DE102005022799A1 - Papier mit hohem Füllstoffgehalt und hoher Trockenfestigkeit - Google Patents

Papier mit hohem Füllstoffgehalt und hoher Trockenfestigkeit Download PDF

Info

Publication number
DE102005022799A1
DE102005022799A1 DE200510022799 DE102005022799A DE102005022799A1 DE 102005022799 A1 DE102005022799 A1 DE 102005022799A1 DE 200510022799 DE200510022799 DE 200510022799 DE 102005022799 A DE102005022799 A DE 102005022799A DE 102005022799 A1 DE102005022799 A1 DE 102005022799A1
Authority
DE
Germany
Prior art keywords
filler
paper
cationic
copolymers
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200510022799
Other languages
English (en)
Inventor
Anton Dr. Esser
Hans-Joachim Dr. Hähnle
Tibor Adalbert von Vadkerthy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE200510022799 priority Critical patent/DE102005022799A1/de
Priority to JP2007545938A priority patent/JP5130049B2/ja
Priority to US11/721,929 priority patent/US8778139B2/en
Priority to EP05819674.2A priority patent/EP1828481B1/de
Priority to PCT/EP2005/013430 priority patent/WO2006066769A2/de
Priority to ES05819674.2T priority patent/ES2554691T3/es
Priority to PL05819674T priority patent/PL1828481T3/pl
Priority to CA2590489A priority patent/CA2590489C/en
Priority to PT58196742T priority patent/PT1828481E/pt
Publication of DE102005022799A1 publication Critical patent/DE102005022799A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/69Water-insoluble compounds, e.g. fillers, pigments modified, e.g. by association with other compositions prior to incorporation in the pulp or paper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paper (AREA)

