfungselementes (i) dividiert durch den maximalen äußeren Durchmesser (iii) des Dämpfungselementes (i), d.h. ((ii)/(iii)), mindestens 2,5 (d.h., dass das Verhältnis ((ii)/(iii)) erfindungsgemäß größer oder gleich 2,5 ist), bevorzugt mindestens 2,8, besonders bevorzugt mindestens 2,9 beträgt. Des weiteren betrifft die Erfindung Federelemente basierend auf einem hohlen zylindrischen Dämpfungselement (i) auf der Basis von Polyisocyanat-Polyadditionsprodukten, bevorzugt auf der Basis von zelligen Polyurethanelastomeren, die ggf. Polyharnstoffstrukturen enthalten können, besonders bevorzugt auf der Basis von zelligen Polyurethanelastomeren, bevorzugt mit einer Dichte nach DIN 53 420 von 200 bis 1100, bevorzugt 300 bis 800 kg/m3, einer Zugfestigkeit nach DIN 53571 von ≥ 2, bevorzugt 2 bis 8 N/mm2, einer Dehnung nach DIN 53571 von ≥ 300, bevorzugt 300 bis 700 % und einer Weiterreißfestigkeit nach DIN 53515 von ≥ 8, bevorzugt 8 bis 25 N/mm, die eine Höhe (ii) zwischen 145 mm und 155 mm, bevorzugt zwischen 149 mm und 151 mm, besonders bevorzugt 150 mm, und einem maximalen äußeren Durchmesser (iii) zwischen 50 mm und 53 mm, bevorzugt zwischen 51 mm und 52 mm, besonders bevorzugt 51,5 mm aufweisen. Außerdem betrifft die Erfindung Automobile, d.h. Kraftfahrzeuge aller Art, z.B. Personenkraftfahrzeuge, Lastkraftfahrzeuge oder Busse, aber auch Motorräder und Fahrräder, bevorzugt aber Kraftfahrzeuge, enthaltend die erfindungsgemäßen Federelemente.
  • Aus Polyurethanelastomeren hergestellte Federungselemente werden in Automobilen beispielsweise innerhalb des Fahrwerks verwendet und sind allgemein bekannt. Sie werden insbesondere in Kraftfahrzeugen als schwingungsdämpfende Federelemente eingesetzt. Dabei übernehmen die Federelemente eine Endanschlagfunktion, beeinflussen die Kraft-Weg-Kennung des Rades durch das Ausbilden oder Verstärken einer progressiven Charakteristik der Fahrzeugfederung. Die Nickeffekte des Fahrzeuges können reduziert werden und die Wankabstützung wird verstärkt. Insbesondere durch die geometrische Gestaltung wird die Anlaufsteifigkeit optimiert, dies hat maßgeblichen Einfluss auf den Federungskomfort des Fahrzeuges. Durch die gezielte Auslegung der Geometrie ergeben sich über der Lebensdauer nahezu konstante Bauteileigenschaf ten. Durch diese Funktion wird der Fahrkomfort erhöht und ein Höchstmaß an Fahrsicherheit gewährleistet.
  • Aufgrund der sehr unterschiedlichen Charakteristika und Eigenschaften einzelner Automobilmodelle müssen die Federelemente individuell an die verschiedenen Automobilmodelle angepasst werden, um eine ideale Fahrwerksabstimmung zu erreichen. Beispielsweise können bei der Entwicklung der Federelemente das Gewicht des Fahrzeugs, das Fahrwerk des speziellen Modells, die vorgesehenen Stoßdämpfer sowie die gewünschte Federcharakteristik berücksichtigt werden.
  • Aufgabe der vorliegenden Erfindung war es somit, für ein spezielles, neues Automobilmodell eine geeignete Zusatzfeder zu entwickeln, die eine sehr gute Zusatzfederung unter permanenter Last, eine sehr gute Einfederung sowie eine geringe dynamische Steifigkeit aufweist. Zudem sollte die Feder die Rollsteifigkeit des Fahrzeugs bei starken Lenkbewegungen unterstützen. Durch die Geometrie der Feder sollte ein Abknicken der Feder bei Einfederung möglichst vermieden werden. Außerdem sollte die Feder wirtschaftlich herzustellen und langlebig sein und einen möglichst guten Fahrkomfort und eine ausgezeichnete Fahrsicherheit gewährleistet.
  • Diese Anforderungen werden durch die eingangs dargestellten Federelemente erfüllt. Besonders bevorzugte Federelemente sind im Detail in den 1 und 2 dargestellt. In allen Figuren sind die angegebenen Maße in [mm] angegeben. Gerade diese besonders bevorzugte dreidimensionale Form erwies sich als besonders geeignet, den spezifischen Anforderungen durch das spezielle Automobilmodell gerecht zu werden, insbesondere auch im Hinblick auf die spezifischen räumlichen Anforderungen und die geforderte Federcharakteristik.