Abstract

Verfahren zur Herstellung von Papier, Pappe und Karton in Gegenwart einer wässrigen Anschlämmung von feinteilige Füllstoffe enthaltenden Komponenten, wobei die feinteiligen Füllstoffe zumindest teilweise mit wasserlöslichen amphoteren Copolymerisaten überzogen sind, wobei man zusätzlich zu der wässrigen Anschlämmung von feinteilige Füllstoffe enthaltenden Komponenten wenigstens ein kationisches und/oder amphoteres Polymer, das als Strukturelement keine Ester ungesättigter Carbonsäuren mit quaternierten Aminoalkoholen enthält, der Fasersuspension vor der Blattbildung zusetzt.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Papieren mit hohem Füllstoffgehalt und hoher Trockenfestigkeit sowie die nach diesem Verfahren hergestellten Papiere.
  • Bei der Papierherstellung werden zahlreiche Papierhilfsmittel der Fasersuspension zugesetzt. Beispielsweise werden Füllstoffe der Fasersuspension zugesetzt, was besonders dann vorteilhaft ist, wenn der Füllstoff billiger ist als der Faserstoff. In diesem Fall kann die Zugabe oder vermehrte Zugabe von Füllstoff zu einer Reduzierung des Faserstoffanteils und damit zu einer Reduzierung der Herstellkosten des Papiers führen. Füllstoffhaltige Papiere bzw. Papiere mit besonders hohem Füllstoffgehalt lassen sich leichter trocken als nicht füllstoffhaltige Papiere bzw. als Papiere mit geringerem Füllstoffgehalt. Als Folge daraus kann die Papiermaschine schneller und mit niedrigerem Dampfverbrauch betrieben werden, was sowohl die Produktivität erhöht als auch die Kosten senkt.
  • Bei der Herstellung füllstoffhaltiger Papiere wird die Füllstoffslurry zu der Fasersuspension zugegeben, bevor diese zum Former der Papiermaschine weitergeleitet wird. Ein Retentionsmittel oder ein Retentionsmittelsystem wird in der Regel zu der Füllstoff/Faserstoffsuspension zugesetzt, um soviel wie möglich Füllstoff im Papierblatt zu retenieren. Die Zugabe des Füllstoffs zum Papier gibt dem Papiermacher die Möglichkeit zahlreiche Verbesserungen der Blatteigenschaften zu erreichen. Dazu gehören Eigenschaften wie die Opazität, Weisse, Haptik und Bedruckbarkeit.
  • Jedoch bringt die Füllstoffzugabe zur Fasersuspension auch Nachteile mit sich, die nur teilweise durch die Zugabe weiterer Papierhilfsmittel kompensiert werden können. Für ein gegebenes Flächengewicht gibt es Grenzen bezüglich der einsetzbaren Füllstoffmenge. Die Festigkeitseigenschaften des Papiers sind normalerweise die wichtigsten Parameter, die die Füllstoffmenge im Papier limitieren. Auch andere Faktoren, wie die Füllstoffretention, die Entwässerung der Papierstoffsuspension sowie ein eventuell erhöhter Chemikalienbedarf bei Retention und Leimung können hier eine Rolle spielen.
  • Der Verlust von Festigkeitseigenschaften von Papieren kann in machen Fällen ganz oder teilweise durch den Einsatz von Trocken- und Nassverfestigern kompensiert werden. Eine gängige Vorgehensweise ist dabei die Zugabe von kationischer Stärke als Trockenverfestiger in den Papierstoff. Ebenso werden synthetische Trocken- und Nassverfestiger z.B. auf der Basis kationischer oder anionischer Polyacrylamide eingesetzt. Die Zugabemenge und die verfestigende Wirkung sind jedoch in den meisten Fällen begrenzt. Im gleichen Maße ist auch die kompensierende Wirkung im Bezug auf den Festigkeitsverlust durch Füllstofferhöhung und damit auch die überhaupt realisier bare Füllstoffzunahme begrenzt. Darüber hinaus werden nicht alle Festigkeitseigenschaften in gleichen Maße und in machen Fällen überhaupt nur unzureichend durch den Einsatz von Trockenverfestigern erhöht. Ein wichtiges Beispiel dafür ist die Weiterreisarbeit, die durch den Einsatz von Stärke oder synthetischen Trockenverfestigern im Vergleich zu anderen Festigkeitsparametern nur geringfügig beeinflusst wird. Die Erhöhung des Füllstoffgehaltes im Papier hat dagegen in der Regel einen sehr stark negativen Einfluss auf die Weiterreisarbeit.
  • Weitere wichtige Eigenschaften sind die Dicke sowie die Steifigkeit des Papiers. Die Erhöhung des Füllstoffgehaltes führt bei gleichem Flächengewicht zu einer Abnahme der Papierdichte und der Dicke des Papierblattes. Letzteres führt zu einer erheblichen Abnahme der Papiersteifigkeit. Diese Abnahme der Papiersteifigkeit kann in vielen Fällen nicht allein durch den Einsatz von Trockenverfestigern ausgeglichen werden. Häufig sind zusätzliche Maßnahmen wie etwa die Reduzierung des mechanischen Druckes in der Pressenpartie in den Glättwerken, in Kalandern oder in der Trockenpartie der Papiermaschine notwendig. Letzteres kompensiert den Dickeverlust durch Füllstofferhöhung ganz oder teilweise.
  • In der Literatur sind einige Füllstoffsysteme beschrieben. Aus der WO 01/86067 ist die Modifizierung von Füllstoffen mit hydrophoben Polymeren bekannt, wobei die Füllstoffteilchen mit dem hydrophoben Polymeren überzogen werden. Die hydrophoben Polymeren gemäß WO 01/86067 sind stärkehaltig. Die damit hergestellten Papiere weisen verbesserte Eigenschaften wie Nassfestigkeit auf.
  • Aus der JP-A 08059740 ist bekannt, dass man zu wässrigen Suspensionen von anorganischen Teilchen amphotere wasserlösliche Polymeren zusetzt, wobei zumindest ein Teil der Polymeren auf der Füllstoffoberfläche adsorbiert wird. Die amphoteren Polymeren werden vorzugsweise durch Hydrolysieren von Copolymerisaten aus N-Vinylformamid, Acrylnitril und Acrylsäure in Gegenwart von Säuren hergestellt. Sie enthalten 20 bis 90 Mol-% Amidineinheiten der Struktur
    Figure 00020001
    in der R1 und R2 jeweils H oder eine Methylgruppe und X ein Anion bedeuten. Die mit solchen Polymeren behandelten Füllstoffslurries werden bei der Herstellung von füllstoffhaltigen Papieren dem Papierstoff zugesetzt. Die Füllstoffbehandlung führt zu einer Verbesserung der Entwässerung des Papierstoffs und ergibt außerdem eine Ver besserung verschiedener Festigkeitseigenschaften des getrockneten Papiers sowie eine Verbesserung der Füllstoffretention.
  • In der US-A 2002/0088579 wird die Vorbehandlung von anorganischen Füllstoffen mit kationischen, anionischen und amphoteren (zwitterionischen) Polymeren beschrieben. Die Behandlung besteht dabei in jedem Fall aus mindestens zwei Stufen. Empfohlen wird zuerst die Behandlung mit einem kationischen Polymer und anschließend die Behandlung mit einem anionischen Polymer. In weiteren Schritten können alternierend wieder weitere kationische und anionische Polymere adsorbiert werden. Die wässrigen Suspensionen mit den vorbehandelten Füllstoffteilchen werden bei der Herstellung von füllstoffhaltigem Papier dem Papierstoff zugesetzt. Die Füllstoffbehandlung führt zu einer Verbesserung verschiedener Festigkeitseigenschaften des getrockneten Papiers.
  • Die WO 04/087818 beschreibt wässrige Anschlämmungen von feinteiligen Füllstoffen, die zumindest teilweise mit Polymerisaten überzogen sind und die erhältlich sind durch Behandeln von wässrigen Anschlämmungen feinteiliger Füllstoffe mit mindestens einem wasserlöslichen amphoteren Copolymerisat, das erhältlich ist durch Copolymerisieren von
    • a) mindestens einem N-Vinylcarbonsäureamid der Formel
      Figure 00030001
      in der R1, R2 = H oder C1- bis C6-Alkyl bedeuten,
    • b) mindestens einer monoethylenisch ungesättigten Carbonsäure mit 3 bis 8 C-Atomen im Molekül und/oder deren Alkalimetall-, Erdalkalimetall- oder Ammoniumsalzen und gegebenenfalls
    • c) anderen monoethylenisch ungesättigten Monomeren, die frei von Nitrilgruppen sind, und gegebenenfalls
    • d) Verbindungen, die mindestens zwei ethylenisch ungesättigte Doppelbindungen im Molekül aufweisen,
    und anschließende teilweise oder vollständige Abspaltung der Gruppen -CO-R1 aus den in das Copolymerisat einpolymerisierten Monomeren II erhältlich sind.
  • Aus der DE 103 34 133 A1 sind wässrige Zusammensetzungen, umfassend wenigstens einen feinteiligen Füllstoff und wenigstens ein wasserlösliches amphoteres Copo lymerisat, das erhältlich ist durch Copolymerisieren eines Monomergemischs, enthaltend
    • a) wenigstens ein N-Vinylcarbonsäureamid der allgemeinen Formel
      Figure 00040001
      worin R1 und R2 unabhängig voneinander für H oder C1- bis C6-Alkyl stehen,
    • b) wenigstens ein Monomer, das ausgewählt ist unter monoethylenisch ungesättigten Sulfonsäuren, Phosphonsäuren, Phosphorsäureestern und Derivaten davon,
    • c) gegebenenfalls wenigstens ein Monomer, das ausgewählt ist unter monoethylenisch ungesättigten Mono- und Dicarbonsäuren, deren Salzen und Dicarbonsäureanhydriden,
    • d) gegebenenfalls wenigstens ein von den Komponenten a) bis c) verschiedenes monoethylenisch ungesättigtes Monomer, das frei von Nitrilgruppen ist, und
    • e) gegebenenfalls wenigstens eine Verbindung, die mindestens zwei ethylenisch ungesättigte Doppelbindungen im Molekül aufweist,
    mit der Maßgabe, dass das Monomergemisch wenigstens ein Monomer b) oder c) mit mindestens einer freien Säuregruppe und/oder einer Säuregruppe in Salzform enthält,
    und anschließende teilweise oder vollständige Hydrolyse der Gruppen -CO-R1 aus den in das Copolymerisat einpolymerisierten Monomeren II, bekannt.
  • Allen in der Literatur bekannten Füllstoffsystemen ist gemeinsam, dass damit Papiere mit einem begrenzten Füllstoffgehalt hergestellt werden können. Weiterhin sind die typischen Papiereigenschaften wie Trockenfestigkeit verbesserungswürdig.
  • Es bestand daher die Aufgabe, ein Verfahren zur Herstellung von Papier mit hohem Füllstoffgehalt und hoher Trockenfestigkeit zur Verfügung zu stellen. Die damit hergestellten Papiere sollen sich durch verbesserte anwendungstechnische Eigenschaften, speziell guten Festigkeitseigenschaften des getrockneten Papiers auszeichnen. Dazu zählen insbesondere gute Trockenreißlängen, Weiterreißarbeit, Biegesteifigkeit sowie innere Festigkeit. Weiterhin sollen die hergestellten Papiere einen höheren Füllstoffgehalt aufweisen als aus dem Stand der Technik bekannt.
  • Die Aufgabe wurde gelöst durch ein Verfahren zur Herstellung von Papier, Pappe und Karton in Gegenwart einer wässrigen Anschlämmung von feinteilige Füllstoffe enthaltenden Komponenten, wobei die feinteiligen Füllstoffe zumindest teilweise mit wasserlöslichen amphoteren Copolymerisaten überzogen sind, wobei man zusätzlich zu der wässrigen Anschlämmung von feinteilige Füllstoffe enthaltenden Komponenten wenigstens ein kationisches und/oder amphoteres Polymer, das als Strukturelement keine Ester ungesättiger Carbonsäuren mit quaternierten Aminoalkoholen enthält, der Fasersuspension vor der Blattbildung zusetzt.
  • Unter feinteilige Füllstoffe enthaltende Komponenten im Sinne der vorliegenden Erfindung werden sowohl feinteilige Füllstoffe allein, d.h. in Reinform bzw. als sogenannter frischer Füllstoff, als auch feinteilige Füllstoffe enthaltende Rohstoffe wie der sogenannte Ausschuss von gestrichenem Papier, sowie Mischungen in beliebiger Zusammensetzung davon verstanden.
  • In der Regel erfolgt die Dosierung der wässrigen Anschlämmung der feinteilige Füllstoffe enthaltenden Komponenten zu der Fasersuspension, bevor diese zum Former der Papiermaschine geleitet wird.
  • Die Dosierung der kationischen und/oder amphoteren Polymere kann an verschiedenen Stellen des Papierherstellungsprozesses erfolgen. Denkbar ist eine Dosierung in den Dickstoffbereich, aber auch eine Dosierung in den Dünnstoff der Fasersuspension. Auch eine geteilte Zugabe an verschiedenen Stellen im Herstellungsprozess ist möglich.
  • Bevorzugt wird das wenigstens eine kationische und/oder amphotere Polymere jedoch unmittelbar nach der Zugabe der wässrigen Anschlämmung von feinteilige Füllstoffe enthaltenden Komponenten der Fasersuspension zugesetzt. Unmittelbar bedeutet, dass zwischen den Dosierungen der Komponenten kein weiterer Verfahrensschritt, d.h. keine Dosierung anderer Papierhilfsmittel oder beispielsweise die Einwirkung von Scherkräften auf die Suspension, liegt.