  • Die erfindungsgemäßen Federelemente sind gekennzeichnet durch ihr außergewöhnliches Verhältnis von Höhe zu äußerem Durchmesser. Trotz dieser schmalen und gestreckten Form neigen die Federn nicht zu einem Abknicken unter Last. Dies ist auch auf die Anordnung der Einschnürungen (x) zurückzuführen. Die Feder kann sich bei der Einfederung gleichmäßig in dem begrenzten Topf des Stützlagers „stapeln", ein „Abstanzen" von überschüssigem Material wird vermieden. Zudem unterstützt die Feder, die eine geringe dynamische Steifigkeit aufweist, die Rollsteifigkeit des Fahrzeugs bei starken Lenkbewegungen.
  • Bevorzugt sind Federelemente, deren eines Ende in Form einer umlaufenden Lippe (iv) ausgestaltet ist.
  • Bevorzugt sind Federelemente, bei denen der Hohlraum zwei Erweiterungen (v) aufweist, die den Durchmesser (viii) des Hohlraums auf zwischen 18 mm und 22 mm, besonders bevorzugt 20 mm erweitern und wobei die Erweiterungen (v) in einer Höhe (vi) zwischen 65 mm und 70 mm, besonders bevorzugt 68 mm sowie in einer Höhe (vii) zwischen 120 mm und 125 mm, besonders bevorzugt 122 mm angeordnet sind.
  • Bevorzugt weist das Dämpfungselement (i) fünf ringförmige Einschnürungen (x) auf der äußeren Oberfläche von (i) auf. Dabei befinden sich die fünf ringförmigen Einschnürungen (x) bevorzugt in einer Höhe (xi) zwischen 55 mm und 57 mm, besonders bevorzugt 56 mm, in einer Höhe (xii) zwischen 80 mm und 82 mm, besonders bevorzugt 81 mm, in einer Höhe (xiii) zwischen 96 mm und 100 mm, besonders bevorzugt 98 mm, in einer Höhe (xiv) zwischen 110 mm und 115 mm, besonders bevorzugt 112 mm, und in einer Höhe (xv) zwischen 128 mm und 130 mm, besonders bevorzugt 129 mm.
  • Bevorzugt sind Federelemente, die von einem Ring (xx) umfasst werden, der sich in der Einschnürung (x) in der Höhe (xiii) befindet. Bevorzugt ist an dem Ring (xx) ein Schutzrohr (xxi) befestigt. Die Gesamthöhe (xxii) umfassend Dämpfungselement (i) und Schutzrohr (xxi) beträgt bevorzugt zwischen 280 mm und 310 mm, besonders bevorzugt zwischen 280 mm und 303 mm, insbesondere 301 mm. Der Ring (xx) kann aus allgemein bekannten Material gefertigt sein, bevorzugt aus festen Materialien, beispielsweise Metallen oder harten Kunststoffen, z.B. Polyoxymethylen.
  • Das Schutzrohr (xxi) kann aus allgemein bekannten Material gefertigt sein, z.B. aus allgemein bekannten flexiblen Materialien, beispielsweise Gummi oder elastischen Kunststoffen.
  • Die erfindungsgemäßen Körper (i) basieren bevorzugt auf Elastomeren auf der Basis von Polyisocyanat-Polyadditionsprodukten, beispielsweise Polyurethanen und/oder Polyharnstoffen, beispielsweise Polyurethanelastomeren, die gegebenenfalls Harnstoffstrukturen enthalten können. Bevorzugt handelt es sich bei den Elastomeren um mikrozellige Elastomere auf der Basis von Polyisocyanat-Polyadditionsprodukten, bevorzugt mit Zellen mit einem Durchmesser von 0,01 mm bis 0,5 mm, besonders bevorzugt 0,01 bis 0,15 mm. Besonders bevorzugt besitzen die Elastomere die eingangs dargestellten physikalischen Eigenschaften. Elastomere auf der Basis von Polyisocyanat-Polyadditionsprodukten und ihre Herstellung sind allgemein bekannt und vielfältig beschreiben, beispielsweise in EP-A 62 835, EP-A 36 994, EP-A 250 969, DE-A 195 48 770 und DE-A 195 48 771.
  • Die Herstellung erfolgt üblicherweise durch Umsetzung von Isocyanaten mit gegenüber Isocyanaten reaktiven Verbindungen.
  • Die Elastomere auf der Basis von zelligen Polyisocyanat-Polyadditionsprodukte werden üblicherweise in einer Form hergestellt, in der man die reaktiven Ausgangskomponenten miteinander umsetzt. Als Formen kommen hierbei allgemein übliche Formen in Frage, beispielsweise Metallformen, die aufgrund ihrer Form die erfindungsgemäße dreidimensionale Form des Federelements gewährleisten.
  • Die Herstellung der Polyisocyanat-Polyadditionsprodukte kann nach allgemein bekannten Verfahren erfolgen, beispielsweise indem man in einem ein- oder zweistufigen Prozess die folgenden Ausgangsstoffe einsetzt:
    • (a) Isocyanat,
    • (b) gegenüber Isocyanaten reaktiven Verbindungen,
    • (c) Wasser und gegebenenfalls
    • (d) Katalysatoren,
    • (e) Treibmittel und/oder
    • (f) Hilfs- und/oder Zusatzstoffe, beispielsweise Polysiloxane und/oder Fettsäuresulfonate.
  • Die Oberflächentemperatur der Forminnenwand beträgt üblicherweise 40 bis 95°C, bevorzugt 50 bis 90°C.
  • Die Herstellung der Formteile wird vorteilhafterweise bei einem NCO/OH-Verhältnis von 0,85 bis 1,20 durchgeführt, wobei die erwärmten Ausgangskomponenten gemischt und in einer der gewünschten Formteildichte entsprechenden Menge in ein beheiztes; bevorzugt dichtschließendes Formwerkzeug gebracht werden.
  • Die Formteile sind nach 5 bis 60 Minuten ausgehärtet und damit entformbar.
  • Die Menge des in das Formwerkzeug eingebrachten Reaktionsgemisches wird üblicherweise so bemessen, dass die erhaltenen Formkörper die bereits dargestellte Dichte aufweisen.
  • Die Ausgangskomponenten werden üblicherweise mit einer Temperatur von 15 bis 120°C, vorzugsweise von 30 bis 110°C, in das Formwerkzeug eingebracht. Die Verdichtungsgrade zur Herstellung der Formkörper liegen zwischen 1,1 und 8, vorzugsweise zwischen 2 und 6.
  • Die zelligen Polyisocyanat-Polyadditionsprodukte werden zweckmäßigerweise nach dem one shot-Verfahren mit Hilfe der Niederdruck-Technik oder insbesondere der Reaktionsspritzguss-Technik (RIM) in offenen oder vorzugsweise geschlossenen Formwerkzeugen, hergestellt. Die Reaktion wird insbesondere unter Verdichtung in einem geschlossenen Formwerkzeug durchgeführt. Die Reaktionsspritzguss-Technik wird beispielsweise beschrieben von H. Piechota und H. Röhr in "Integralschaumstoffe", Carl Hanser-Verlag, München, Wien 1975; D.J. Prepelka und J.L. Wharton in Journal of Cellular Plastics, März/April 1975, Seiten 87 bis 98 und U. Knipp in Journal of Cellular Plastics, März/April 1973, Seiten 76–84.
  • Bei Verwendung einer Mischkammer mit mehreren Zulaufdüsen können die Ausgangskomponenten einzeln zugeführt und in der Mischkammer intensiv vermischt werden. Als vorteilhaft hat es sich erwiesen, nach dem Zweikomponenten-Verfahren zu arbeiten.
  • Nach einer besonders vorteilhaften Ausführungsform wird in einem zwei-stufigen Prozess zunächst ein NCO-gruppenhaltiges Prepolymeres hergestellt. Dazu wird die Komponente (b) mit (a) im Überschuss üblicherweise bei Temperaturen von 80°C bis 160°C, vorzugsweise von 110°C bis 150°C, zur Reaktion gebracht. Die Reaktionszeit ist auf das Erreichen des theoretischen NCO-Gehaltes bemessen.
  • Bevorzugt erfolgt demnach die erfindungsgemäße Herstellung der Formkörper in einem zweistufigen Verfahren, indem man in der ersten Stufe durch Umsetzung von (a) mit (b) ein Isocyanatgruppen aufweisendes Prepolymer herstellt und dieses Prepolymer in der zweiten Stufe in einer Form mit einer Vernetzerkomponente enthaltend gegebenenfalls die weiteren eingangs dargestellten Komponenten umsetzt.
  • Zur Verbesserung der Entformung der Schwingungsdämpfer hat es sich als vorteilhaft erwiesen, die Formwerkzeuginnenflächen zumindest zu Beginn einer Produktionsreihe mit üblichen äußeren Formtrennmitteln, beispielsweise auf Wachs- oder Silikonbasis oder insbesondere mit wässrigen Seifenlösungen, zu beschichten.
  • Die Formstandzeiten betragen in Abhängigkeit von der Größe und Geometrie des Formteils durchschnittlich 5 bis 60 Minuten.
  • Nach der Herstellung der Formteile in der Form können die Formteile bevorzugt für eine Dauer von 1 bis 48 Stunden bei Temperaturen von üblicherweise von 70 bis 120°C getempert werden.