  • Das kationische und/oder amphotere Polymere enthält keine Strukturelemente von Estern ungesättiger Carbonsäuren, beispielsweise C3-C8-Carbonsäuren, mit quaternierten Aminoalkoholen, beispielsweise N,N,N-Trimethylammoniumethanol.
  • Das kationische und/oder amphotere Polymer ist ausgewählt aus
    • – Homo- und Copolymeren von Vinylimidazolen, Diallylalkylaminen und Allyldialkyaminen, wobei diese Monomere in neutraler Form, als Salze von Säuren oder in quaternierter Form eingesetzt werden,
    • – Homo- und Copolymeren von Estern ungesättigter Carbonsäuren mit N,N-Dialkylaminoalkoholen oder N-Alkylaminalkoholen, wobei diese Monomere in neutraler Form oder als Salze von Säuren eingesetzt werden,
    • – Homo- und Copolymeren von Amiden ungesättigter Carbonsäuren mit N,N-Dialkyldiaminen oder N-Alkyldiaminen, wobei diese Monomere in neutraler Form, als Salze von Säuren oder in quaternierter Form eingesetzt werden,
    • – Kondensationsprodukten aus Epichlorhydrin oder Bisepoxiden mit Dialkylaminen oder Polyamidoaminen,
    • – Polyethyleniminen,
    • – Pfropfprodukten von Ethyleniminen auf Amidoaminen oder Polyaminen,
    • – kationischen Stärken und/oder
    • – Vinylamineinheiten enthaltende Polymere.
  • Homo- und Copolymere von Vinylimidazolen, Diallylalkylaminen mit Alkylgruppen von C1-C10, bevorzugt C1-C6, und Allyldialkyaminen mit Alkylgruppen von C1-C10, bevorzugt C1-C6, wobei die Alkylgruppen gleich oder verschieden sein können, und wobei diese Monomere in neutraler Form, als Salze von Säuren oder in quaternierter Form eingesetzt werden, basieren typischerweise auf den Monomeren N-Vinylimidazol, Dimethyldiallylammoniumchlorid sowie Dimethylallylamin.
  • Homo- und Copolymere von Estern ungesättigter Carbonsäuren mit 3 bis 8 Kohlenstoffatomen mit N,N-Dialkylaminoalkoholen mit Alkylgruppen von C1-C10, bevorzugt C1-C6, wobei die Alkylgruppen gleich oder verschieden sein können, oder N-Alkylaminalkoholen mit Alkylgruppen von C1-C10, bevorzugt C1-C6, wobei diese Monomere in neutraler Form oder als Salze von Säuren eingesetzt werden, basieren beispielsweise auf Estern der Acrylsäure oder Methacrylsäure mit N,N-Dimethylaminoethylamin.
  • Homo- und Copolymere von Amiden ungesättigter Carbonsäuren mit 3 bis 8 Kohlenstoffatomen mit N,N-Dialkyldiaminen mit Alkylgruppen von C1-C10, bevorzugt C1-C6, wobei die Alkylgruppen gleich oder verschieden sein können, oder N-Alkyldiaminen mit Alkylgruppen von C1-C10, bevorzugt C1-C6, wobei diese Monomere in neutraler Form, als Salze von Säuren oder in quaternierter Form eingesetzt werden, basieren z.B. auf Amiden von Acrylsäure und Methacrylsäure mit N,N-Dimethylaminoethylenamin, 3-(N,N-Dimethylamino)-propylamin oder 3-(N,N,N-Trimethylammonium)propylamin.
  • Kondensationsprodukte aus Epichlorhydrin oder Bisepoxiden mit Dialkylaminen mit Alkylgruppen von C1-C10, bevorzugt C1-C6, wobei die Alkylgruppen gleich oder verschieden sein können, oder Polyamidoaminen können ebenfalls eingesetzt werden. Typische Vertreter sind beispielsweise Catiofast® PR 8153 und Catiofast® PR 8154 der BASF Aktiengesellschaft, die üblicherweise als Fixiermittel in der Papierindustrie eingesetzt werden.
  • Polyethylenimine sind beispielsweise in WO 97/25367 und der darin zitierten Literatur offenbart.
  • Pfropfprodukte von Ethyleniminen auf Amidoaminen oder Polyaminen sind beispielsweise die in der deutschen Offenlegungsschrift DE 24 34 816 beschriebenen stickstoffhaltigen Kondensationsprodukte.
  • Kationische Stärken sind beispielsweise in Günther Tegge, Stärke und Stärkederivate, Behr's-Verlag, Hamburg, 1984 offenbart. Es handelt sich dabei beispielsweise um Kartoffelstärke, Maisstärke, Weizenstärke, Reisstärke, Tapiokastärke, Sagostärke, Maniokstärke und Roggenstärke. Diese Stärken sind z.B. mit 2,3-(Epoxy)-propyltrimethyl-ammoniumchrlorid umgesetzt.
  • Vinylamineinheiten enthaltende Polymere, wie sie im Sinne der vorliegenden Erfindung eingesetzt werden, sind bekannt, vgl. US 4,421,602 , US 5,334,287 , EP-A 216 387, US 5,981,689 , WO 00/63295, US 6,121,409 und US 6,132,558 . Sie werden durch Hydrolyse von offenkettigen N-Vinylcarbonsäure-amideinheiten enthaltenden Polymeren hergestellt. Diese Polymeren sind z.B. erhältlich durch Polymerisieren von N-Vinylformamid, N-Vinyl-N-methylformamid, N-Vinyl-acetamid, N-Vinyl-N-methylacetamid, N-Vinyl-N-ethylacetamid und N-Vinylpropionamid. Die genannten Monomeren können entweder allein oder zusammen mit anderen Monomeren polymerisiert werden. Bevorzugt ist N-Vinylformamid.
  • Als monoethylenisch ungesättigte Monomere, die mit den N-Vinylcarbonsäureamiden copolymerisiert werden, kommen alle damit copolymerisierbaren Verbindungen in Betracht. Beispiele hierfür sind Vinylester von gesättigten Carbonsäuren von 1 bis 6 Kohlenstoffatomen wie Vinylformiat, Vinylacetat, N-Vinylpyrrolidon, Vinylpropionat und Vinylbutyrat und Vinylether wie C1- bis C6-Alkylvinylether, z.B. Methyl- oder Ethylvinylether. Weitere geeignete Comonomere sind Ester von Alkoholen mit beispielsweise 1 bis 6 Kohlenstoffatomen, Amide und Nitrile von ethylenisch ungesättigten C3- bis C6-Carbonsäuren, beispielsweise Methylacrylat, Methylmethacrylat, Ethylacrylat, Ethylmethacrylat und Maleinsäuredimethylester, Acrylamid und Methacrylamid sowie Acrylnitril und Methacrylnitril.
  • Weitere geeignete Carbonsäureester leiten sich von Glykolen oder bzw. Polyalkylenglykolen ab, wobei jeweils nur eine OH-Gruppe verestert ist, z.B. Hydroxyethylacrylat, Hydroxyethylmethacrylat, Hydroxypropylacrylat, Hydroxybutylacrylat, Hydroxypropylmethacrylat, Hydroxybutylmethacrylat sowie Acrylsäuremonoester von Polyalkylenglykolen einer Molmasse von 500 bis 10 000. Weitere geeignete Comonomere sind Ester von ethylenisch ungesättigten Carbonsäuren mit Aminoalkoholen wie beispiels weise Dimethylaminoethylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethylacrylat, Diethylaminoethylmethacrylat, Dimethylaminopropylacrylat, Dimethylaminopropylmethacrylat, Diethylaminopropylacrylat, Dimethylaminobutylacrylat und Diethylaminobutylacrylat. Die basischen Acrylate können in Form der freien Basen, der Salze mit Mineralsäuren wie Salzsäure, Schwefelsäure oder Salpetersäure, der Salze mit organischen Säuren wie Ameisensäure, Essigsäure, Propionsäure oder der Sulfonsäuren oder in quaternierter Form eingesetzt werden. Geeignete Quaternierungsmittel sind beispielsweise Dimethylsulfat, Diethylsulfat, Methylchlorid, Ethylchlorid oder Benzylchlorid.
  • Weitere geeignete Comonomere sind Amide ethylenisch ungesättigter Carbonsäuren wie Acrylamid, Methacrylamid sowie N-Alkylmono- und Diamide von monoethylenisch ungesättigten Carbonsäuren mit Alkylresten von 1 bis 6 C-Atomen, z.B. N-Methylacrylamid, N,N-Dimethylacrylamid, N-Methylmethacrylamid, N-Ethylacrylamid, N-Propylacrylamid und tert.-Butylacrylamid sowie basische (Meth)acrylamide, wie z.B. Dimethylaminoethylacrylamid, Dimethylaminoethylmethacrylamid, Diethylaminoethylacrylamid, Diethylaminoethylmethacrylamid, Dimethylaminopropylacrylamid, Diethylaminopropylacrylamid, Dimethylaminopropylmethacrylamid und Diethylaminopropylmethacrylamid.
  • Weiterhin sind als Comonomere geeignet N-Vinylpyrrolidon, N-Vinylcaprolactam, Acrylnitril, Methacrylnitril, N-Vinylimidazol sowie substituierte N-Vinylimidazole wie z.B. N-Vinyl-2-methylimidazol, N-Vinyl-4-methylimidazol, N-Vinyl-5-methylimidazol, N-Vinyl-2-ethylimidazol und N-Vinylimidazoline wie N-Vinylimidazolin, N-Vinyl-2-methylimidazolin und N-Vinyl-2-ethylimidazolin. N-Vinylimidazole und N-Vinylimidazoline werden außer in Form der freien Basen auch in mit Mineralsäuren oder organischen Säuren neutralisierter oder in quaternisierter Form eingesetzt, wobei die Quaternisierung vorzugsweise mit Dimethylsulfat, Diethylsulfat, Methylchlorid oder Benzylchlorid vorgenommen wird. In Frage kommen auch Diallyldialkylammoniumhalogenide wie z.B. Diallyldimethylammoniumchlorid.
  • Die Copolymerisate enthalten beispielsweise
    • – 95 bis 5 mol-%, vorzugsweise 90 bis 10 mol-% mindestens eines N-Vinylcarbonsäureamids, bevorzugt N-Vinylformamid, und
    • – 5 bis 95 mol-%, vorzugsweise 10 bis 90 mol-% monoethylenisch ungesättigte Monomere
    in einpolymerisierter Form. Die Comonomeren sind vorzugsweise frei von Säuregruppen.
  • Die Polymerisation der Monomeren wird üblicherweise in Gegenwart von Radikale bildenden Polymerisationsinitiatoren durchgeführt. Man kann die Homo- und Copolymerisate nach allen bekannten Verfahren erhalten, beispielsweise erhält man sie durch Lösungspolymerisation in Wasser, Alkoholen, Ethern oder Dimethylformamid oder in Gemischen aus verschiedenen Lösungsmitteln, durch Fällungspolymerisation, umgekehrte Suspensionspoylmerisation (Polymerisieren einer Emulsion einer monomerhaltigen wässrigen Phase in einer Ölphase) und Polymerisieren einer Wasser-in-Wasser-Emulsion, beispielsweise bei der man eine wässrige Monomerlösung in einer wässrigen Phase löst oder emulgiert und unter Bildung einer wässrigen Dispersion eines wasserlöslichen Polymeren polymerisiert, wie beispielsweise in WO 00/27893 beschrieben. Im Anschluss an die Polymerisation werden die Homo- und Copopolymerisate, die einpolymerisierte N-Vinylcarbonsäureamideinheiten enthalten, wie unten beschrieben partiell oder vollständig hydrolysiert.
  • Um Vinylamineinheiten enthaltende Polymerisate herzustellen, geht man vorzugsweise von Homopolymerisaten des N-Vinylformamids oder von Copolymerisaten aus, die durch Copolymerisieren von
    • – N-Vinylformamid mit
    • – Vinylformiat, Vinylacetat, Vinylpropionat, Acrylnitril, Methylacrylat, Ethylacrylat und/oder Methylmethacrylat
    und anschließende Hydrolyse der Homo- oder der Copolymerisate unter Bildung von Vinylamineinheiten aus den einpolymerisierten N-Vinylformamideinheiten erhältlich sind, wobei der Hydrolysegrad z.B. 1 bis 100 mol-%, vorzugsweise 25 bis 100 mol-%, besonders bevorzugt 50 bis 100 mol-% und insbesondere bevorzugt 70 bis 100 mol-% beträgt. Der Hydrolysegrad entspricht dem Gehalt der Polymeren an Vinylamingruppen in mol-%. Die Hydrolyse der oben beschriebenen Polymerisate erfolgt nach bekannten Verfahren durch Einwirkung von Säuren (z.B. Mineralsäuren wie Schwefelsäure, Salzsäure oder Phosphorsäure, Carbonsäuren wie Ameisensäure oder Essigsäure, bzw. Sulfonsäuren oder Phsophonsäuren), Basen oder Enzymen, wie beispielsweise in DE-A 31 28 478 und US 6,132,558 beschrieben. Bei Verwendung von Säuren als Hydrolysemittel liegen die Vinylamineinheiten der Polymerisate als Ammoniumsalz vor, während bei der Hydrolyse mit Basen die freie Aminogruppen entstehen.
  • In den meisten Fällen beträgt der Hydrolysegrad der verwendeten Homo- und Copolymerisate 85 bis 95 mol-%. Der Hydrolysegrad der Homopolymerisate ist gleichbedeutend mit dem Gehalt der Polymerisate an Vinylamineinheiten. Bei Copolymerisaten, die Vinylester einpolymerisiert enthalten, kann neben der Hydrolyse der N-Vinylformamideinheiten eine Hydrolyse der Estergruppen unter Bildung von Vinylalkoholeinheiten eintreten. Dies ist insbesondere dann der Fall, wenn man die Hydrolyse der Copolyme risate in Gegenwarf von Natronlauge durchführt. Einpolymerisiertes Acrylnitril wird ebenfalls bei der Hydrolyse chemisch verändert. Hierbei entstehen beispielsweise Amidgruppen oder Carboxylgruppen. Die Vinylamineinheiten enthaltenden Homo- und Copolymeren können gegebenenfalls bis zu 20 mol-% an Amidineinheiten enthalten, die z.B. durch Reaktion von Ameisensäure mit zwei benachbarten Aminogruppen oder durch intramolekulare Reaktion einer Aminogruppe mit einer benachbarten Amidgruppe z.B. von einpolymerisiertem N-Vinylformamid entsteht.