  • Zu den dem Fachmann allgemein bekannten Ausgangskomponenten zur Herstellung der Polyisocyanat-Polyadditionsprodukte kann folgendes ausgeführt werden: Als Isocyanate (a) können allgemein bekannte (cyclo)aliphatische und/oder aromatische Polyisocyanate eingesetzt werden. Zur Herstellung der erfindungsgemäßen Verbundelemente eignen sich besonders aromatische Diisocyanate, vorzugsweise 2,2'-, 2,4'- und/oder 4,4'-Diphenylmethandiisocyanat (MDI), 1,5-Naphthylendiisocyanat (NDI), 2,4- und/oder 2,6-Toluylendiisocyanat (TDI), 3,3'-Dimethyl-diphenyl-diisocyanat, 1,2-Diphenylethandiisocyanat, Phenylendiisocyanat und/oder aliphatische Isocyanate wie z. B. 1,12-Dodecan-, 2-Ethyl-1,4-butan, 2-Methyl-1,5-pentan- 1,4-Butan-diisocyanat und vorzugsweise 1,6-Hexamethylendiisocyanat und/oder cycloaliphatische Diisocyanate z.B. Cyclohexan-1,3- und 1,4-diisocyanat, 2,4- und 2,6-Hexahydrotoluyllendiisocyanat, 4,4'-, 2,4'- und 2,2'-Dicyclohexylmethan-diisocyanat, vorzugsweise 1-Isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexan und/oder Polyisocyanate wie z.B. Polyphenylpolymethylenpolyisocyanate. Die Isocyanate können in Form der reinen Verbindung, in Mischungen und/oder in modifizierter Form, beispielsweise in Form von Uretdionen, Isocyanuraten, Allophanaten oder Biureten, vorzugsweise in Form von Urethan- und Isocyanatgruppen enthaltenden Umsetzungsprodukten, sogenannten Isocyanat-Prepolymeren, eingesetzt werden. Bevorzugt werden gegebenenfalls modifiziertes 2,2'-, 2,4'- und/oder 4,4'-Diphenylmethandiisocyanat (MDI), 1,5-Naphthylendiisocyanat (NDI), 3,3'-Dimethyl-diphenyl-diisocyanat, 2,4- und/oder 2,6-Toluylendiisocyanat (TDI) und/oder Mischungen dieser Isocyanate eingesetzt.
  • Als gegenüber Isocyanaten reaktive Verbindungen (b) können allgemein bekannte Polyhydroxylverbindungen eingesetzt werden, bevorzugt solche mit einer Funktionalität von 2 bis 3 und bevorzugt einem Molekulargewicht von 60 bis 6000, besonders bevorzugt 500 bis 6000, insbesondere 800 bis 5000. Bevorzugt werden als (b) Polyetherpolyole, Polyesterpolyalkohole und/oder hydroxylgruppenhaltige Polycarbonate eingesetzt.
  • Bevorzugt werden als (b) Polyesterpolyalkohole, im Folgenden auch als Polyesterpolyole bezeichnet, eingesetzt. Geeignete Polyesterpolyole können beispielsweise aus Dicarbonsäuren mit 2 bis 12 Kohlenstoffatomen und zweiwertigen Alkoholen hergestellt werden. Als Dicarbonsäuren kommen beispielsweise in Betracht: aliphatische Dicarbonsäuren, wie Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure und Sebacinsäure und aromatische Dicarbonsäuren, wie Phthalsäure, Isophthalsäure und Terephthalsäure. Die Dicarbonsäuren können einzeln oder als Gemische verwendet werden. Zur Herstellung der Polyesterpolyole kann es gegebenenfalls vorteilhaft sein, anstelle der Carbonsäure die entsprechenden Carbonsäurederivate, wie Carbonsäureester mit 1 bis 4 Kohlenstoffatomen im Alkoholrest, Carbonsäureanhydride oder Carbonsäurechloride zu verwenden. Beispiele für zweiwertige Alkohole sind Glykole mit 2 bis 16 Kohlenstoffatomen, vorzugsweise 2 bis 6 Kohlenstoffatome, wie z.B. Ethylenglykol, Diethylenglykol, Butandiol-1,4, Pentandiol-1,5, Hexandiol-1,6, Decandiol-1,10, 2-Methylpropan-1,3-diol, 2,2-Dimethylpropandiol-1,3, Propandiol-1,3 und Dipropylenglykol. Je nach den gewünschten Eigenschaften können die zweiwertigen Alkohole allein oder gegebenenfalls in Mischungen untereinander verwendet werden.
  • Als Polyesterpolyole vorzugsweise verwendet werden Ethandiol-polyadipate, 1,4-Butandiol-polyadipate, Ethandiol-butandiol-polyadipate, 1,6-Hexandiol-neopentylglykolpolyadipate, 1,6-Hexandiol-1,4-Butandiol-polyadipate, 2-Methyl-1,3-propandiol-1,4-butandiol-polyadipate und/oder Polycaprolactone.