  • Die mittleren Molmassen Mw der Vinylamineinheiten enthaltenden Polymerisate betragen z.B. 500 bis 10 Millionen, vorzugsweise 750 bis 5 Millionen und besonders bevorzugt 1 000 bis 2 Millionen g/mol (bestimmt durch Lichtstreuung). Dieser Molmassenbereich entspricht beispielsweise K-Werten von 30 bis 150, vorzugsweise 60 bis 100 (bestimmt nach H. Fikentscher in 5 %iger wässriger Kochsalzlösung bei 25 °C, einen pH-Wert von 7 und einer Polymerkonzentration von 0,5 Gew.-%). Besonders bevorzugt werden Vinylamineinheiten enthaltende Polymere eingesetzt, die K-Werte von 85 bis 95 haben.
  • Die Vinylamineinheiten enthaltenden Polymeren haben beispielsweise eine Ladungsdichte (bestimmt bei pH 7) von 0 bis 18 meq/g, vorzugsweise von 5 bis 18 meq/g und insbesondere von 10 bis 16 meq/g.
  • Die Vinylamineinheiten enthaltenden Polymeren werden vorzugsweise in salzfreier Form eingesetzt. Salzfreie wässrige Lösungen von Vinylamineinheiten enthaltenden Polymerisaten können beispielsweise aus den oben beschriebenen salzhaltigen Polymerlösungen mit Hilfe einer Ultrafiltration an geeigneten Membranen bei Trenngrenzen von beispielsweise 1 000 bis 500 000 Dalton, vorzugsweise 10 000 bis 300 000 Dalton hergestellt werden.
  • Auch Derivate von Vinylamineinheiten enthaltenden Polymeren können eingesetzt werden. So ist es beispielsweise möglich, aus den Vinylamineinheiten enthaltenden Polymeren durch Amidierung, Alkylierung, Sulfonamidbildung, Harnstoffbildung, Thioharnstoffbildung, Carbamatbildung, Acylierung, Carboximethylierung, Phosphonomethylierung oder Michaeladdition der Aminogruppen des Polymeren eine Vielzahl von geeigneten Derivaten herzustellen. Von besonderem Interesse sind hierbei unvernetzte Polyvinylguanidine, die durch Reaktion von Vinylamineinheiten enthaltenden Polymeren, vorzugsweise Polyvinylaminen, mit Cyanamid (R1R2N-CN, wobei R1, R2 = H, C1- bis C4-Alkyl, C3- bis C6-Cycloalkyl, Phenyl, Benzyl, alkylsubstituiertes Phenyl oder Naphthyl bedeuten) zugänglich sind, vgl. US 6,087,448 , Spalte 3, Zeile 64 bis Spalte 5, Zeile 14.
  • Zu den Vinylamineinheiten enthaltenden Polymeren gehören auch hydrolysierte Pfropfpolymerisate von beispielsweise N-Vinylformamid auf Polyalkylenglykolen, Poly vinylacetat, Polyvinylalkolhol, Polyvinylformamiden, Polysacchariden wie Stärke, Oligosacchariden oder Monosacchariden. Die Pfropfpolymerisate sind dadurch erhältlich, dass man beispielsweise N-Vinylformamid in wässrigem Medium in Gegenwart mindestens einer der genannten Pfropfgrundlagen gegebenenfalls zusammen mit copolymerisierbaren anderen Monomeren radikalisch polymerisiert und die aufgepfropften Vinylformamideinheiten anschließend in bekannten Weise zu Vinylamineinheiten hydrolysiert.
  • Bevorzugt in Betracht kommende Vinylamineinheiten enthaltende Polymere sind Vinylamin-Homopolymere des N-Vinylformamids mit einem Hydrolysegrad von 1 bis 100 mol-%, bevorzugt 25 bis 100 mol-%, sowie zu 1 bis 100 mol-%, bevorzugt zu 25 bis 100 mol-% hydrolysierte Copolymerisate aus N-Vinylformamid und Vinylformiat, Vinylacetat, Vinylpropionat, Acrylnitril, Methylacrylat, Ethylacrylat und/oder Methylmethacrylat mit K-Werten von 30 bis 150, insbesondere 60 bis 100. Besonders bevorzugt werden in dem erfindungsgemäßen Verfahren die zuvor genannten Homopolymerisate des N-Vinylformamids eingesetzt.
  • Typische Vertreter diese Homopolymerisate des N-Vinylformamids sind unter den Handelsnamen Catiofast® VFH, Catiofast® VSH und Catiofast® VMP der BASF Aktiengesellschaft bekannt.
  • Selbstverständlich können in dem erfindungsgemäßen Verfahren auch Mischungen der genannten kationischen und/oder amphoteren Polymere eingesetzt werden. Bevorzugt werden jedoch Vertreter einer Polymerklasse verwendet. Insbesondere werden Vinylamineinheiten enthaltende Polymere in dem erfindungsgemäßen Verfahren eingesetzt.
  • Die in dem erfindungsgemäßen Verfahren einzusetzenden kationischen und/oder amphoteren Polymere werden in einer Menge von 0,0001 bis 1 Gew.-%, bezogen auf den Trockengehalt der Papierstoffsuspension, bevorzugt von 0,0005 bis 0,5 Gew.-%, besonders bevorzugt in einer Menge von 0,001 bis 0,2 Gew.-% und insbesondere in einer Menge von 0,005 bis 0,1 Gew.-%, jeweils bezogen auf den Trockengehalt der Papierstoffsuspension, zu der Fasersuspension zugesetzt.
  • Durch die Zugabe des wenigstens einem kationischen und/oder amphoteren Polymeren zu der Fasersuspension wird im Vergleich zum Stand der Technik eine enorm erhöhte Füllstoffretention erreicht, d.h. es können nach dem erfindungsgemäßen Verfahren Papiere mit einem hohen Füllstoffgehalt hergestellt werden. Dadurch wird in der Herstellung der Faserstoffanteil reduziert, was zu einer Verringerung der Herstellkosten des Papiers führt.
  • Weiterhin weisen sie nach dem erfindungsgemäßen Verfahren hergestellten Papiere zusätzlich zum erhöhten Füllstoffgehalt eine verbesserte Trockenfestigkeit auf. Dies wird insbesondere durch Eigenschaften wie Trockenreißlänge, Weiterreißarbeit, innere Festigkeit und Biegesteifigkeit belegt.
  • Die in dem erfindungsgemäßen Verfahren einzusetzenden feinteiligen Füllstoffe sind aus der Literatur bekannt. Es handelt sich dabei um feinteilige Füllstoffe, die zumindest teilweise mit wasserlöslichen amphoteren Copolymerisaten überzogen sind. Derartige wässrige Anschlämmungen sind aus JP-A 08059740, WO 04/087818 und der Aktenzeichen DE 103 34 133 A1 bekannt. Auf diese Literaturstellen wird hiermit ausdrücklich Bezug genommen. Die in diesen Literaturstellen offenbarten wasserlöslichen amphoteren Copolymerisate weisen als gemeinsames Strukturmerkmal auf, dass sie Amidineinheiten, sowohl fünf- als auch sechsgliedrig, enthalten.
  • Wie zuvor beschrieben werden sowohl feinteilige Füllstoffe allein, d.h. in Reinform bzw. als sogenannter frischer Füllstoff, als auch feinteilige Füllstoffe enthaltende Rohstoffe wie der sogenannte Ausschuss von gestrichenem Papier, sowie Mischungen in beliebiger Zusammensetzung davon unter dem Begriff feinteilige Füllstoffe enthaltende Komponenten verstanden.
  • Beispielsweise werden im erfindungsgemäßen Verfahren wässrige Anschlämmungen von 100% frischem Füllstoff, bezogen auf den Füllstoffanteil, eingesetzt.
  • Alternativ können im erfindungsgemäßen Verfahren auch wässrige Anschlämmungen eingesetzt werden, deren Füllstoffanteil zu 100% aus dem Ausschuss von gestrichenem Papier erhalten wird. Dabei ist es unerheblich, ob es sich um den Ausschuss von ein- oder beidseitig gestrichenem Papier handelt.
  • In einer dritten Variante des erfindungsgemäßen Verfahrens werden wässrige Anschlämmungen von Mischungen in beliebiger Zusammensetzung von frischem Füllstoff und Ausschuss von gestrichenem Papier eingesetzt. Eine solche Mischung kann beispielsweise zu 90 % aus frischem Füllstoff und zu 10 % aus Füllstoff aus dem Ausschuss von gestrichenem Papier, jeweils bezogen auf den Füllstoffgehalt der wässrigen Anschlämmung, bestehen. Das Verhältnis kann auch umgekehrt, nämlich frischer Füllstoff: Füllstoff aus dem Ausschuss von gestrichenem Papier von 10 %:90 %, betragen.
  • Mögliche Mischungen von frischem Füllstoff zu Füllstoff aus dem Ausschuss von gestrichenem Papier sind z.B. 15 %:85 %, 20 %:80 %, 30 %:70 %, 40 %:60 %, 50 %:50 %, 60 %:40 %, 70 %:30 %, 20 %:80 % sowie 15 %:85 %. Wie zuvor beschrieben, sind jedoch Mischungen in beliebiger Zusammensetzung möglich.
  • Bevorzugt werden Mischungen eingesetzt, die ein Mischungsverhältnis im Bereich von 10 % (frischer Füllstoff) zu 90% (Füllstoff aus dem Ausschuss von gestrichenem Pa pier) bis 90 % (frischer Füllstoff) zu 10 % (Füllstoff aus dem Ausschuss von gestrichenem Papier) aufweisen.
  • Besonders bevorzugt liegt das Mischungsverhältnis im Bereich von 15 % (frischer Füllstoff) zu 85 % (Füllstoff aus dem Ausschuss von gestrichenem Papier) bis 60 % (frischer Füllstoff) zu 40 % (Füllstoff aus dem Ausschuss von gestrichenem Papier).
  • Die Prozentangaben beziehen sich jeweils auf den Gesamtfüllstoffgehalt in der wässrigen Anschlämmung.
  • Als Füllstoffbasis kommen dabei z.B. Calciumcarbonate in Betracht, die in Form von gemahlenem Kalk (GCC), Kalk, Kreide, Marmor oder in Form von präzipitiertem Calciumcarbonat (PCC) vorliegen. Als Füllstoffe können ebenfalls Talkum, Kaolin, Bentonit, Satinweiß, Calciumsulfat, Bariumsulfat und Titandioxid eingesetzt werden. Selbstverständlich kann man auch Mischungen aus zwei oder mehreren der genannten Füllstoffe einsetzen. Der Teilchendurchmesser der Füllstoffe liegt vorzugsweise unter 2 μm, beispielsweise liegen zwischen 40 und 90 % der Füllstoffteilchen unter einem Teilchendurchmesser von < 2 μm.
  • Bei den in JP-A 08059740, WO 04/087818 und DE 103 34 133 A1 beschriebenen Verfahren liegen die Füllstoffe als wässrige Anschlämmungen vor. Präzipitiertes Calciumcarbonat liegt üblicherweise als wässrige Anschlämmung in Abwesenheit von Dispergiermitteln vor. Um wässrige Anschlämmungen der übrigen Füllstoffe (z.B. GCC) herzustellen, verwendet man in der Regel ein anionisches Dispergiermittel, z.B. Polyacrylsäure mit einer mittleren Molmasse Mw von beispielsweise 1.000 bis 40.000 Dalton. Enthalten die Füllstoffe einen hohen Feststoffgehalt (z.B. 60 % und mehr) werden die Füllstoffe in Gegenwart eines dieses anionischen Dispergiermittels gemahlen. Falls man ein anionisches Dispergiermittel verwendet, so setzt man davon beispielsweise 0,01 bis 0,6 Gew.-% vorzugsweise 0,2–0,5 Gew.-% zur Herstellung wässriger Füllstoffanschlämmungen ein. Die in Gegenwart von anionischen Dispergiermitteln in Wasser dispergierten Anschlämmungen enthalten beispielsweise 10–60 Gew.-%, meistens 15–50 Gew.-% mindestens eines Füllstoffes.
  • Die in JP-A 08059740, WO 04/087818 und der DE 103 34 133 A1 beschriebenen wasserlöslichen amphoteren Polymere werden den wässrigen Anschlämmungen beigemischt. Beispielsweise kann man bis zu einer 1 bis 60 Gew.-% mindestens eines feinteiligen Füllstoffs enthaltenden wässrigen Anschlämmung 0,1 bis 5 Gew.-% bezogen auf Füllstoffe, eines wasserlöslichen amphoteren Polymeren nach JP-A 08059740, WO 04/087818 und der DE 103 34 133 A1 zusetzten oder eine wässrige Anschlämmung eines feinteiligen Füllstoffs in eine wässrige Lösung eines amphoteren Polymers eintragen und die Komponenten jeweils mischen.
  • Dieses Behandeln der wässrigen Anschlämmung von feinteiligen Füllstoffen mit den amphoteren Polymeren kann kontinuierlich oder diskontinuierlich durchgeführt werden. Bevorzugt findet die Behandlung der Füllstoffe mit dem amphoteren Polymer in einem kontinuierlichen Modus statt. Dazu kann beispielsweise das amphotere Polymer als verdünnte Lösung zwischen dem Füllstofftank und der Füllstoffpumpe zugemischt werden. Die Verdünnung sowie die Scherkräfte in der Füllstoffpumpe garantieren dabei eine gute Durchmischung des Füllstoffes mit dem Polymeren. Dadurch werden die feinteiligen Füllstoffe zumindest teilweise mit den wasserlöslichen amphoteren Polymeren überzogen bzw. imprägniert. Der Feststoffgehalt der verdünnten Polymerlösung der wasserlöslichen amphoteren Polymere kann zwischen 20 Gew.-% und 0,01 Gew.-% betragen.
  • Beim Einsatz feinteiliger Füllstoffe, die aus dem Ausschuss von gestrichenem Papier erhalten werden, kann die Behandlung mit den wasserlöslichen amphoteren Copolymerisaten beispielsweise auf dem Weg erfolgen, in dem der Ausschuss von gestrichenem Papier in Gegenwart der wasserlöslichen amphoteren Copolymerisate aufgelöst wird.
  • Alternativ erfolgt die Behandlung mit wasserlöslichen amphoteren Copolymerisaten nach Auflösen des Ausschusses aus gestrichenem Papier.
  • Unabhängig von der Behandlungsart des Füllstoffs aus dem Ausschuss erhält man ebenfalls feinteilige Füllstoffe, die zumindest teilweise mit wasserlöslichen amphoteren Copolymerisaten überzogen bzw. imprägniert sind.
  • Von der Füllstoffpumpe gelangt die mit dem Polymer behandelte Füllstoffanschlämmung unmittelbar in den Dickstoff oder den Dünnstoff der Papiermaschine. Denkbar ist auch, das behandelter Füllstoff sowohl im Dickstoff als auch im Dünnstoff der Papiermaschine zudosiert werden.
  • Das erfindungsgemäße Verfahren ist sowohl für die Herstellung holzfreier Papiere als auch holzhaltiger Papiere geeignet. In allen Fällen führt das erfindungsgemäße Verfahren zu einer signifikanten Erhöhung des Füllstoffgehaltes im Papier, ohne bedeutende Verluste bei den Papiereigenschaften wir Trockenfestigkeit einzubüssen. Der Füllstoffgehalt wird ohne Festigkeitsverlust durch die Zugabe des wenigstens einem kationischen und/oder amphoteren Polymeren gesteigert.
  • Die Herstellung von Papier, Pappe und Karton nach dem erfindungsgemäßen Verfahren erfolgt üblicherweise durch Entwässern einer Aufschlämmung von Cellulosefasern. Als Cellulosefasern kommen sämtliche dafür gängigen Typen in Betracht, z.B. Cellulosefasern aus Holzstoff und allen Einjahrespflanzen gewonnenen Fasern in Betracht. Zu Holzstoff gehören beispielsweise Holzschliff, thermomechanischer Stoff (TMP), chemo thermomechanischer Stoff (CTMP), Druckschliff, Halbzellstoff, Hochausbeutezellstoff und Refiner Mechanical Pulp (RMP) sowie Altpapier. Außerdem eignen sich Zellstoffe, die in gebleichter oder ungebleichter Form verwendet werden können. Beispiele hierfür sind Sulfat-, Sulfit- und Natronzellstoff. Vorzugsweise verwendet man gebleichte Zellstoffe, die auch als gebleichter Kraftzellstoff bezeichnet werden. Die genannten Faserstoffe können allein oder in Mischung verwendet werden.
  • Gegenstand der vorliegenden Erfindung sind ebenfalls die Papiere in Gegenwart einer wässrigen Anschlämmung von feinteilige Füllstoffe enthaltenden Komponenten, wobei die feinteiligen Füllstoffe zumindest teilweise mit wasserlöslichen amphoteren Copolymerisaten überzogen sind, wobei man zusätzlich zu der wässrigen Anschlämmung von feinteilige Füllstoffe enthaltenden Komponenten wenigstens ein kationisches und/oder amphoteres Polymer der Fasersuspension vor der Blattbildung zusetzt, hergestellt werden.
  • Diese Papiere zeichnen sich insbesondere durch einen hohen Füllstoffgehalt und eine hohe Trockenfestigkeit aus. Unter Papieren mit hohem Füllstoffgehalt im Sinne der vorliegenden Erfindung werden insbesondere solche Papiere verstanden, die einen Füllstoffgehalt von 3 bis 45 Gew.-%, bezogen auf den Trockengehalt der Papierstoffsuspension, bevorzugt von 10 bis 45 Gew.-%, besonders bevorzugt von 15 bis 40 Gew.-% und insbesondere bevorzugt von 20 bis 35 Gew.-%, jeweils bezogen auf den Trockengehalt der Papierstoffsuspension, aufweisen.
  • Die Erfindung wird anhand der folgenden, nicht einschränkenden Beispiele näher erläutert.
  • Die Prozentangaben in den Beispielen bedeuten Gewichtsprozent, sofern aus dem Zusammenhang nichts anderes hervorgeht. Die elektrophoretische Mobilität bzw. das Zetapotenzial wurde laseroptisch bestimmt. Für Elektrophoresemessungen wurden die Proben mit einer wässrigen KCl-Lösung (z.B. 10 mMol) auf eine Konzentration für die Messung von 1 Vol.-% verdünnt. Als Messinstrument diente der Zetasizer 3000 HS der Firma Malvern Instruments Ltd..
  • Die Molmassen Mw der Polymere wurden mit Hilfe statischer Lichtstreuung bestimmt. Die Messungen wurden bei pH 7,6 in einer 10 mmolaren wässrigen Kochsalz-Lösung durchgeführt.
  • Die K-Werte wurden nach H. Fikentscher, Cellulosechemie, Band 13, 48–64 und 71–74 (1932) in 1,0 %iger wässriger Kochsalzlösung bei 25°C, bei einem pH-Wert von 7 und einer Polymerkonzentration von 0,1 Gew. % bestimmt.
  • Als Füllstoffe wurden gefällte Kreide, präzipitiertes Calciumcarbonat (PCC), gemahlene Kreide (GCC), Kaolin oder Mischungen aus den genannten Füllstoffen eingesetzt. In den erfindungsgemäßen Beispielen wurden fünf verschiedene, mit Copolymeren vorbehandelte Füllstoffe verwendet.
  • Die strukturelle Zusammensetzung dieser Copolymere wurde aus der eingesetzten Monomerenmischung, dem Hydrolysegrad und mit Hilfe der in der älteren deutschen Patentanmeldung mit dem Aktezeichen 103 34 133.1 sowie in der WO 04/087818 offenbarten Berechnung anhand der 13C-NMR-Spektroskopie ermittelt. Dazu wurden die Signale der C-Atome integriert. Als Lösemittel wurde D2O verwendet.
  • I. Verwendung von sogenanntem frischen Füllstoff
  • Füllstoff 1
  • 6 g einer 12 %igen wässrigen Lösung eines amphoteren Copolymeren mit einem Gehalt an 40 Mol-% Vinylformamideinheiten, 30 Mol-% Acrylsäureeinheiten und 30 Mol-% Vinylamin- und Amidineinheiten und einem Molekulargewicht Mw von ca. 500.000 wurden in einem Becherglas vorgelegt und anschließend mit 30 g Wasser verdünnt. Anschließend gab man 150 g einer 20 %igen Aufschlämmung von präzipitiertem Calciumcarbonat (PCC) in Wasser zu. Während der Zugabe der PCC-Slurry und danach wurde die Mischung mit Hilfe eines Heiltof-Rührers bei 1000 Umdrehungen pro Minute (UpM) gerührt. Der pH-Wert der Mischung wurde anschließend auf 8,5 eingestellt. Mit Hilfe der Mikroelektrophorese wurde die Mobilität der Füllstoffteilchen bei pH 8,5 und bei pH 7 gemessen. Die elektrophoretische Mobilität nahm bei beiden pH-Einstellungen einen leicht negativen Wert an.
  • Füllstoff 2
  • 6 g einer 12 %igen wässrigen Lösung eines amphoteren Copolymeren mit einem Gehalt an 40 Mol-% Vinylformamideinheiten, 30 Mol-% Acrylsäureeinheiten und 30 Mol-% Vinylamin- und Amidineinheiten und einem Molekulargewicht Mw von ca. 500.000 wurden in einem Becherglas vorgelegt und anschließend mit 30 g Wasser verdünnt. Anschließend gab man 150 g einer 20 %igen Aufschlämmung von gemahlenem Calciumcarbinat (GCC) in Wasser zu. Die Mahlung des GCC erfolgte in einer Laborpigmentmühle in Gegenwart eines Natriumacrylathaltigen Dispergiermittels statt. Nach der Mahlung wiesen ca. 75 % der GCC-Teilchen eine Teilchengröße < 2 μm auf. Während der Zugabe der GCC-Slurry und danach wurde die Mischung mit Hilfe eines Heiltof-Rührers bei 1000 UpM gerührt. Der pH-Wert der Mischung wurde anschließend auf 8,5 eingestellt. Mit Hilfe der Mikroelektrophorese wurde die Mobilität der Füllstoffteilchen bei pH 8,5 und bei pH 7 gemessen. Die elektrophoretische Mobilität nahm bei beiden pH-Einstellungen einen leicht negativen Wert an.
  • Füllstoff 3
  • 5,4 g einer 13,5 %igen wässrigen Lösung eines amphoteren Copolymeren, das gemäß Beispiel 1 der älteren deutschen Patentanmeldung mit dem Aktenzeichen 103 34 133.1 hergestellt wurde, mit einem Gehalt an 35 Mol-% Vinylformamideinheiten, 30 Mol-% Vinylamin- und Amidineinheiten, 11 Mol-% Natriumvinylsulfonateinheiten und 27 Mol-% Natriumacrylateinheiten und einem Molekulargewicht Mw von ca. 500.000 wurden in einem Becherglas vorgelegt und anschließend mit 30 g Wasser verdünnt. Anschließend gab man 150 g einer 20 %igen Aufschlämmung von gemahlenem Calciumcarbinat (GCC, Hydrocarb® 60 GU der Firma Omya) in Wasser zu. Während der Zugabe der PCC-Slurry und danach wurde die Mischung mit Hilfe eines Heiltof-Rührers bei 1000 UpM gerührt. Der pH-Wert der Mischung wurde anschließend auf 8,5 eingestellt. Mit Hilfe der Mikroelektrophorese wurde die Mobilität der Füllstoffteilchen bei pH 8,5 und bei pH 7 gemessen. Die elektrophoretische Mobilität nahm bei beiden pH-Einstellungen einen leicht negativen Wert an.
  • Füllstoff 4
  • 6 g einer 12 %igen wässrigen Lösung eines amphoteren Copolymeren mit einem Gehalt an 40 Mol-% Vinylformamideinheiten, 30 Mol-% Acrylsäureeinheiten und 30 Mol-% Vinylamin- und Amidineinheiten und einem Molekulargewicht Mw von ca. 500.000 wurden in einem Becherglas vorgelegt und anschließend mit 30 g Wasser verdünnt. Anschließend gab man 150 g einer 20 %igen Aufschlämmung von Kaolin-Clay-Mischung in Wasser zu. Während der Zugabe dieser Slurry und danach wurde die Mischung mit Hilfe eines Heiltof-Rührers bei 1000 UpM gerührt. Der pH-Wert der Mischung wurde anschließend auf 8,5 eingestellt. Mit Hilfe der Mikroelektrophorese wurde die Mobilität der Füllstoffteilchen bei pH 8,5 und bei pH 7 gemessen. Die elektrophoretische Mobilität nahm bei beiden pH-Einstellungen einen leicht negativen Wert an.
  • Füllstoff 5 (nach Beispiel 1 der JP-A 08059740)
  • 6 g einer 12%igen wässrigen Lösung eines amphoteren Copolymeren mit einem Gehalt an 35 Mol-% Amidineinheiten der Struktur (I), 20 Mol-% Vinylformamideinheiten, 10 Mol-% Vinylamineinheiten, 5 Mol-% Acrylsäureeinheiten und 30 Mol-% Nitrileinheiten und einer Molmasse Mw von 300.000 Dalton wurden in einem Becherglas vorgelegt und anschließend mit 30 g Wasser verdünnt. Die Grenzviskosität der Polymeren betrug 2,7 dl/g (gemessen mit einem Oswald-Viskosimeter in einer wässrigen NaCl-Lösung bei einem NaCl-Gehalt von 0,1 g/dl und einer Temperatur von 25°C. Anschließend gab man 150 g einer 20 %igen Aufschlämmung von präzipitiertem Calciumcarbonat (PCC) in Wasser zu. Während der Zugabe der Slurry und danach wurde die Mischung mit Hilfe eines Heiltof-Rührers bei 1000 UpM gerührt. Der pH-Wert der Mischung wurde anschließend auf 8,5 eingestellt. Die mit Hilfe der Mikroelektrophorese wurde die Mobi lität der Füllstoffteilchen bei pH 8,5 und bei pH 7 gemessen. Die elektrophoretische Mobilität nahm bei beiden pH-Einstellungen einen leicht negativen Wert an.
  • Herstellung der Papierblätter vom Typ A
  • Beispiele 1 bis 5
  • Eine Mischung aus TMP (Thermo-mechanical pulp) und Holzschliff wurde im Verhältnis von 70/30 bei einer Feststoffkonzentration von 4 % im Laborpulper stippenfrei aufgeschlagen, bis ein Mahlgrad von 60–65 erreicht wurde. Der pH-Wert des Stoffs lag dabei im Bereich zwischen 7 und B. Der gemahlene Stoff wurde anschließend durch Zugabe von Wasser auf eine Feststoffkonzentration von 0,35 % verdünnt.
  • Um das Verhalten der oben beschriebenen wässrigen Füllstoff-Slurries der vorbehandelten Füllstoffe in Kombination mit Vinylamineinheiten enthaltenden Polymeren bei der Herstellung von füllstoffhaltigem Papier zu ermitteln, legte man jeweils 500 ml der Papierstoffsuspension vor und dosierte jeweils in diese Pulpe die Slurries der vorbehandelten Füllstoffe sowie ein Vinylamineinheiten enthaltendes Polymer (Catiofast® VMP). Die Dosiermenge des Vinylamineinheiten enthaltenden Polymeren betrug jeweils 0,1 % Polymer, bezogen auf den Trockengehalt der Papierstoffsuspension. Unmittelbar danach dosierte man ein kationisches Polyacrylamid als Retentionsmittel (Polymin® KE 2020) in diese Mischung. Die Dosiermenge des Retentionsmittels betrug jeweils 0,01 % Polymer, bezogen auf den Trockengehalt der Papierstoffsuspension.
  • Die Menge an Slurry wurde mit Hilfe mehrerer Vorversuche so eingestellt, dass die Menge an vorbehandeltem Füllstoff ca. 20 % betrug.
  • Die Papierblätter wurden jeweils auf einem Rapid-Köthen-Blattbildner nach ISO 5269/2 mit einem Blattgewicht von 80 g/m2 gefertigt und anschließend 7 Minuten bei 90°C getrocknet und danach mit einem Liniendruck von 200 N/cm kalandriert.
  • Vergleichsbeispiele 1 bis 5
  • Es wurden Papierblätter analog zu den Beispielen 1 bis 5 mit den entsprechenden vorbehandelten Füllstoffen hergestellt. Es wurde jedoch auf die Zugabe von Vinylamineinheiten enthaltenden Polymeren verzichtet.
  • Vergleichsbeispiele 6 bis 9
  • Es wurden Papierblätter analog zu den Vergleichsbeispielen 1 bis 4 hergestellt, allerdings wurden zusätzlich die entsprechenden Füllstoffe unbehandelt, dass heißt frei von amphoteren Copolymeren, eingesetzt. Jedoch wurde die Zugabemenge der Füllstoffs lurry bei der Blattbildung soweit erhöht, dass der äquivalente Füllstoffgehalt des jeweiligen Füllstofftyps aus den Beispielen 1 bis 4 erreicht wurde.
  • Prüfung der Papierblätter vom Typ A
  • Nach einer Lagerzeit im Klimaraum bei konstant 23°C und 50 % Luftfeuchtigkeit für 12 Stunden wurden die Trockenreißlänge der Blätter nach DIN 54540, die Weiterreißarbeit nach Brecht-Imset (DIN 53115) und die Biegesteifigkeit nach DIN 53121 bestimmt. Die Ergebnisse sind in Tabelle 1 angegeben. Tabelle 1
    Figure 00190001
  • Herstellung der Papierblätter vom Typ A
  • Beispiele 6 bis 9