  • Geeignete estergruppenhaltige Polyoxyalkylenglykole, im wesentlichen Polyoxytetramethylenglykole, sind Polykondensate aus organischen, vorzugsweise aliphatischen Dicarbonsäuren, insbesondere Adipinsäure mit Polyoxymethylenglykolen des zahlenmittleren Molekulargewichtes von 162 bis 600 und gegebenenfalls aliphatischen Diolen, insbesondere Butandiol-1,4. Ebenfalls geeignete estergruppenhaltige Polyoxytetramethylenglykole sind solche aus der Polykondensation mit e-Caprolacton gebildete Polykondensate.
  • Geeignete carbonatgruppenhaltige Polyoxyalkylenglykole, im wesentlichen Polyoxytetramethylenglykole, sind Polykondensate aus diesen mit Alkyl- bzw. Arylcarbonaten oder Phosgen.
  • Beispielhafte Ausführungen zu der Komponente (b) sind in DE-A 195 48 771, Seite 6, Zeilen 26 bis 59 gegeben.
  • Zusätzlich zu den bereits beschriebenen gegenüber Isocyanaten reaktiven Komponenten können des weiteren niedermolekulare Kettenverlängerungs- und/oder Vernetzungsmitteln (b1) mit einem Molekulargewicht von kleiner 500, bevorzugt 60 bis 499 eingesetzt werden, beispielsweise ausgewählt aus der Gruppe der di- und/oder trifunktionellen Alkohole, di- bis tetrafunktionellen Polyoxyalkylen-polyole und der alkylsubstituierten aromatischen Diamine oder von Mischungen aus mindestens zwei der genannten Kettenverlängerungs- und/oder Vernetzungsmittel.
  • Als (b1) können beispielsweise Alkandiole mit 2 bis 12, bevorzugt 2, 4, oder 6 Kohlenstoffatomen verwendet werden, z.B. Ethan-, 1,3-Propan-, 1,5-Pentan-, 1,6-Hexan-, 1,7-Heptan-, 1,8-Octan-, 1,9-Nonan-, 1,10-Decandiol und vorzugsweise 1,4-Butandiol, Dialkylenglykole mit 4 bis 8 Kohlenstoffatomen, wie z.B. Diethylenglykol und Dipropylenglykol und/oder di- bis tetrafunktionelle Polyoxyalkylen-polyole.
  • Geeignet sind jedoch auch verzweigtkettige und/oder ungesättigte Alkandiole mit üblicherweise nicht mehr als 12 Kohlenstoffatomen, wie z.B. 1,2-Propandiol, 2-Methyl-, 2,2-Dimethyl-propandiol-1,3, 2-Butyl-2-ethylpropandiol-1,3, Buten-2-dio1-1,4 und Butin-2-dio1-1,4, Diester der Terephthalsäure mit Glykolen mit 2 bis 4 Kohlenstoffatomen, wie z.B. Terephthalsäure-bis-ethylenglykol- oder -butandiol-1,4, Hydroxyalkylenether des Hydrochinons oder Resorcins, wie z.B. 1,4-Di-(b-hydroxyethyl)-hydrochinon oder 1,3-Di(b-hydroxyethyl)-resorcin, Alkanolamine mit 2 bis 12 Kohlenstoffatomen, wie z.B. Ethanolamin, 2-Aminopropanol und 3-Amino-2,2-dimethylpropanol, N-Alkyldialkanolamine, wie z.B. N-Methyl- und N-Ethyl-diethanolamin.
  • Als höherfunktionelle Vernetzungsmittel (b1) seien beispielsweise tri- und höherfunktionelle Alkohole, wie z.B. Glycerin, Trimethylolpropan, Pentaerythrit und Trihydroxycyclohexane sowie Trialkanolamine, wie z.B. Triethanolamin genannt.
  • Als Kettenverlängerungsmittel können verwendet werden: alkylsubstituierte aromatische Polyamine mit Molekulargewichten vorzugsweise von 122 bis 400, insbesondere primäre aromatische Diamine, die in ortho-Stellung zu den Aminogruppen mindestens einen Alkylsubstituenten besitzen, welcher die Reaktivität der Aminogruppe durch sterische Hinderung vermindert, die bei Raumtemperatur flüssig und mit den höhermolekularen, bevorzugt mindestens difunktionellen Verbindungen (b) unter den Verarbeitungsbedingungen zumindest teilweise, vorzugsweise jedoch vollständig mischbar sind.