  • Eine Mischung aus gebleichtem Birkensulfat und gebleichtem Kiefernsulfit wurde im Verhältnis von 70/30 bei einer Feststoffkonzentration von 4 % im Laborpulper stippenfrei aufgeschlagen, bis ein Mahlgrad von 55–60 erreicht wurde. Dem aufgeschlagenen Stoff wurde anschließend ein optischer Aufheller (Blankophor® PSG ) sowie eine kationische Stärke (HiCat® 5163 A) zugegeben. Der Aufschluß der kationischen Stärke erfolgte als 10 %ige Stärkeslurry in einem Jet-Kocher bei 130°C und 1 Minute Verweilzeit. Die Dosiermenge des optischen Aufhellers betrug 0,5 % Handelsware, bezogen auf den Trockengehalt der Papierstoffsuspension. Die Dosiermenge der kationischen Stärke betrug 0,5 % Stärke, bezogen auf den Trockengehalt der Papierstoffsuspension. Der pH-Wert des Stoffs lag dabei im Bereich zwischen 7 und 8. Der gemahlene Stoff wurde anschließend durch Zugabe von Wasser auf eine Feststoffkonzentration von 0,35 % verdünnt.
  • Um das Verhalten der oben beschriebenen wässrigen Füllstoff-Slurries der vorbehandelten Füllstoffe in Kombination mit Vinylamineinheiten enthaltenden Polymeren bei der Herstellung von füllstoffhaltigem Papier zu ermitteln, legte man jeweils 500 ml der Papierstoffsuspension vor und dosierte jeweils in diese Pulpe die Slurries der vorbehandelten Füllstoffe sowie ein Vinylamineinheiten enthaltendes Polymer (Catiofast® VFH). Die Dosiermenge des Vinylamineinheiten enthaltenden Polymeren betrug jeweils 0,1 % Polymer, bezogen auf den Trockengehalt der Papierstoffsuspension. Unmittelbar danach dosierte man ein kationisches Polyacrylamid als Retentionsmittel (Polymin® KE 2020) in diese Mischung. Die Dosiermenge des Retentionsmittels betrug jeweils 0,01 % Polymer, bezogen auf den Trockengehalt der Papierstoffsuspension.
  • Die Menge an Slurry wurde mit Hilfe mehrerer Vorversuche so eingestellt, dass die Menge an vorbehandeltem Füllstoff ca. 16 % betrug.
  • Die Papierblätter wurden jeweils auf einem Rapid-Köthen-Blattbildner nach ISO 5269/2 mit einem Blattgewicht von 80 g/m2 gefertigt und anschließend 7 Minuten bei 90°C getrocknet und danach mit einem Liniendruck von 200 N/cm kalandriert.
  • Vergleichsbeispiele 10 bis 13
  • Es wurden Papierblätter analog zu den Beispielen 6 bis 9 mit den entsprechenden vorbehandelten Füllstoffen hergestellt. Es wurde jedoch auf die Zugabe von Vinylamineinheiten enthaltenden Polymeren verzichtet.
  • Vergleichsbeispiele 14 bis 16
  • Es wurden Papierblätter analog zu den Vergleichsbeispielen 10 bis 12 hergestellt, allerdings wurden zusätzlich die entsprechenden Füllstoffe unbehandelt, dass heißt frei von amphoteren Copolymeren, eingesetzt. Jedoch wurde die Zugabemenge der Füllstoffslurry bei der Blattbildung soweit erhöht, dass der äquivalente Füllstoffgehalt des jeweiligen Füllstofftyps aus den Beispielen 6 bis 8 erreicht wurde.
  • Prüfung der Papierblätter vom Typ B
  • Nach einer Lagerzeit im Klimaraum bei konstant 23°C und 50 % Luftfeuchtigkeit für 12 Stunden wurden die innere Festigkeit nach DIN 54516 und die Trockenreißlänge der Blätter nach DIN 54540 ermittelt. Die Weiterreißarbeit wurde nach Brecht-Imset (DIN 53115) und die Biegesteifigkeit nach DIN 53121 ermittelt. Die Ergebnisse sind in Tabelle 2 angegeben. Tabelle 2
    Figure 00210001
    Figure 00220001
  • II. Verwendung von Füllstoff aus dem Ausschuss von gestrichenem Papier
  • Das in den Beispielen eingesetzte doppelseitig gestrichene holzfreie Papier mit einem Flächengewicht von 104 g/qm enthielt laut Analyse der Veraschungsdaten (500°C für 2 Stunden im Veraschungsofen) insgesamt 38,4 % Füllstoff. Nach Angaben des Papierherstellers wurde das für die Herstellung der gestrichenen Qualität verwendete Rohpapier mit einem Füllstoffgehalt von ca. 23 % (gemahlenens Calciumcarbonat, GCC) produziert. Das Strichgewicht auf jeder Seite betrug 12 g/qm. Als Streichpigment wurde präzipitiertes Calciumcarbonat verwendet.
  • Beispiele 17–20
  • Herstellung des gestrichenen Ausschusses
  • In einem 30-Liter Behälter wurden 500 g des gestrichenen Papiers mit 12 Liter Wasser für 5 Minuten aufgeweicht. Anschließend gab man 5 g einer 12%-igen wässrigen Lösung eines amphoteren Copolymeren mit einem Gehalt an 40 Mol-% Vinylformamideinheiten, 30 Mol-% Acrylsäureeinheiten und 30 Mol-% Vinylamin- und Amidineinheiten und einem Molekulargewicht Mw von ca. 500.000 zu. Danach wurde das Gemisch in einem Laborpulper (Firma Escher Wyss) für 10 Minuten stippenfrei aufgeschlagen. Der Mahlgrad der aufgeschlagenen Stoffsuspension lag anschließend bei 65 Schopper Riegler.
  • Herstellung der Papierblätter vom Typ C
  • Eine Mischung aus gebleichtem Birkensulfat und gebleichtem Kiefernsulfit wurde im Verhältnis von 70/30 bei einer Feststoffkonzentration von 4 % im Laborpulper stippenfrei aufgeschlagen, bis ein Mahlgrad von 55 – 60 erreicht wurde. Der aufgeschlagene Stoff und der in Gegenwart des amphoteren Copolymeren aufgeschlagene gestrichene Ausschuss wurden im Verhältnis 1:1 gemischt. Dem Gesamtstoff wurde anschließend ein optischer Aufheller (Blankophor® PSG) sowie eine kationische Stärke (HiCat® 5163 A) zugegeben. Der Aufschluss der kationischen Stärke erfolgte als 10 %ige Stärkeslurry in einem Jet-Kocher bei 130°C und 1 Minute Verwreilzeit. Die Dosiermenge des optischen Aufhellers betrug 0,5 % Handelsware, bezogen auf den Trockengehalt der Papierstoffsuspension. Die Dosiermenge der kationischen Stärke betrug 0,5 % Stärke, bezogen auf den Trockengehalt der Papierstoffsuspension. Der pH-Wert des Stoffs lag dabei im Bereich zwischen 7 und 8. Der Gesamtstoff wurde anschließend durch Zugabe von Wasser auf eine Feststoffkonzentration von 0,35 % verdünnt.
  • Zur Herstellung von füllstoffhaltigem Papier legte man jeweils 500 ml der Papierstoffsuspension vor und dosierte jeweils 1,5 g (Beispiel 17), 2 g (Beispiel 18), 2,5 g (Beispiel 19) und 3 g (Beispiel 20) einer 20%-igen GCC-Slurry (Hydrocarb® 60 GU der Firma Omya) sowie jeweils 0,05 % eines Vinylamineinheiten enthaltenden Polymeren (Catiofast® VFH), bezogen auf den Trockengehalt der Papierstoffsuspension zu. Unmittelbar danach dosierte man ein kationisches Polyacrylamid als Retentionsmittel (Polymin® KE 2020) in diese Mischung. Die Dosiermenge des Retentionsmittels betrug in allen Fällen jeweils 0,01% Polymer, bezogen auf Trockengehalt der Papierstoffsuspension.
  • Die Papierblätter wurden jeweils auf einem Rapid-Köthen-Blattbildner nach ISO 5269/2 mit einem Blattgewicht von 80 g/m2 gefertigt und anschließend 7 Minuten bei 90°C getrocknet und danach mit einem Liniendruck von ca. 200 N/cm kalandriert.
  • Beispiele 21–24
  • Herstellung des gestrichenen Ausschusses
  • In einem 30-Liter Behälter wurden 500 g des gestrichenen Papiers mit 12 Liter Wasser für 5 Minuten aufgeweicht. Anschließend gab man 5 g einer 12 %-igen wässrigen Lösung eines amphoteren Copolymeren mit einem Gehalt an 40 Mol-% Vinylformamideinheiten, 30 Mol-% Acrylsäureeinheiten und 30 Mol-% Vinylamin- und Amidineinheiten und einem Molekulargewicht Mw von ca. 500.000 zu. Danach wurde das Gemisch in einem Laborpulper (Firma Escher Wyss) für 10 Minuten stippenfrei aufgeschlagen. Der Mahlgrad der aufgeschlagenen Stoffsuspension lag anschließend bei 65 Schopper Riegler.
  • 500 g des gestrichenen Papiers wurden in einem Laborpulper (Firma Escher Wyss) mit 12 Liter Wasser (Stoffdichte 4 %) für 10 Minuten stippenfrei aufgeschlagen. Der Mahlgrad der aufgeschlagenen Stoffsuspension lag bei 65 Schopper Riegler. Anschließend gab man dem aufgeschlagenen Ausschuss 5 g einer 12%-igen wässrigen Lösung eines amphoteren Copolymeren mit einem Gehalt an 40 Mol-% Vinylformamideinheiten, 30 Mol-% Acrylsäureeinheiten und 30 Mol-% Vinylamin- und Amidineinheiten mit einem Molekulargewicht Mw von ca. 500.000 zu.
  • Herstellung der Papierblätter vom Typ D
  • Eine Mischung aus gebleichtem Birkensulfat und gebleichtem Kiefernsulfit wurde im Verhältnis von 70/30 bei einer Feststoffkonzentration von 4 % im Laborpulper stippenfrei aufgeschlagen, bis ein Mahlgrad von 55–60 erreicht wurde. Der aufgeschlagene Stoff und der in Gegenwart des amphoteren Copolymeren aufgeschlagene gestrichene Ausschuss wurden im Verhältnis 1:1 gemischt. Dem Gesamtstoff wurde anschließend ein optischer Aufheller (Blankophor® PSG) sowie eine kationische Stärke (HiCat® 5163 A) zugegeben. Der Aufschluss der kationischen Stärke erfolgte als 10 %ige Stärkeslurry in einem Jet-Kocher bei 130°C und 1 Minute Verweilzeit. Die Dosiermenge des optischen Aufhellers betrug 0,5 % Handelsware, bezogen auf den Trockengehalt der Papierstoffsuspension. Die Dosiermenge der kationischen Stärke betrug 0,5 % Stärke, bezogen auf den Trockengehalt der Papierstoffsuspension. Der pH-Wert des Stoffs lag dabei im Bereich zwischen 7 und 8. Der Gesamtstoff wurde anschließend durch Zugabe von Wasser auf eine Feststoffkonzentration von 0,35 % verdünnt.
  • Zur Herstellung von füllstoffhaltigem Papier legte man jeweils 500 ml der Papierstoffsuspension vor und dosierte jeweils 1,5 g (Beispiel 21), 2 g (Beispiel 22), 2,5 g (Beispiel 23) und 3 g (Beispiel 24) einer 20%-igen GCC-Slurry (Hydrocarb® 60 GU der Firma Omya) sowie jeweils 0,05 % eines Vinylamineinheiten enthaltenden Polymeren (Catiofast® VFH), bezogen auf den Trockengehalt der Papierstoffsuspension zu. Unmittelbar danach dosierte man ein kationisches Polyacrylamid als Retentionsmittel (Polymin® KE 2020) in diese Mischung. Die Dosiermenge des Retentionsmittels betrug in allen Fällen jeweils 0,01% Polymer, bezogen auf Trockengehalt der Papierstoffsuspension.
  • Die Papierblätter wurden jeweils auf einem Rapid-Köthen-Blattbildner nach ISO 5269/2 mit einem Blattgewicht von 80 g/m2 gefertigt und anschließend 7 Minuten bei 90°C getrocknet und danach mit einem Liniendruck von ca. 200 N/cm kalandriert.
  • Vergleichsbeispiele 25–28
  • Herstellung des gestrichenen Ausschusses
  • 500 g des gestrichenen Papiers wurden in einem Laborpulper (Firma Escher Wyss) mit 12 Liter Wasser (Stoffdichte 4%) für 10 Minuten stippenfrei aufgeschlagen. Der Mahlgrad der aufgeschlagenen Stoffsuspension lag anschließend bei 65 Schopper Riegler.
  • Herstellung der Papierblätter vom Typ E
  • Eine Mischung aus gebleichtem Birkensulfat und gebleichtem Kiefernsulfit wurde im Verhältnis von 70/30 bei einer Feststoffkonzentration von 4 % im Laborpulper stippen frei aufgeschlagen, bis ein Mahlgrad von 55–60 erreicht wurde. Der aufgeschlagene Stoff wurde anschließend mit dem gestrichenen Ausschuss im Verhältnis 1:1 gemischt. Dem Gesamtstoff wurde anschließend ein optischer Aufheller (Blankophor® PSG) sowie eine kationische Stärke (HiCat® 5163 A) zugegeben. Der Aufschluss der kationischen Stärke erfolgte als 10 %ige Stärkeslurry in einem Jet-Kocher bei 130°C und 1 Minute Verweilzeit. Die Dosiermenge des optischen Aufhellers betrug 0,5 % Stärke, bezogen auf den Trockengehalt der Papierstoffsuspension. Die Dosiermenge der kationischen Stärke betrug 0,5 % Stärke, bezogen auf den Trockengehalt der Papierstoffsuspension. Der pH-Wert des Stoffs lag dabei im Bereich zwischen 7 und 8. Der Gesamtstoff wurde anschließend durch Zugabe von Wasser auf eine Feststoffkonzentration von 0,35 % verdünnt.
  • Zur Herstellung von füllstoffhaltigem Papier legte man jeweils 500 ml der Papierstoffsuspension vor und dosierte in diese Pulpe jeweils 1,5 g (Vergleichsbeispiel 25), 2 g (Vergleichsbeispiel 26), 2,5 g (Vergleichsbeispiel 27) und 3 g (Vergleichsbeispiel 28) einer 20 %-igen GCC-Slurry (Hydrocarb® 60 GU der Firma Omya) sowie jeweils 0,05 % eines Vinylamineinheiten enthaltenden Polymeren (Catiofast® VFH), bezogen auf Trockengehalt der Papierstoffsuspension. Unmittelbar danach doosierte man ein kationisches Polyacrylamid als Retentionsmittel (Polymin® KE 2020) in diese Mischung. Die Dosiermenge des Retentionsmittels betrug in allen Fällen jeweils 0,01 % Polymer, bezogen auf Trockengehalt der Papierstoffsuspension.
  • Die Papierblätter wurden jeweils auf einem Rapid-Köthen-Blattbildner nach ISO 5269/2 mit einem Blattgewicht von 80 g/m2 gefertigt und anschließend 7 Minuten bei 90°C getrocknet und danach mit einem Liniendruck von ca. 200 N/cm kalandriert.
  • Tabelle 3
    Figure 00250001
  • Figure 00260001