  • Zur Herstellung der erfindungsgemäßen Formkörper können die technisch gut zugänglichen 1,3,5-Triethyl-2,4-phenylendiamin, 1-Methyl-3,5-diethyl-2,4-phenylendiamin, Mischungen aus 1-Methyl-3,5-diethyl-2,4- und -2,6-phenylendiaminen, sogenanntes DETDA, Isomerengemische aus 3,3'-di- oder 3,3',5,5'-tetraalkylsubstituierten 4,4'-Diaminodiphenylmethanen mit 1 bis 4 C-Atomen im Alkylrest, insbesondere Methyl-, Ethyl- und Isopropylreste gebunden enthaltende 3,3',5,5'-tetraalkylsubstituierte 4,4'-Diamino-diphenylmethane sowie Gemische aus den genannten tetraalkylsubstituierten 4,4'-Diamino-diphenylmethanen und DETDA verwendet werden.
  • Zur Erzielung spezieller mechanischer Eigenschaften kann es auch zweckmäßig sein, die alkylsubstituierten aromatischen Polyamine im Gemisch mit den vorgenannten niedermolekularen mehrwertigen Alkoholen, vorzugsweise zwei- und/oder dreiwertigen Alkoholen oder Dialkylenglykolen zu verwenden.
  • Bevorzugt werden jedoch keine aromatischen Diamine eingesetzt. Bevorzugt erfolgt die Herstellung der erfindungsgemäßen Produkte somit in Abwesenheit von aromatischen Diaminen.
  • Die Herstellung der zelligen Polyisocyanat-Polyadditionsprodukte kann bevorzugt in Gegenwart von Wasser (c) durchgeführt werden. Das Wasser wirkt sowohl als Vernetzer unter Bildung von Harnstoffgruppen als auch aufgrund der Reaktion mit Isocyanatgruppen unter Bildung von Kohlendioxid als Treibmittel. Aufgrund dieser doppelten Funktion wird es in dieser Schrift getrennt von (e) und (b) aufgeführt. Per Definition enthalten die Komponenten (b) und (e) somit kein Wasser, das per Definition ausschließlich als (e) aufgeführt wird.
  • Die Wassermengen, die zweckmäßigerweise verwendet werden können, betragen 0,01 bis 5 Gew.-%, vorzugsweise 0,3 bis 3,0 Gew.-%, bezogen auf das Gewicht der Komponente (b). Das Wasser kann vollständig oder teilweise in Form der wässrigen Lösungen der sulfonierten Fettsäuren eingesetzt werden.
  • Zur Beschleunigung der Reaktion können dem Reaktionsansatz sowohl bei der Herstellung eines Prepolymeren als auch gegebenenfalls bei der Umsetzung eines Prepolymeren mit einer Vernetzerkomponente allgemein bekannte Katalysatoren (d) zugefügt werden. Die Katalysatoren (d) können einzeln wie auch in Abmischung miteinander zugegeben werden. Vorzugsweise sind dies metallorganische Verbindungen, wie Zinn-(II)-Salze von organischen Carbonsäuren, z.B. Zinn-(II)-dioctoat, Zinn-(II)-dilaurat, Dibutylzinndiacetat und Dibutylzinndilaurat und tertiäre Amine wie Tetramethylethylendiamin, N-Methylmorpholin, Diethylbenzylamin, Triethylamin, Dimethylcyclohexylamin, Diazabicyclooctan, N,N'-Dimethylpiperazin, N-Methyl,N'-(4-N-Dimethylamino-)Butylpiperazin, N,N,N',N'',N''-Pentamethyldiethylendiamin oder ähnliche.
  • Weiterhin kommen als Katalysatoren in Betracht: Amidine, wie z.B. 2,3-Dimethyl-3,4,5,6-tetrahydropyrimidin, Tris-(dialkylaminoalkyl)-s-hexahydrotriazine, insbesondere Tris-(N,N-dimethylaminopropyl)-s-hexahydrotriazin, Tetraalkylammoniumhydroxide, wie z.B. Tetramethylammoniumhydroxid, Alkalihydroxide, wie z.B. Natriumhydroxid, und Alkalialkoholate, wie z.B. Natriummethylat und Kaliumisopropylat, sowie Alkalisalze von langkettigen Fettsäuren mit 10 bis 20 C-Atomen und gegebenenfalls seitenständigen OH-Gruppen.
  • Je nach einzustellender Reaktivität gelangen die Katalysatoren (d) in Mengen von 0,001 bis 0,5 Gew.-%, bezogen auf das Prepolymere, zur Anwendung.