Claims (12)

  1. Verfahren zur Herstellung von Papier, Pappe und Karton in Gegenwart einer wässrigen Anschlämmung von feinteilige Füllstoffe enthaltenden Komponenten, wobei die feinteiligen Füllstoffe zumindest teilweise mit wasserlöslichen amphoteren Copolymerisaten überzogen sind, dadurch gekennzeichnet, dass man zusätzlich zu der wässrigen Anschlämmung von feinteilige Füllstoffe enthaltenden Komponenten wenigstens ein kationisches und/oder amphoteres Polymer, das als Strukturelement keine Ester ungesättiger Carbonsäuren mit quaternierten Aminoalkoholen enthält, der Fasersuspension vor der Blattbildung zusetzt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das kationische und/oder amphotere Polymere ausgewählt ist aus –Homo- und Copolymeren von Vinylimidazolen, Diallylalkylaminen und Allyldialkyaminen, wobei diese Monomere in neutraler Form, als Salze von Säuren oder in quaternierter Form eingesetzt werden, – Homo- und Copolymeren von Estern ungesättigter Carbonsäuren mit N,N-Dialkylaminoalkoholen oder N-Alkylaminalkoholen, wobei diese Monomere in neutraler Form oder als Salze von Säuren eingesetzt werden, – Homo- und Copolymeren von Amiden ungesättigter Carbonsäuren mit N,N-Dialkyldiaminen oder N-Alkyldiaminen, wobei diese Monomere in neutraler Form, als Salze von Säuren oder in quaternierter Form eingesetzt werden, – Kondensationsprodukten aus Epichlorhydrin oder Bisepoxiden mit Dialkylaminen oder Polyamidoaminen, - Polyethyleniminen, – Pfropfprodukte von Ethyleniminen auf Amidoaminen oder Polyaminen, – kationischen Stärken und/oder – Vinylamineinheiten enthaltende Polymere.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass es sich um ein Vinylamineinheiten enthaltendes Polymer handelt.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass es sich bei den Vinylamineinheiten enthaltenden Polymeren um zu 1 bis 100 mol-% hydrolysierte Homo- und Copolymerisate von N-Vinylformamid handelt.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass es sich um Homopolymerisate von N-Vinylformamid handelt.
  6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass es sich um Copolymerisate enthaltend – 95 bis 5 mol-% N-Vinylformamid und – 5 bis 95 mol-% monoethylenish ungesättigte Monomere handelt.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die monoethylenisch ungesättigten Monomere ausgewählt sind aus Vinylformiat, Vinylacetat, Acrylnitril, Methylacrylat, Ethylacrylat und Methylamethacrylat.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das wenigstens eine kationische und/oder amphotere Polymer unmittelbar nach der Zugabe der wässrigen Anschlämmung von feinteilige Füllstoffe enthaltenden Komponenten der Fasersuspension zugesetzt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das wenigstens eine kationische und/oder amphotere Polymer in einer Menge von 0,0001 bis 1 Gew.-%, bezogen auf den Trockengehalt der Papierstoffsuspension, zu der Fasersuspension zugesetzt wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die wasserlöslichen amphoteren Copolymerisate Amidineinheiten enthalten.
  11. Papier hergestellt nach einem Verfahren der Ansprüche 1 bis 10.
  12. Papier nach Anspruch 11, dadurch gekennzeichnet, dass der Füllstoffgehalt 3 bis 45 Gew.-%, bezogen auf den Trockengehalt der Papierstoffsuspension, beträgt.
DE200510022799 2004-12-17 2005-05-12 Papier mit hohem Füllstoffgehalt und hoher Trockenfestigkeit Withdrawn DE102005022799A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE200510022799 DE102005022799A1 (de) 2005-05-12 2005-05-12 Papier mit hohem Füllstoffgehalt und hoher Trockenfestigkeit
JP2007545938A JP5130049B2 (ja) 2004-12-17 2005-12-14 高い填料含量および高い乾燥強度を有する紙
US11/721,929 US8778139B2 (en) 2004-12-17 2005-12-14 Papers with a high filler material content and high dry strength
EP05819674.2A EP1828481B1 (de) 2004-12-17 2005-12-14 Papiere mit hohem f]llstoffgehalt und hoher trockenfestigkeit
PCT/EP2005/013430 WO2006066769A2 (de) 2004-12-17 2005-12-14 Papiere mit hohem füllstoffgehalt und hoher trockenfestigkeit
ES05819674.2T ES2554691T3 (es) 2004-12-17 2005-12-14 Papeles con un alto contenido de cargas y una elevada resistencia a la tracción en seco
PL05819674T PL1828481T3 (pl) 2004-12-17 2005-12-14 Papiery o dużej zawartości wypełniaczy i wysokiej wytrzymałości na sucho
CA2590489A CA2590489C (en) 2004-12-17 2005-12-14 Papers with a high filler material content and high dry strength
PT58196742T PT1828481E (pt) 2004-12-17 2005-12-14 Papéis com um elevado teor de substâncias de carga e uma elevada resistência a seco