  • Gegebenenfalls können in der Polyurethanherstellung übliche Treibmittel (e) verwendet werden. Geeignet sind beispielsweise niedrig siedende Flüssigkeiten, die unter dem Einfluss der exothermen Polyadditionsreaktion verdampfen. Geeignet sind Flüssigkeiten, welche gegenüber dem organischen Polyisocyanat inert sind und Siedepunkte unter 100°C aufweisen. Beispiele derartiger, vorzugsweise verwendeter Flüssigkeiten sind halogenierte, vorzugsweise fluorierte Kohlenwasserstoffe, wie z.B. Methylenchlorid und Dichlormonofluormethan, per- oder partiell fluorierte Kohlenwasserstoffe, wie z.B. Trifluormethan, Difluormethan, Difluorethan, Tetrafluorethan und Heptafluorpropan, Kohlenwasserstoffe, wie z.B. n- und iso-Butan, n- und iso-Pentan sowie die technischen Gemische dieser Kohlenwasserstoffe, Propan, Propylen, Hexan, Heptan, Cyclobutan, Cyclopentan und Cyclohexan, Dialkylether, wie z.B. Dimethylether, Diethylether und Furan, Carbonsäureester, wie z.B. Methyl- und Ethylformiat, Ketone, wie z.B. Aceton, und/oder fluorierte und/oder perfluorierte, tertiäre Alkylamine, wie z.B. Perfluor-dimethyl-iso-propylamin. Auch Gemische dieser niedrigsiedenden Flüssigkeiten untereinander und/oder mit anderen substituierten oder unsubstituierten Kohlenwasserstoffen können verwendet werden.
  • Die zweckmäßigste Menge an niedrigsiedender Flüssigkeit zur Herstellung derartiger zellhaltiger elastischer Formkörper aus Harnstoffgruppen gebunden enthaltenden Elastomeren hängt ab von der Dichte, die man erreichen will, sowie von der Menge des bevorzugt mit verwendeten Wassers. Im allgemeinen liefern Mengen von 1 bis 15 Gew.-%, vorzugsweise 2 bis 11 Gew.-%, bezogen auf das Gewicht der Komponente (b), zufriedenstellende Ergebnisse. Besonders bevorzugt wird ausschließlich Wasser (c) als Treibmittel eingesetzt.
  • Bei der erfindungsgemäßen Herstellung des Formteile können Hilfs- und Zusatzstoffe (f) eingesetzt werden. Dazu zählen beispielsweise allgemein bekannte oberflächenaktive Substanzen, Hydrolyseschutzmittel, Füllstoffe, Antioxidantien, Zellregler, Flammschutzmittel sowie Farbstoffe. Als oberflächenaktive Substanzen kommen Verbindungen in Betracht, welche zur Unterstützung der Homogenisierung der Ausgangsstoffe dienen und gegebenenfalls auch geeignet sind, die Zellstruktur zu regulieren. Genannt seien beispielsweise zu den erfindungsgemäßen Emulgatoren zusätzliche Verbindungen mit emulgierender Wirkung, wie die Salze von Fettsäuren mit Aminen, z.B. ölsaures Diethylamin, stearinsaures Diethanolamin, ricinolsaures Diethanolamin, Salze von Sulfonsäuren, z.B. Alkali- oder Ammoniumsalze von Dodecylbenzol- oder Dinaphthylmethandisulfonsäure. Des weiteren kommen Schaumstabilisatoren in Frage, wie z.B. oxethylierte Alkylphenole, oxethylierte Fettalkohole, Paraffinöle, Rizinusöl- bzw. Ricinolsäureester, Türkischrotöl und Erdnussöl und Zellregler, wie Paraffine und Fettalkohole. Außerdem können als (f) Polysiloxane und/oder Fettsäuresulfonate eingesetzt werden. Als Polysiloxane können allgemein bekannte Verbindungen verwendet werden, beispielsweise Polymethylsiloxane, Polydimethylsiloxane und/oder Polyoxyalkylen-Silikon-Copolymere. Bevorzugt weisen die Polysiloxane eine Viskosität bei 25°C von 20 bis 2000 MPas auf.
  • Als Fettsäuresulfonate können allgemein bekannte sulfonierte Fettsäuren, die auch kommerziell erhältlich sind, eingesetzt werden. Bevorzugt wird als Fettsäuresulfonat sulfoniertes Rizinusöl eingesetzt.
  • Die oberflächenaktiven Substanzen werden üblicherweise in Mengen von 0,01 bis 5 Gew.-Teilen, bezogen auf 100 Gew.-Teile der Komponenten (b) angewandt.

Claims (12)

  1. Federelement basierend auf einem hohlen zylindrischen Dämpfungselement (i) auf der Basis von Polyisocyanat-Polyadditionsprodukten, dadurch gekennzeichnet, dass das Verhältnis von Höhe (ii) des Dämpfungselementes (i) dividiert durch den maximalen äußeren Durchmesser (iii) des Dämpfungselementes (i) mindestens 2,5 beträgt.
  2. Federelement basierend auf einem hohlen zylindrischen Dämpfungselement (i) auf der Basis von Polyisocyanat-Polyadditionsprodukten, dadurch gekennzeichnet, dass das Dämpfungselement (i) eine Höhe (ii) zwischen 145 mm und 155 mm und einem maximalen äußeren Durchmesser (iii) zwischen 50 mm und 53 mm aufweist.
  3. Federelement gemäß einem der Anspruch 1 oder 2, dadurch gekennzeichnet, dass das eine Ende in Form einer umlaufenden Lippe (iv) ausgestaltet ist.
  4. Federelement gemäß einem der Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Hohlraum zwei Erweiterungen (v) aufweist, die den Durchmesser (viii) des Hohlraums auf zwischen 18 mm und 22 mm erweitern und wobei die Erweiterungen (v) in einer Höhe (vi) zwischen 65 mm und 70 mm sowie in einer Höhe (vii) zwischen 120 mm und 125 mm angeordnet sind.
  5. Federelement gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Dämpfungselement (i) fünf ringförmige Einschnürungen (x) auf der äußeren Oberfläche von (i) aufweist.
  6. Federelement gemäß Anspruch 5, dadurch gekennzeichnet, dass sich die fünf ringförmigen Einschnürungen (x) in einer Höhe (xi) zwischen 55 mm und 57 mm, in einer Höhe (xii) zwischen 80 mm und 82 mm, in einer Höhe (xiii) zwischen 96 mm und 100 mm, in einer Höhe (xiv) zwischen 110 mm und 115 mm und in einer Höhe (xv) zwischen 128 mm und 130 mm befinden.
  7. Federelement gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Dämpfungselement (i) von einem Ring (xx) umfasst wird, der sich in der Einschnürung (x) in der Höhe (xiii) befindet.
  8. Federelement gemäß Anspruch 7, dadurch gekennzeichnet, dass an dem Ring (xx) ein Schutzrohr (xxi) befestigt ist.
  9. Federelement gemäß Anspruch 8, dadurch gekennzeichnet, dass die Gesamthöhe (xxii) umfassend Dämpfungselement (i) und Schutzrohr (xxi) zwischen 280 mm und 310 mm beträgt.
  10. Federelement gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Dämpfungselement (i) auf zelligen Polyurethanelastomeren basiert.
  11. Federelement gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Dämpfungselement (i) auf zelligen Polyurethanelastomeren mit einer Dichte nach DIN 53420 von 200 bis 1100 kg/m3, einer Zugfestigkeit nach DIN 53571 von ≥ 2 N/mm2, einer Dehnung nach DIN 53571 von ≥ 300 % und einer Weiterreißfestigkeit nach DIN 53515 von ≥ 8 N/mm basiert.
  12. Automobile enthaltend Federelemente gemäß einem der Ansprüche 1 bis 11.
DE200510044734 2005-09-19 2005-09-19 Federelement Ceased DE102005044734A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE200510044734 DE102005044734A1 (de) 2005-09-19 2005-09-19 Federelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510044734 DE102005044734A1 (de) 2005-09-19 2005-09-19 Federelement

Publications (1)

Publication Number Publication Date
DE102005044734A1 true DE102005044734A1 (de) 2007-03-22

Family

ID=37775848

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200510044734 Ceased DE102005044734A1 (de) 2005-09-19 2005-09-19 Federelement

Country Status (1)

Country Link
DE (1) DE102005044734A1 (de)

Similar Documents

Publication Publication Date Title
EP1301729B1 (de) Federelement
EP1360430B1 (de) Federelement
EP0868461B1 (de) Mikrozelluläres, harnstoffgruppenhaltiges polyurethanelastomer
EP1379568B1 (de) Zellige polyisocyanat-polyadditionsprodukte
EP2307475B1 (de) Zelliges elastomer mit geringer kriechneigung bei hohen temperaturen
EP1861444B2 (de) Prepolymere und daraus hergestellte zellige polyisocyanat-polyadditionsprodukte
EP1856174B1 (de) Verfahren zur herstellung von zylindrischen formkörpern auf der basis von zelligen polyurethanelastomeren
EP1171515B1 (de) Zellige polyisocyanat-polyadditionsprodukte
DE10124924B4 (de) Federelement und Automobil enthaltend das Federelement
EP1502038B1 (de) Rundlager
WO2007068628A1 (de) Prepolymere und daraus hergestellte zellige polyisocyanat-polyadditionsprodukte
EP1281887B1 (de) Rundlager
DE10157325A1 (de) Federelement
WO2006089890A1 (de) Zylindrische formkörper auf der basis von zelligen polyurethanelastomeren
DE102005044734A1 (de) Federelement
EP3789629A1 (de) Dämpferlager für ein fahrzeug
WO2001018086A1 (de) Zellige polyisocyanat-polyadditionsprodukte
DE10049323A1 (de) Verbindungselement
DE202006001877U1 (de) Federelement
WO2002006697A1 (de) Federauflage
DE10121735A1 (de) Schwingungsdämpfer
DE202005012528U1 (de) Zusatzfeder

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8127 New person/name/address of the applicant

Owner name: BASF SE, 67063 LUDWIGSHAFEN, DE

R016 Response to examination communication
R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final