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510022799 DE102005022799A1 (de) 2005-05-12 2005-05-12 Papier mit hohem Füllstoffgehalt und hoher Trockenfestigkeit

Publications (1)

Publication Number Publication Date
DE102005022799A1 true DE102005022799A1 (de) 2006-11-16

Family

ID=37295459

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200510022799 Withdrawn DE102005022799A1 (de) 2004-12-17 2005-05-12 Papier mit hohem Füllstoffgehalt und hoher Trockenfestigkeit

Country Status (1)

Country Link
DE (1) DE102005022799A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020551A1 (de) * 2008-08-18 2010-02-25 Basf Se Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020551A1 (de) * 2008-08-18 2010-02-25 Basf Se Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
US8404083B2 (en) 2008-08-18 2013-03-26 Basf Se Process for increasing the dry strength of paper, board and cardboard

Similar Documents

Publication Publication Date Title
EP1828481B1 (de) Papiere mit hohem f]llstoffgehalt und hoher trockenfestigkeit
EP2443284B1 (de) Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
EP1819877B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP2315875B1 (de) Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
EP1792010B1 (de) Verfahren zur herstellung von papier, pappe und karton
DE3644072A1 (de) Beschwertes papier
KR102093138B1 (ko) 아민 함유 호모폴리머 또는 코폴리머에 의한 알케닐 석신산 무수물의 에멀젼화
EP1613703B1 (de) Wässrige anschlämmungen von feinteiligen füllstoffen, verfahren zu ihrer herstellung und ihre verwendung zur herstellung füllstoffhaltiger papiere
WO2005083174A1 (de) Wässrige dispersion von reaktivleimungsmitteln, verfahren zu ihrer herstellung und ihre verwendung
EP1727938B1 (de) Verfahren zur herstellung von papier, pappe und karton
EP2334871A1 (de) Verfahren zur herstellung von papier, pappe und karton unter verwendung von endo-beta-1,4-glucanasen als entwässerungsmittel
EP0573458B1 (de) Wässrige anschlämmungen von feinteiligen füllstoffen und ihre verwendung zur herstellung von füllstoffhaltigem papier
EP3332063B1 (de) Verfahren zur herstellung von papier
EP2723943B1 (de) Verfahren zur herstellung von papier, pappe und karton
DE102004061605A1 (de) Papiere mit hohem Füllstoffgehalt und hoher Trockenfestigkeit
DE102005022799A1 (de) Papier mit hohem Füllstoffgehalt und hoher Trockenfestigkeit
DE2115409A1 (de) Füllstoffe
DE102006040771B3 (de) Papiererzeugnis und Verfahren zu dessen Herstellung sowie dessen Verwendung
WO2006136556A2 (de) Verfahren zur herstellung von papier, pappe und karton

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee