DE102005005228A1 - Verfahren sowie Vorrichtung zur Bestimmung eines Schaltzeitpunktes eines elektrischen Schaltgerätes - Google Patents

Verfahren sowie Vorrichtung zur Bestimmung eines Schaltzeitpunktes eines elektrischen Schaltgerätes Download PDF

Info

Publication number
DE102005005228A1
DE102005005228A1 DE102005005228A DE102005005228A DE102005005228A1 DE 102005005228 A1 DE102005005228 A1 DE 102005005228A1 DE 102005005228 A DE102005005228 A DE 102005005228A DE 102005005228 A DE102005005228 A DE 102005005228A DE 102005005228 A1 DE102005005228 A1 DE 102005005228A1
Authority
DE
Germany
Prior art keywords
voltage
time
oscillating
driving voltage
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102005005228A
Other languages
English (en)
Inventor
Georg Dipl.-Ing. Pilz
Peter Prof. Schegner
Christian Dipl.-Ing. Wallner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE102005005228A priority Critical patent/DE102005005228A1/de
Priority to EP20060704214 priority patent/EP1844484B1/de
Priority to PCT/EP2006/050236 priority patent/WO2006082131A1/de
Priority to US11/815,124 priority patent/US7723872B2/en
Priority to CN2006800036079A priority patent/CN101111912B/zh
Priority to JP2007552620A priority patent/JP4629113B2/ja
Priority to RU2007132724A priority patent/RU2393572C2/ru
Priority to KR1020077019997A priority patent/KR100933579B1/ko
Priority to CA 2596192 priority patent/CA2596192C/en
Priority to BRPI0606816-2A priority patent/BRPI0606816A2/pt
Priority to UAA200708771A priority patent/UA90880C2/ru
Priority to DE200650008993 priority patent/DE502006008993D1/de
Publication of DE102005005228A1 publication Critical patent/DE102005005228A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H2009/566Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle with self learning, e.g. measured delay is used in later actuations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Electronic Switches (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Keying Circuit Devices (AREA)
  • Power Conversion In General (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

Ein elektrisches Schaltgerät weist eine Unterbrecherstrecke (1) auf. Mittels der Unterbrecherstrecke (1) sind ein erster Leitungsabschnitt (2) und ein zweiter Leitungsabschnitt (3) verbindbar und auftrennbar. Zur Bestimmung eines Schaltzeitpunktes wird der zeitliche Verlauf einer treibenden Spannung (A) in dem ersten Leitungsabschnitt (2) ermittelt. Weiterhin wird ein zeitlicher Verlauf einer sich in dem zweiten Leitungsabschnitt (3) einstellenden Schwingspannung (B, B1) ermittelt. Zu den Spannungsnulldurchgängen einer resultierenden Spannung (C, C1) werden potentielle Schaltzeitpunkte ermittelt. Die Auswahl der potentiellen Schaltzeitpunkte erfolgt unter Auswertung der Anstiege der treibenden Spannung (A, A1) und der Schwingspannung (B, B1) bzw. der Polarität des Schwingstromes (D).

Description

  • Verfahren sowie Vorrichtung zur Bestimmung eines Schaltzeitpunktes eines elektrischen Schaltgerätes Die Erfindung bezieht sich auf ein Verfahren sowie eine Vorrichtung zur Bestimmung eines Schaltzeitpunktes eines elektrischen Schaltgerätes mit einer Unterbrecherstrecke, die zwischen einem mit einer treibenden Spannung beaufschlagten ersten Leitungsabschnitt und einem nach einem Ausschaltvorgang des Schaltgerätes einen Schwingkreis ausbildenden zweiten Leitungsabschnitt angeordnet ist.
  • Aus dem Beitrag „Analysis of Power System Transients Using Wavelets and Prony Method", Lobos, T., Rezmer, J., Koglin, H.-J., Power Tech Proceedings, 2001 IEEE Porto, 10 bis 13 September 2001, geht hervor, dass der Qualität der Spannung in einem Elektroenergieübertragungsnetzwerk zunehmende Bedeutung zugemessen wird. Die Wellenform einer Wechselspannung soll idealerweise sinusförmig sein und mit vorgegebener Frequenz und Amplitude schwingen. Durch induktive und/oder kapazitive Elemente können jedoch bei einem Schaltvorgang transiente Überspannungen auftreten. Derartige transiente Überspannungen überlagern die Nennfrequenz und die Nennamplitude der idealen Wechselspannung und stören den gewünschten Spannungsverlauf.
  • Schalthandlungen stellen oftmals ein auslösendes Ereignis für das Entstehen von Überspannungen dar.
  • Der Erfindung liegt daher die Aufgabe zugrunde ein Verfahren sowie eine Vorrichtung zur Bestimmung eines Schaltzeitpunktes anzugeben, durch welche das Auftreten von transienten Überspannungen bzw. Schwingungserscheinungen in einem Elektroenergieübertragungsnetz begrenzt wird.
  • Bei einem Verfahren der eingangs genannten Art wird die Aufgabe erfindungsgemäß dadurch gelöst, dass ein zeitlicher Verlauf der treibenden Spannung nach einem Ausschaltvorgang des elektrischen Schaltgerätes ermittelt wird, ein zeitlicher Verlauf einer in dem Schwingkreis nach dem Ausschaltvorgang des elektrischen Schaltgerätes auftretenden Schwingspannung ermittelt wird, ein zeitlicher Verlauf einer resultierende Spannung, die einer Differenz aus der treibenden Spannung und der Schwingspannung entspricht, ermittelt wird und zumindest ein Anstieg der treibenden Spannung und zumindest ein Anstieg der Schwingspannung ausgewertet werden und in Abhängigkeit der Anstiege und des zeitlichen Verlaufes der resultierenden Spannung ein Schaltzeitpunkt festgelegt wird.
  • Weiterhin wird die Aufgabe erfindungsgemäß auch dadurch gelöst, dass ein zeitlicher Verlauf der treibenden Spannung nach einem Ausschaltvorgang des elektrischen Schaltgerätes ermittelt wird, ein zeitlicher Verlauf eines in dem Schwingkreis nach dem Ausschaltvorgang des elektrischen Schaltgerätes auftretenden Schwingspannung ermittelt wird, ein zeitlicher Verlauf eines in dem Schwingkreis nach dem Ausschaltvorgang des elektrischen Schaltgerätes fließenden Schwingstromes ermittelt wird, ein zeitlicher Verlauf einer resultierende Spannung, die einer Differenz aus der treibenden Spannung und der Schwingspannung entspricht, ermittelt wird, zumindest ein Anstieg der treibenden Spannung und zumindest eine Polarität des Schwingstromes ausgewertet werden und in Abhängigkeit des zumindest einen Anstieges der treibenden Spannung und der zumindest einen Polarität des Schwingstromes und des zeitlichen Verlaufes der resultierenden Spannung ein Schaltzeitpunkt festgelegt wird.
  • Die sich einstellende resultierende Spannung kann aufgrund der in dem Schwingkreis enthaltenen Bauelemente wie Spulen und Kondensatoren wesentlich höhere Spannungsamplituden aufweisen, als die treibende Spannung. Dies ist insbesondere darauf zurückzuführen, dass Induktivitäten und Kapazitäten Speicherelemente sind, die Zeitverzögerungen hervorbringen. Bei ungünstigen Kombinationen kann es so zu deutlichen Überhöhungen der Spitzenwerte führen. Diese hohen Spannungsspitzen wirken sich nachteilig auf das Isolationssystem aus. So wird die Isolation dielektrisch stärker belastet als unter Bemessungsbedingungen. Dies hat eine schnellere Alterung der Isolation zur Folge. Insbesondere bei feststoffisolierten Leitungsabschnitten wie Kabeln kann so eine Beeinträchtigung der Lebensdauer herbeigeführt werden. In Extremfällen können die Spannungsspitzen derartig hoch sein, dass an den Leitungen Überschläge entstehen. Diese Überschläge können sich zum Beispiel als Teilentladungen oder Durchschläge an Halteisolatoren von freiluftisolierten Überlandleitungen äußern. Besonders nachteilig sind derartige Erscheinungen jedoch in feststoffisolierten Isoliersystemen wie Kabeln, da sich dort irreparable Schäden ausbilden können. Der zeitliche Verlauf der resultierenden Spannung ist daher ein wesentliches Kriterium zur Festlegung des Schaltzeitpunktes eines elektrischen Schaltgerätes. Zusätzlich kann die Auswahl des Schaltzeitpunktes optimiert werden, indem die Anstiege, das heißt, der Gradient der Steigung der treibenden Spannung sowie der Gradient der Steigung der sich in dem Schwingkreis ausbildenden Schwingspannung berücksichtigt wird. Dabei wird jeweils zu einem bestimmten Zeitpunkt der Verlauf der resultierenden Spannung betrachtet und zum selben Zeitpunkt der Verlauf der Schwingspannung bzw. der treibenden Spannung ausgewertet. In Abhängigkeit der Anstiege der treibenden Spannung bzw. der Schwingspannung und des zeitlichen Verlaufes der resultierenden Spannung kann ein Schaltzeitpunkt festgelegt werden, zu welchem ein Auftreten von Überspannungen besonders effektiv begrenzt wird. Neben der Auswertung der Anstiege der treibenden Spannung und der Schwingspannung ist es prinzipiell auch möglich, den Anstieg (Gradient der Steigung) der treibenden Spannung und die Polarität des Schwingstromes als Auswahlkriterien zur Festlegung eines Zeitschaltpunktes im Verlauf der resultierenden Spannung zu nutzen. Dies ist daher möglich, da in Abhängigkeit der sich im Schwingkreis einstellenden Impe danz die den Schwingstrom treibende Schwingspannung über die Gleichungen
    Figure 00040001
  • Zur Ermittlung der zeitlichen Verläufe von treibender Spannung, der Schwingspannung sowie der resultierenden Spannung bzw. des Schwingstromes sind verschiedene Verfahren einsetzbar. So kann beispielsweise vorgesehen sein, in dem ersten Leitungsabschnitt und in dem zweiten Leistungsabschnitt jeweils Messeinrichtungen anzuordnen, um den zeitlichen Verlauf der benötigten Parameter zu erfassen. Dazu können beispielsweise Spannungs- und Stromwandler an den entsprechenden Leitungsabschnitten eingesetzt werden. Um die Anzahl von Strom- bzw. Spannungswandlern zu begrenzen, können auch nur einzelne Wandler Verwendung finden und aus den Wandlerdaten jeweils die fehlenden Strom- bzw. Spannungsverläufe berechnet werden.
  • Bei einer entsprechend ausgerüsteten Anlage können so in Echtzeit die Daten erfasst werden und die entsprechenden Spannungs-/Stromverläufe ermittelt werden und ein Schaltzeitpunkt festgelegt werden. Der Anstieg der Spannungsverläufe kann beispielsweise durch eine Differenziation des zeitlichen Verlaufes zu dem entsprechend interessierenden Zeitpunkt erfolgen. Mittels elektronischer Datenverarbeitungseinrichtungen ist es innerhalb kürzester Zeit möglich, eine erste Ableitung zu nahezu jedem beliebigen Zeitpunkt zu ermitteln und so den Anstieg der treibenden Spannung bzw, der Schwingspannung zu ermitteln. Dabei kann sowohl vorgesehen sein, den Anstieg jeweils quantitativ zu erfassen und so Tendenzen im Verlauf des Anstieges von einem Zeitintervall zum nächsten leicht zu erfassen. Es kann jedoch auch vorgesehen sein, den Anstieg ausschließlich qualitativ auszuwerten, das heißt, liegt ein positiver oder ein negativer Anstieg vor, bzw. sind bestimmte Grenzwerte über- oder unterschritten. Die Polarität des Stromes ist ebenfalls hinsichtlich ihrer Quantität auswertbar, das heißt, eine Ermittlung des Wertes des Schwingstromes nach Betrag und Phasenlage kann erfolgen. Darüber hinaus kann jedoch auch vorgesehen sein, lediglich eine Aussage zu treffen, ob der vorliegende Schwingstrom zu bestimmten Zeitpunkten einen positiven oder einen negativen Wert aufweist.
  • Eine vorteilhafte Ausgestaltung der Erfindung kann weiterhin vorsehen, dass der Schaltzeitpunkt in der Nähe eines Nulldurchganges der resultierenden Spannung liegt.
  • In großtechnischen Anlagen wird als treibende Spannung oftmals eine Wechselspannung oder mehrere Wechselspannungen, die in einem gemeinsamen System zueinander phasenverschoben sind, eingesetzt. Systeme mit mehreren zueinander in Beziehung stehenden Wechselspannungen werden auch Mehrphasenwechselspannungssysteme genannt. Die den ersten Leitungsabschnitt mit Spannung beaufschlagende treibende Spannung weisen typischerweise eine konstante Frequenz auf. Großtechnisch werden vorzugsweise 16 213 Hz, 50 Hz, 60 Hz sowie weitere Frequenzbereiche verwandt. Aufgrund von Überlagerungserscheinungen in dem Schwingkreis, ausgelöst durch die dort enthaltenen Speicherglieder bzw. zeitlich verzögernde Glieder, kann die Schwingspannung eine abweichende Frequenz sowie abweichende Spitzenbeträge gegenüber der treibenden Spannung aufweisen. Im Bereich des Nulldurchganges der resultierenden Spannung sind jeweils die geringsten Überspannungen bei einem Schaltvorgang anzunehmen. Daher werden die Nulldurchgänge der resultierenden Spannung als bevorzugte Schaltzeitpunkte ausgewählt.
  • Vorteilhafterweise kann weiterhin vorgesehen sein, dass für den Schaltzeitpunkt die Nähe eines Nulldurchganges der resultierenden Spannung gewählt wird, an welchem die treibende Spannung und die Schwingspannung Anstiege mit gleichem Richtungssinn aufweisen.
  • Eine weitere vorteilhafte Ausgestaltung kann vorsehen, dass für den Schaltzeitpunkt die Nähe eines Nulldurchganges der resultierenden Spannung gewählt wird, an welchem die treibende Spannung einen negativen Anstieg und der Schwingstrom eine positive Polarität oder die treibende Spannung einen positiven Anstieg und der Schwingstrom eine negative Polarität aufweisen.
  • Die resultierende Spannung weist eine vergleichsweise große Anzahl von Spannungsnulldurchgängen auf. Dabei hat sich gezeigt, dass einige dieser Spannungsnulldurchgänge einen günstigeren Schaltzeitpunkt darstellen als andere. Ein Kriterium zur Auswahl der geeignetsten Spannungsnulldurchgänge der resultierenden Spannung stellen die Anstiege der treibenden Spannungen sowie die Anstiege der Schwingspannungen dar. Weisen die Anstiege der treibenden Spannung sowie der Schwingspannung zu einem Nulldurchgang der resultierenden Spannung den gleichen Richtungssinn auf, so ist dieser Nulldurchgang besonders als Schaltzeitpunkt geeignet. Gleiche Anstiege bedeutet hierbei, dass die treibende sowie die Schwingspannung jeweils einen positiven Anstieg oder jeweils einen negativen Anstieg aufweisen. Darüber hinaus kann auch der zahlenmäßige Betrag des Anstieges in die Auswertung mit einbezogen werden und dadurch eine genauere Festlegung des Schaltzeitpunktes erfolgen.
  • Da in dem Schwingkreis die Schwingspannung und der von der Schwingspannung getriebene Schwingstrom miteinander im Verhältnis stehen und ineinander rechnerisch umgewandelt werden können, ist statt der Auswertung der Anstiege der Schwingspannung auch eine Auswertung der Polarität des Schwingstromes möglich. Ein besonders geeigneter Zeitschaltpunkt ist ein Nulldurchgang der resultierenden Spannung, an welchem die treibende Spannung einen negativen Anstieg und der Schwingstrom eine positive Polarität aufweist, oder an welchem die treibenden Spannung einen positiven Anstieg und der Schwingstrom eine negative Polarität aufweist. Bei einem Wechsel der Auswertung der Schwingspannungen auf den Schwingstrom, ist auf eine Auswertung der Polarität zu wechseln, da aufgrund der im Schwingkreis enthaltenen Induktivitäten bzw. Kapazitäten eine Verschiebung zwischen Strom- und Spannungsverlauf um ca. 90 Grad innerhalb eines Wechselspannungssystemes bewirkt wird.
  • Eine weitere vorteilhafte Ausgestaltung kann vorsehen, dass der Schwingstrom durch eine Kompensationsdrossel fließt.
  • In Elektroenergieübertragungsnetzen sind beispielsweise Freileitungen im Einsatz. Zwischen der hochspannungsführenden Freileitung und dem unterhalb der Freileitung liegenden Erdpotential bildet sich eine Kondensatoranordnung aus. Dadurch kann die Freileitung als Kondensator wirken und es ist eine entsprechende Ladeleistung in die Freileitung einzubringen. Um diese Ladeleistung zu begrenzen, kann man im Verlauf der Freileitung so genannte Kompensationsdrosseln anordnen. Diese Kompensationsdrosseln sind Spulen, die eine entsprechende Induktivität aufweisen, und die durch die Freileitung erzeugte kapazitive Last kompensieren. Diese Drosseln können verschiedenartig ausgestaltet sein, so sind sie beispielsweise bedarfsweise gegen Erde schaltbar, oder auch in ihrer Induktivität veränderbar. Bevorzugterweise kommen zuschaltbare Drosseln am Anfang sowie am Ende einer Freileitung zum Einsatz. Alternativ können derartige Konstellationen auch in Erdkabelnetzen auftreten, in welchen sich zwischen dem elektrischen Leiter und dem Kabelmantel ein entsprechender kapazitiver Widerstandsbelag ausbildet. Durch die Kompensationsdrossel wird die Größe des Schwingstromes in dem zweiten Leitungsabschnitt mitbestimmt. Aufgrund der real vorliegenden Bauteile und dem aufgrund des verwendeten Leitermaterials vorhandenen ohmschen Widerstandes kommt es zu Wirkwiderstandsverlusten, Ummagnetisierungsverlusten usw., so dass der Schwingstrom bzw. die Schwingspannung in dem zweiten Leitungsabschnitt gedämpft wird.
  • Eine weitere vorteilhafte Ausgestaltungsvariante kann vorsehen, dass der zeitliche Verlauf der Schwingspannung und/oder des Schwingstromes mittels einer Prony-Methode ermittelt wird.
  • Bei einem eingeschalteten Schaltgerät ist die Unterbrecherstrecke geschlossen. Der erste Leitungsabschnitt mit der treibenden Spannung treibt einen Strom in den zweiten Leistungsabschnitt. Die treibende Spannung wird beispielsweise mittels eines Generators in einem Kraftwerk erzeugt. Aufgrund der sich aufprägenden treibenden Spannung breitet sich diese auch im zweiten Leitungsabschnitt aus. Im zweiten Leitungsabschnitt sind typischerweise Verbraucher angeschlossen. Dies können beispielsweise Motoren, Heizgeräte oder auch komplette Netzabschnitte, wie industrielle Abnehmer oder eine große Anzahl von Haushalten sein. Nach einem Ausschaltvorgang liegt die treibende Spannung nunmehr nur noch in dem ersten Leitungsabschnitt vor, da die Unterbrecherstrecke geöffnet ist und die treibende Spannung sich nicht mehr in dem zweiten Leitungsabschnitt ausbreiten kann. In dem ersten Leitungsabschnitt sind typischerweise energieerzeugende Einrichtungen vorhanden, beispielsweise treibende Versorgungsnetze mit entsprechenden Generatoren bzw. Kraftwerken. In dem zweiten Netzabschnitt stellt sich, entsprechend seiner Konstellation mit ohmschen, induktiven bzw, kapazitiven Anteilen aufgrund der schlagartigen Auftrennung der Unterbrecherstrecke und der damit verbundenen zeitlichen Änderungen, eine Schwingspannung ein, die einen Schwingstrom treibt. Die Ermittlung des zeitlichen Verlaufes der treibenden Spannung ist dabei relativ einfach, da von einem starren Netz ausgegangen werden kann, bei dem die treibende Spannung die prägende Größe ist, die annähernd konstant bleibt. Problematischer gestaltet sich die Ermittlung des Verlaufes von Schwingstrom bzw. Schwingspannung in dem Schwingkreis. Um einen entsprechend zeitlichen Vorlauf zu haben ist es wünschenswert, aus innerhalb eines kurzen Intervalles ermittelten Messwerten eine zuverlässige Voraussage des Verlaufes für ein oder mehrere in der Zukunft liegende Intervalle vorherzubestimmen. Dafür kann beispielsweise eine Prony-Methode eingesetzt werden.
  • Die Prony-Methode bietet gegenüber weiteren Verfahren, beispielsweise einer Laplace-Transformation den Vorteil, aus einer geringen Anzahl von Messwerten eine vergleichsweise genaue Vorhersage von weiteren Spannungs- bzw. Stromverläufen zu ermöglichen.
  • Die Prony-Methode eignet sich zur Realisierung eines gesteuerten Schaltens in besonderer Weise, da im Vergleich zur Fourier-Transformation der Abtastzeitraum der vorliegenden Spannungs- und/oder Stromdaten von der zu erwartenden Grundschwingung unabhängig ist. Weiterhin sind bei Verwendung der Prony-Methode die Phasenverschiebung und die Dämpfung der einzelnen Frequenz-Anteile beliebig erfassbar. Zur Anwendung der Prony-Methode sind zunächst vorliegende Spannungs- und/oder Stromdaten zu verschiedenen Zeitpunkten in dem elektrischen Netz zu ermitteln. Dazu wird von N komplexen Datenpunkten x[1],...x[N] eines beliebigen sinusförmigen oder exponentiell gedämpften Ereignis ausgegangen. Diese Datenpunkte müssen äquidistante Datenpunkte sein. Dieser abgetastete Vorgang kann durch eine Summation von p exponentiellen Funktionen beschrieben werden
    Figure 00090001
    wobei
  • T
    – Abtastperiode in s
    Ak
    – Amplitude des komplexen Exponenten
    αk
    – Dämpfungsfaktor in s–1
    fk
    – Frequenz der Sinusschwingung in Hz
    θk
    – Phasenverschiebung in Radiant
    ist. Im Falle eines real abgetasteten Verlaufes zerfallen die komplexen Exponenten in konjugiert komplexe Paare mit gleicher Amplitude. Dies reduziert die Gl. (2.1)
    Figure 00090002
    für 1 ≤ n ≤ N . Wenn die Anzahl der exponentiellen Funktionen p gerade ist, dann existieren p/2 gedämpfte Kosinusfunktionen.
  • Ist die Anzahl ungerade, dann existieren (p – 1)/2 gedämpfte Kosinusfunktionen und eine sehr schwach gedämpfte Exponentialfunktion.
  • Eine einfachere Darstellung der Gl. (2.1) erhält man durch Zusammenfassung der Parameter in zeitabhängige und zeitunabhängige.
    Figure 00100001
    hk = Ak exp(jθk) (2.4) zk = exp[(αk + j2πfk)T] (2.5)
  • Der Parameter hk ist die komplexe Amplitude und stellt einen zeitunabhängigen Konstante dar. Der komplexe Exponent zk ist ein zeitabhängiger Parameter.
  • Um einen realen Vorgang mit Hilfe einer Summation nachbilden zu können, ist es notwendig, den mittleren quadratischen Fehler p über N abgetastete Datenpunkte zu minimieren.
  • Figure 00100002
  • Diese Minimierung erfolgt unter Berücksichtigung der Parameter hk, zk und p. Dies führt zu einem schwierigen nichtlinearen Problem, auch wenn die Anzahl p der exponentiellen Funktionen bekannt ist [vgl. Marple, Lawrence: Digital Spectral Analysis. London: Prentice-Hall International, 1987]. Eine Möglichkeit wäre ein iteratives Lösungsverfahren (Newton – Verfahren). Dies würde allerdings große Rechenkapazitäten voraussetzen, weil oft Matrizen invertiert werden müssen, welche meist größer als die Anzahl der Datenpunkte sind. Für eine effiziente Lösung dieses Problems dient die Prony Methode, welche lineare Gleichungen für die Lösung benutzt. Bei dieser Methode wird der nichlineare Aspekt der exponentiellen Funktionen mit Hilfe einer polynomischen Faktorisierung be rücksichtigt. Für diese Art der Faktorisierung existieren schnelle Lösungsalgorithmen.
  • Die Prony-Methode
  • Für die Approximation eines Verlaufes ist es notwendig, so viele Datenpunkte aufzunehmen, um die Parameter eindeutig zu bestimmen. Dies bedeutet, dass jeweils x[1],...,x[2p] komplexe Datenpunkte mindestens benötigt werden.
  • Figure 00110001
  • Man beachte, dass x[n] verwendet wurde anstatt y[n]. Dies geschieht, weil exakt 2p komplexe Datenpunkte benötigt werden, welche dem exponentiellen Modell mit den 2p komplexen Parametern hk und zk entsprechen. Dieser Zusammenhang wird in Gl. (2.6) durch die Minimierung des quadratischen Fehlers ausgedrückt.
  • In Gl. (2.8) wurde das Ziel des Prony Algorithmus dargestellt. Eine ausführlichere Darstellung der Gleichung für 1 ≤ n ≤ p ist in Gl. (2.9) dargestellt.
  • Figure 00110002
  • Bei Kenntnis der Elemente z innerhalb der Matrix ergebe sich eine Anzahl linearer Gleichungen, mit welchen man den komplexen Amplitudenvektor h berechnen kann.
  • Als Ansatz des Lösungsverfahrens wird davon ausgegangen, dass Gl. (2.8) die Lösung einer homogenen linearen Differenzengleichung mit konstanten Koeffizienten ist. Um die entsprechende Gleichung zur Lösung zu finden wird als erstes ein Polynom ϕ(z) vom Grade p definiert. ϕp(z) = a[0]zp + a[1]z p–1 + ... + a[p – 1]z + a[p] (2.10)
  • Der zu bestimmende Parameter z gibt die Nullstellen des Polynoms an.
  • Eine Darstellung des Polynoms als Summation erfolgt mit Hilfe des Fundamentalsatzes der Algebra (Gl. 2.11). Der Koeffizient a[m] ist komplex und es wird a[0] = 1 definiert.
  • Figure 00120001
  • Mit Hilfe einer Verschiebung der Indizes der Gl. (2.8) von n zu n – m und Multiplikation mit dem Parameter a[m] erhält man.
  • Figure 00120002
  • Werden einfache Produkte (a[O] × [n],...,a[m – 1] × [n – m + 1]) gebildet und diese summiert ergibt sich aus Gl. (2.12)
    Figure 00120003
  • Durch eine Umformung der rechten Seite der Gl. (2.13) ergibt sich
    Figure 00120004
  • Durch die Substitution z n–m–1 / i = z n–p / iz p–m–1 / i erhält man
    Figure 00120005
  • In dem rechten Teil der Summation erkennt man das Polynom aus Gl. (2.11) wieder. Durch eine Bestimmung aller Wurzeln zk erhält man die gesuchten Nullstellen. Die Gl. (2.15) ist die gesuchte lineare Differenzengleichung, deren Lösung die Gl. (2.8) ist. Das Polynom (2.11) ist die charakteristische Gleichung zu der Differenzengleichung.
  • Die p – Gleichungen repräsentieren die zulässigen Werte für a[m], welche die Gl. (2.15) lösen.
  • Figure 00130001
  • In Gl. (2.16) existieren p – Unbekannte. Die Matrix x besteht aus p + 1 – Zeilen und Spalten. Die Gl. (2.16) ist also überbestimmt. Um einen Lösungsvektor zu erhalten wird die obere Zeile der Matrix x, und so auch der bekannte Koeffizient a[0], gestrichen und die erste Spalte subtrahiert.
  • Figure 00130002
  • Mit Hilfe der p – Gleichungen können die p – Unbekannten bestimmt werden.
  • Die Prony-Methode kann so in drei Schritten zusammengefasst werden.
  • Lösung der Gl. (2.17) ⇒ Erhalt der Koeffizienten des Polynoms (2.11)
  • Berechnung der Wurzeln des Polynoms Gl. (2.11) ⇒ Erhalt des zeitabhänigen Parameters zk aus Gl (2.8) ⇒ Berechnung der Dämpfung und Frequenz aus z αk = ln|zk|/T (2.18) fk = tan–1[Im(zk)/Re(zk)]/[2πT] (2.19)
  • Aufstellung der Gl. (2.9) ⇒ Auflösung nach h ⇒ Berechnung der Amplitude und der Phasenverschiebung Ak = |hk| (2.20) θk = tan–1[Im(hk)/Re(hk)] (2.21)
  • Für eine Estimation des zukünftigen Zeitverlaufs ist es nicht notwendig die einzelnen Parameter zu bestimmen. Die "Vorausschau" des weiteren Verlaufs des Eingangssignals ist auch möglich mit Hilfe der Parameter zk und hk, der Gl. (2.8) und eine Änderung der Variablen n, welche den zu estimierenden Zeitbereich wiederspiegelt. Bei einer Veränderung der Zeitschrittweite der Estimation gegenüber der Abtastung müssen aber die Parameter Dämpfung, Frequenz, Amplitude und Phasenverschiebung explizit bestimmt werden.
  • Ein weiterer Vorteil der Prony-Methode für die Analyse von Strom- und/oder Spannungsverläufen ist, dass sie auch für höherfrequente Vorgänge anwendbar ist. Unter höherfrequenten Vorgängen sind Vorgänge zu verstehen, die im Bereich von 100-700 Hz schwingen. Der betriebsfrequente Bereich umfasst die Frequenzen zwischen 24 und 100 Hz. Unter 24 Hz sind die niederen Frequenzen zu verstehen. Hochfrequente Vorgänge entstehen beispielsweise beim Schalten von Schaltgeräten. Die hochfrequenten Anteile überlagern die Grundschwingung.
  • Weiterhin kann vorteilhafterweise vorgesehen sein, dass zur Verarbeitung der ermittelten Spannungs- und/oder Stromdaten eine modifizierte Prony-Methode verwendet wird.
  • Die modifizierte Prony-Methode weist Ähnlichkeit mit dem Maximum-Likelihood Prinzip (Gaußsches Prinzip der kleinsten Quadrate) auf. Bei der Berechnung wird von einem festen p (Anzahl der exponentiellen Funktionen, siehe oben) ausgegangen. Während der Berechnung wird ein Iterationsverfahren durchgeführt, wodurch die Genauigkeit der vorauszubestimmenden Spannungs- und/oder Stromverläufe optimiert wird. Durch Festlegung von Toleranzgrenzen für die Optimierung ist der Grad der Genauigkeit der Vorausbestimmung variierbar. Je nach Bedarf ist dadurch die notwendige Rechenzeit verminderbar. Die modifizierte Prony-Methode ist in Osborne, Smyth: A modified Prony Algorithm for fitting functions defined by difference equations, SIAM Journal of Scientific and Statistical Computing, Vol. 12, 362-382, March 1991 ausführlich vorgestellt. Die modifizierte Prony-Methode ist gegenüber einem "Rauschen" der aus dem elektrischen Energienetz ermittelten Spannungs- und/oder Stromdaten unempfindlich. Ein derartiges "Rauschen" ist bei der Verwendung von realen Bauteilen zur Ermittlung der Spannungs- und/oder Stromdaten unvermeidbar. Derartige Störungen können nur mit einem unverhältnismäßig hohen Aufwand minimiert werden. Durch die Robustheit gegenüber einem "Rauschen" der Eingangssignale ist bei Verwendung der modifizierten Prony-Methode der Einsatz von kostengünstigen Messgeräten zur Ermittlung der vorliegenden Spannungs- und/oder Stromdaten in dem elektrischen Netz möglich.
  • Es kann vorgesehen sein, eine Vorrichtung zur Durchführung der oben beschriebenen Verfahren vorzusehen, welche Mittel zur automatisierten Verarbeitung der Spannungs- und/oder Stromdaten unter Verwendung der Prony-Methoden aufweist.
  • Da die betrachteten Vorgänge in Intervallen von einigen wenige Millisekunden ablaufen, erweist sich eine Vorrichtung mit Mitteln zur automatisierten Verarbeitung der Spannungs- und/oder Stromdaten als vorteilhaft. Um diese automatisierte Verarbeitung besonders rasch durchzuführen, kann vorgesehen sein, dass die Mittel zur automatisierten Verarbeitung verdrahtungsprogrammiert ausgeführt sind. Derartige Schaltungen sind als anwendungsspezifische integrierte Schaltkreise "ASIC" bekannt. Sollten jedoch hinreichend schnelle Mittel zur automatisierten Verarbeitung zur Verfügung stehen, so können diese speicherprogrammierbar ausgeführt sein. Derartige speicherprogrammierbare Mittel zur automatisierten Verarbeitung können in einfacher Weise durch Neuprogrammierungen an wechselnde Rahmenbedingungen angepasst werden.
  • Eine weitere vorteilhafte Ausgestaltung kann vorsehen, dass die über der Unterbrecherstrecke nach einem Ausschaltvorgang anliegende Spannung der resultierenden Spannung entspricht.
  • Die Unterbrecherstrecke muss bei einem Ein- bzw. Ausschaltvorgang jeweils möglichst rasch einen Impedanzwechsel von einem idealerweise unendlich großen Impedanz zu einer unendlich kleinen Impedanz bzw. umgekehrt, bewirken. Idealerweise sollte dies sprungartig entstehen. Bei den vorliegenden techni schen Systemen ist dies jedoch nicht so. Im Hochspannungsbereich werden Schaltelemente mit relativ zueinander bewegbaren Kontaktstücken eingesetzt, die sich innerhalb eines Isoliergases befinden. Dieses Isoliergas ist vorzugsweise Schwefelhexafluorid, welches unter einem erhöhten Druck steht. Bei einem Einschaltvorgang kommt es beispielsweise bereits vor dem galvanischen Berühren der relativ zueinander bewegbaren Kontaktstücke zu dem Einsetzen eines Vorüberschlages. Bei einem Ausschaltvorgang ist nach dem Erlöschen eines Ausschaltlichtbogens, welcher sich nach der körperlichen Trennung der relativ zueinander bewegbaren Kontaktstücke einstellen kann, eine gewisse Wiederverfestigungszeit nötig, in welcher in der Schaltstrecke gebildetes kontaminiertes Lichtbogenlöschgas aus der Schaltstrecke entfernt wird und durch unverseuchtes Isoliergas ersetzt wird.
  • Die resultierende Spannung, welche sich über der Unterbrecherstrecke ausbildet, ergibt sich aus der auf der einen Seite der Unterbrecherstrecke anliegenden treibenden Spannung und aus der auf der an der anderen Seite der Unterbrecherstrecke anliegenden Schwingspannung. Da, wie vorstehend ausgeführt, bei dem Auftreten von Schwingungsvorgängen in dem Schwingkreis zeitliche Verzögerungen auftreten, können sich so über der Unterbrecherstrecke wesentlich höhere Spannungsbeträge auftreten, als die Bemessungsspannung der treibenden Spannung vermuten lässt. Daher stellt die resultierende Spannung, die sich über der Unterbrecherstrecke des elektrischen Schaltgerätes einstellt, eine wesentliche Größe dar, die der Festlegung eines Schaltzeitpunktes eines elektrischen Schaltgerätes dient. Auch eine Spannungsüberhöhung muss von dem elektrischen Schaltgerät sicher beherrscht werden.
  • Vorteilhafterweise kann dabei weiter vorgesehen sein, dass bei der Bestimmung des Schaltzeitpunktes die Vorüberschlagscharakteristik des Schaltgerätes berücksichtigt wird.
  • Neben der Festlegung eines vorteilhaften Schaltzeitpunktes ist zu beachten, dass reale Schaltgeräte eine Vorüberschlagscharakteristik aufweisen. Bevor es zu einer Berührung zweier relativ zueinander bewegbarer Kontaktstücke kommt, wird das zwischen den Kontaktstücken liegende Isoliermedium bereits von einem Lichtbogen durchschlagen. In welcher Weise ein Leistungsschalter zu einem Vorüberschlag neigt, ist von der Konstruktion und von dem Verlauf der Schaltbewegung abhängig. Idealerweise sollte dieser Vorüberschlag nicht vorhanden sein, das heißt, jeweils zu dem gezielt angesteuerten Kontaktierungszeitpunkt erfolgt eine mechanische Kontaktierung der Kontaktstücke und eine Schließung des Stromkreises. Diese Idealvorstellung kann in der Praxis jedoch nicht erreicht werden, so dass zu einem Schaltgerät eine so genannte Vorüberschlagskennlinie existiert. Diese weist eine gewisse Steilheit auf und lässt gegebenenfalls einen Schnittpunkt zwischen der Kennlinie und dem Spannungsverlauf erkennen. Zu diesem Zeitpunkt erfolgt ein Vorüberschlag auch bei noch nicht in galvanischem Kontakt befindlichen Kontaktstücken.
  • Eine weitere vorteilhafte Ausgestaltung kann vorsehen, dass bei einer voranschreitenden Dämpfung der Schwingspannung und/oder des Schwingstromes der Schaltzeitpunkt in der Nähe eines beliebigen Nulldurchganges der resultierenden Spannung festgelegt wird.
  • Aufgrund der in dem Schwingkreis enthaltenen realen Bauelemente, wie Kondensatoren, Spulen und ohmschen Widerständen, tritt eine Dämpfung der Schwingspannung bzw. des Schwingstromes in dem Schwingkreis auf. Ist die Dämpfung derartig stark, dass eine messtechnische Erfassung nicht mehr sinnvoll möglich ist, so kann auf die Auswertung der Anstiege der Schwingspannung bzw. der treibenden Spannung bzw. der Polarität des Schwingstromes verzichtet werden. Um ein rasches Schalten zu ermöglichen, wird dann nur noch auf die Nulldurchgänge der resultierenden Spannung abgestellt und zum nächstmöglichen Nulldurchgang der resultierenden Spannung ge schaltet. Bei einer fortgeschrittenen Dämpfung der Schwingspannung bzw. des Schwingstromes sind die Auswirkungen einer Überhöhung der Spannung über der Unterbrecherstrecke des elektrischen Schaltgerätes zu vernachlässigen.
  • Weiterhin kann vorteilhafterweise vorgesehen sein, dass der Schaltzeitpunkt für einen Einschaltvorgang des elektrischen Schaltgerätes genutzt wird.
  • In Elektroenergieübertragungsnetzen sind so genannte Schutzgeräte eingesetzt, die bei einem auftretenden Fehler automatisch einen Ausschaltvorgang eines elektrischen Schaltgerätes initiieren. Oftmals sind diese Ausschaltvorgänge durch sporadisch auftretende Fehler ausgelöst. Einige sporadisch auftretende Fehler gestatten ein schnelles Wiedereinschalten. Ein typischer sporadischer Fehler ist beispielsweise im Bereich von Freileitungen angesiedelt. Ein Gegenstand, beispielsweise ein Ast eines Baumes, löst einen Kurzschluss auf der Leitung aus. Das kurzschlussauslösende Ereignis ist jedoch nur von kurzer zeitlicher Dauer, so dass nach dem Abklingen des Fehlers (Luftisolation zwischen den Leitungen und dem Ast ist wieder hergestellt, Kurzschlussereignis ist vorüber) eine Wiedereinschaltung der Leitung erfolgen kann. Derartige Einschaltungen sind auch als automatische Wiedereinschaltungen (AWE) bekannt. Diese automatischen Wiedereinschaltungen werden in Zeitintervallen von 300 bis ca. 500 ms vollzogen, das heißt, nach einem erfolgten Ausschalten des elektrischen Schaltgerätes wird innerhalb einer Zeit von maximal 300 (500) ms eine automatische Wiedereinschaltung des Schaltgerätes initiiert. Aufgrund des verhältnismäßig kurzen Intervalls können sich innerhalb des dabei entstehenden Schwingkreises hohe Schwingspannungen bzw. Schwingströme ausbilden. Insbesondere für die automatische Wiedereinschaltung und bzw. das Einschalten eines Schaltgerätes kurz nach erfolgter Ausschaltung ist die Bestimmung eines geeigneten Schaltzeitpunktes von Bedeutung, um Überschläge aufgrund von Spannungsüberhöhungen an der Unterbrecherstrecke des elektrischen Schaltgerätes zu vermeiden. Überspannungen begrenzende Widerstände an dem elektrischen Schaltgerät sind nicht mehr nötig bzw. können diese kleiner dimensioniert werden.
  • Weiterhin bezieht sich die Erfindung auch auf eine Vorrichtung zur Durchführung der eingangs genannten Verfahren.
  • Der Erfindung stellt sich hier die Aufgabe eine Vorrichtung anzugeben, die eine Auswahl eines Schaltzeitpunktes ermöglicht.
  • Erfindungsgemäß wird dies bei einer Vorrichtung zur Durchführung eines Verfahrens gemäß den Patentansprüchen 1 bis 11 dadurch gelöst, dass die Vorrichtung eine Einrichtung zum Vergleichen des Anstieges der treibenden Spannung und der Schwingspannung und/oder der Polarität des Schwingstromes aufweist.
  • Eine Einrichtung zum Vergleichen des Anstieges der treibenden Spannung und der Schwingspannung bzw. der Polarität des Springstromes gestattet eine einfache Auswahl der potentiellen Schaltzeitpunkte zu den Spannungsnulldurchgängen der resultierenden Spannung. Das Ergebnis eines derartigen Vergleiches kann beispielsweise eine Ja- oder Nein-Entscheidung bezüglich der Zulässigkeit eines Schaltvorganges sein.
  • Ausführungsbeispiele der Erfindung werden schematisch in den Figuren dargestellt sowie nachfolgend näher beschrieben.
  • Dabei zeigt die
  • 1 eine prinzipielle Darstellung eines Spannungsverlaufes mit optimalen Schaltzeitpunkten, die
  • 2 einen schematischen Aufbau eines Elektroenergieübertragungsnetzes, die
  • 3 die Verläufe zweier verschiedener resultierender Spannungen, die
  • 4 einen Verlauf von verschiedenen Spannungen und Strömen, die
  • 5 einen Verlauf verschiedener Spannungen, die
  • 6 zeigt den zeitlichen Ablauf zur Ermittlung eines zukünftigen Spannungs-/Stromverlaufes, die
  • 7 zeigt die Berücksichtigung einer Vorüberschlagscharakteristik bei einer kapazitiven Belastung, die
  • 8 zeigt die Nutzung einer Vorüberschlagskennlinie bei einer induktiven Belastung einer Unterbrecherstrecke eines elektrischen Schaltgerätes und die
  • 9 eine Einrichtung zum Vergleich von Ausliegen von Spannungsverläufen.
  • Die 1 zeigt beispielhaft einen sinusförmigen Verlauf einer Wechselspannung mit einer Frequenz von 50 Hz. Um das Entstehen von Überspannungen zu vermeiden, sollten induktive Lasten jeweils möglichst im Spannungsmaximum eines sinusförmigen Spannungsverlaufes geschaltet werden (Zeitpunkte 5 ms, 15 ms). Kapazitive Lasten hingegen sollten jeweils während eines Spannungsnulldurchganges geschaltet werden, um Ladevorgänge an einem Kondensator zu vermeiden (Zeitpunkte 0 ms, 10 ms, 20 ms).
  • Bei einem realen Elektroenergieübertragungsnetz ist nunmehr nur in Ausnahmefällen ein ideales Auftreten von sinusförmigen Spannungsverläufen zu beobachten.
  • In der 2 ist ein prinzipieller Aufbau eines Leitungsabschnittes innerhalb eines Elektroenergieübertragungsnetzes dargestellt. Ein elektrisches Schaltgerät weist eine Unterbrecherstrecke 1 auf. Die Unterbrecherstrecke ist beispielsweise aus zwei relativ zueinander bewegbaren Kontaktstücken gebildet. Über die Unterbrecherstrecke 1 sind ein erster Leitungsabschnitt 2 sowie ein zweiter Leitungsabschnitt 3 miteinander zusammenschaltbar bzw. auftrennbar. Der erste Leitungsabschnitt 2 weist einen Generator 4 auf. Der Generator 4 liefert eine treibende Spannung, die beispielsweise eine 50 Hz Wechselspannung eines Mehrphasenspannungssystems ist. Der zweite Leitungsabschnitt 3 weist eine Freileitung 5 auf. Die Freileitung 5 ist an ihrem ersten Ende mit einer ersten Drossel 6 gegen Erdpotential 7 und an ihrem zweiten Ende über eine zweite Drossel 8 gegen Erdpotential 7 verschaltbar. Zusätzlich kann auch vorgesehen sein, eine weitere Drossel 9 zu der zweiten Drossel 8 zu verschalten. Durch verschiedene Schalteinrichtungen 10 sind die Drosseln 6, 8, 9 in verschiedenen Varianten gegen das Erdpotential 7 verschaltbar. Dadurch ist es möglich, in Abhängigkeit der Lastsituation die Freileitung 5 mit verschiedenen Graden zu kompensieren. So kann der kapazitive Widerstand
    Figure 00210001
    der Freileitung durch den induktiven Widerstand XL (XL = j·ω·L) der Drosseln überkompensiert oder auch unterkompensiert werden. Über das Verhältnis des kapazitiven Widerstandes Xc der Freileitung und des induktiven Widerstandes XLres aller Drosseln, ist ein Kompensationsgrad k ermittelbar. Zur Einstellung des Kompensationsgrades k sind die Drosseln 6, 8 9 verschieden zueinander schaltbar. Es kann jedoch auch vorgesehen sein, dass die Drosseln einen verstellbaren induktiven Widerstand XL aufweisen. Dazu sind beispielsweise Tauchkerndrosseln einsetzbar.
  • In dem zweiten Leitungsabschnitt 3 ist nach einem Öffnen der Unterbrecherstrecke 1 über das Erdpotential 7 ein Schwingkreis ausbildbar. Zur Ausbildung eines Schwingkreises in dem zweiten Leitungsabschnitt 3 müssen entsprechende Strompfade über die Schalteinrichtungen 10 gegen Erdpotential 7 ausgebildet werden. Über die induktiven und kapazitiven Widerstände bildet sich ein Schwingkreis aus und in dem Schwingkreis kann ein Schwingstrom fließen, der von einer Schwingspannung getrieben ist.
  • In der 3 sind beispielhaft die sich über der Unterbrecherstrecke 1 ausbildenden resultierenden Spannungsverläufe bei unterschiedlichen Kompensationsgraden dargestellt. Bei einer Kompensation von k = 0,8 stellt sich ein bestimmter Frequenzverlauf ein, der eine Vielzahl von Spannungsnulldurchgängen aufweist. Dieser Frequenzverlauf weist eine Schwebung auf. Bei einer Kompensation von 0,3 stellt sich ein entsprechend abweichender Frequensverlauf ein, welcher jedoch wiederum eine Vielzahl von Spannungsnulldurchgängen aufweist.
  • Bei Anwendung des erfindungsgemäßen Verfahrens können die bisher für die Begrenzung von Überspannungen vorgesehenen Einschaltwiderstände verkleinert werden bzw. es kann vollständig auf diese verzichtet werden. Aufgrund der Bestimmung eines optimalen Wiedereinschaltzeitpunktes sind so bessere Schaltergebnisse zu erzielen, das heißt, es treten geringere transiente Überspannungen auf, als bei einem beliebig gesteuerten Zuschalten eines elektrischen Schaltgerätes mit Einschaltwiderständen.
  • Die 4 zeigt eine Auswertung und eine Bestimmung eines Schaltzeitpunktes eines elektrischen Schaltgerätes unter Nutzung der treibenden Spannung A, der Schwingspannung B, der resultierenden Spannung C sowie des Schwingstromes D. Die treibende Spannung A schwingt mit konstanter Frequenz und konstanter Amplitude. Die sich in dem Schwingkreis auf dem zweiten Leitungsabschnitt 3 einstellende Schwingspannung B schwingt mit einer bestimmten Frequenz, wobei diese variabel ist und mit variablen Amplituden. Diese Veränderlichkeit ist dadurch bedingt, dass eine Dämpfung im System auftritt und dass zusätzliche Überlagerungen äußerer Einflüsse auftreten können. Aus der Überlagerung der auf dem ersten Leitungsabschnitt 2 anliegenden treibenden Spannung A und der in dem zweiten Leitungsabschnitt 3 sich einstellenden Schwingspannung B entsteht ein zeitlicher Verlauf einer resultierenden Spannung C. Die resultierende Spannung C entspricht der über der geöffneten Unterbrecherstrecke anliegenden Spannung. Deutlich zu erkennen ist in der 4, dass die resultierende Spannung C mit deutlich variabler Amplitude schwingt und es eine Phasenverschiebung sowohl bezüglich der treibenden Spannung A als auch der Schwingspannung B gibt. Potentielle Schaltzeitpunkte sind an den Spannungsnulldurchgängen der resultierenden Spannung C vorhanden. Die Spannungsnulldurchgänge sind zur besseren Erkennbarkeit im Verlauf der resultierenden Spannung C mit Kreuzen markiert. Es sind jedoch nicht alle Spannungsnulldurchgänge der resultierenden Spannung C für einen Wiedereinschaltvorgang der Unterbrecherstrecke 1 geeignet. Als Auswahlkriterien wird bei den in der 4 dargestellten Beispielen die Polarität des Schwingstromes D mit hinzugezogen. Zur besseren Erkennbarkeit ist die Polarität des Schwingstromes D jeweils mit einem Plus bzw. einem Minus in den entsprechenden Intervallen zwischen den Stromnulldurchgängen des Schwingstromes D markiert. Zum ersten Spannungsnulldurchgang der resultierenden Spannung D liegt eine positive Polarität des Schwingstromes D sowie ein positiver Anstieg der treibenden Spannung A vor, das heißt, der erste Spannungsnulldurchgang 1 der resultierenden Spannung C ist nicht für einen Einschaltvorgang geeignet. Zum vierzehnten Spannungsnulldurchgang der resultierenden Spannung C liegt ein negativer Anstieg der treibenden Spannung A vor und der Schwingstrom D weist eine positive Polarität auf, das heißt unter den Spannungsnulldurchgängen ist der vierzehnte Spannungsnulldurchgang der resultierenden Spannung C für einen Wiedereinschaltvorgang besonders geeignet. Der erste und der vierzehnte Spannungsnulldurchgang sind hierbei nur beispielhaft herangezogen. Darüber hinaus können auch noch weitere Spannungsnulldurchgänge besonders geeignet sein, um einen Einschaltvorgang an der Unterbrecherstrecke 1 zu bewirken. Diese können sich innerhalb des in der 4 dargestellten Intervalles befinden oder auch außerhalb dieses Intervalles liegen.
  • In der 5 ist ein alternatives Auswahlverfahren dargestellt, wobei A1 den zeitlichen Verlauf der treibenden Spannung abbildet, B1 den zeitlichen Verlauf der Schwingspannung darstellt und Cl die resultierende Spannung über der Unterbrechereinheit abbildet. Die resultierende Spannung C1 ergibt sich aus der Potentialdifferenz zwischen den auf der ersten Leitungsabschnitt 2 anliegenden treibenden Spannung A1 und der auf der zweiten Leitungsabschnittseite 3 der Unterbrecherstrecke 1 anliegenden Schwingspannung B1. Die Nulldurchgänge der resultierenden Spannung C1 stellen wiederum potentielle Schaltzeitpunkte dar. Zur Auswahl der geeignetsten Spannungsnulldurchgänge der resultierenden Spannung C1 werden jeweils die Anstiege (Gradienten der Steigung) zu diesen Zeitpunkten ausgewertet. Zum Zeitpunkt t1 weisen sowohl die treibende Spannung A1 als auch die Schwingspannung B1 einen negativen Anstieg auf, das heißt, dieser Zeitpunkt ist besonders für einen Wiedereinschaltvorgang geeignet. Zum Zeitpunkt t2 weist die treibende Spannung A1 einen negativen Anstieg auf und die Schwingspannung C1 weist einen positiven Anstieg auf, das heißt, der Zeitpunkt t2 und der zu diesem Zeitpunkt eintretende Nulldurchgang der resultierenden Spannung Cl ist nicht für einen Wiedereinschaltvorgang geeignet. Darüber hinaus kann jeder weitere Nulldurchgang der resultierenden Spannung nach den jeweils zugehörigen Anstiegen von treibender Spannung und Schwingspannung klassifiziert werden, so dass sich noch weitere geeignete bzw. nicht geeignete Nulldurchgänge der resultierenden Spannung für einen Wiedereinschaltvorgang ergeben.
  • In der 6 ist eine zeitliche Abfolge der Abtastung X, der Berechnung Y, der Kontrolle Z, der nochmaligen Berechnung U bzw. des Zeitintervalles für die Auslösung V dargestellt. Um innerhalb von 300 bis ca. 500 ms beispielsweise eine automatische Wiedereinschaltung durchführen zu können, ist der Spannungsverlauf der resultierenden Spannung im Voraus zu ermitteln. Zu einem Zeitpunkt t = 0 ms wird hierbei ein Öffnen der Unterbrecherstrecke des elektrischen Schaltgerätes angenommen. Innerhalb der ersten 50 ms erfolgt eine Abtastung bzw. Ermittlung des Verlaufes der treibenden Spannung der sich einstellenden Schwingspannung bzw. des Schwingstromes und eine Ermittlung der resultierenden Spannung in Kenntnis des Spannungsverlaufes der treibenden Spannung. Innerhalb des Zeitintervalles von 50 bis 100 ms erfolgt eine Berechnung des zukünftigen Verlaufes der Schwingspannung bzw. des Schwingstromes und daraus folgend ein zukünftiger Verlauf des resultierenden Spannungsverlaufes. Innerhalb des Zeitintervalles von 100 bis 150 ms besteht die Möglichkeit, die rechnerisch ermittelten Werte für Schwingspannung, Schwingstrom bzw. resultierender Spannung, treibender Spannung, hinsichtlich ihres zeitlichen Verlaufes, mit den sich bereits real eingestellten Werten zu vergleichen. Bei einer Bestätigung der rechnerisch ermittelten Werte innerhalb des für die Kontrolle vorgesehenen Zeitfensters wird von einer korrekten Vorausberechnung der Signalverläufe ausgegangen. Für die Berechnung sind beispielsweise eine Prony-Methode oder ähnliche Verfahren, anwendbar. Bei der Feststellung einer fehlerhaften Vorausberechnung der zeitlichen Verläufe steht nunmehr noch ein Zeitintervall von 150 bis 200 ms zur Verfügung, in welchem unter Zuhilfenahme der innerhalb des Zeitintervalles von 0 bis 150 ms ermittelten Spannungs- bzw. Stromverläufe im realen Netzwerk eine erneute Berechnung der zukünftigen Spannungs- bzw. Stromverläufe erfolgen kann. Aufgrund des größeren Zeitintervalles von 0 bis 150 ms und der so in größerer Anzahl vorliegender Messwerte kann von einer genaueren Berechnung des zukünftigen zeitlichen Verlaufes der Ströme bzw. der Spannungen ausgegangen werden. In Abhängigkeit der Spannungsnulldurchgänge der resultierenden Spannung sowie der Anstiege der Schwingspannung und der treibenden Spannung bzw. der treibenden Spannung und der Polarität des sich einstellenden Schwingstromes, kann nunmehr ein idealer Schaltzeitpunkt bestimmt werden. In Abhängigkeit des Schaltzeitpunktes ist nunmehr ein zeitlicher Vorlauf zur Abgabe eines Auslösesignales möglich, wobei die Vorüberschlagskennlinie der verwendeten Unterbrecherstrecke 1 berücksichtigt werden kann, so dass spätestens nach 300 bzw. 500 ms eine Wiedereinschaltung der Unterbrechereinheit zu einem Zeitpunkt erfolgt ist, zu dem eine Überhöhung der von Spannungen innerhalb des Elektroenergieübertragungsnetzes begrenzt ist. Ein besonders zügiges Wiedereinschalten kann dann erfolgen, wenn die in den 4 und 5 beispielhaft dargestellten zeitlichen Verläufe aus den innerhalb eines sehr kurzen Intervalls (50 ms oder kleiner) vorausberechnet werden. Durch dieses Vorausbestimmen wird eine ausreichende Vorlaufzeit ermöglicht, in welche alle notwendigen Wartezeiten oder Vorlaufzeiten eingetaktet werden können. So ist beispielsweise die Zeit einplanbar, welche von der Erzeugung eines Auslösesignales bis zum Anstehen des Signals an der Auslöseeinrichtung des elektrischen Schaltgerätes mit seiner Unterbrecherstrecke 1 benötigt wird. Weiterhin kann auch die Vorüberschlagcharakteristik der Unterbrecherstrecke 1 Berücksichtigung finden. So ist ein noch genaueres synchrones Schalten ermöglicht.
  • In den 7 und 8 ist jeweils eine Vorüberschlagscharakteristik 11 der Unterbrecherstrecke 1 dargestellt. Die Vorüberschlagscharakteristik 11 ist hier vereinfacht als linearer Verlauf dargestellt, der eine bestimmte Steilheit aufweist. In der 7 ist eine kapazitive Last, beispielsweise ein unbelastetes Kabel zu schalten. Wie in der 1 dargestellt, soll eine kapazitive Last vorzugsweise innerhalb eines Spannungsnulldurchganges geschaltet werden. In der 7 weist die Spannung einen sinusförmigen Verlauf auf. Die Vorüberschlagscharakteristik 11 ist dabei derartig steil, dass ein Schnittpunkt des Spannungsverlaufes und der Vorüberschlagcharakteristik 11 idealerweise in einem Spannungsnulldurchgang zusammenfallen. Bei einer entsprechend flacheren Vorüberschlagscharakteristik 11a ist ein Schnittpunkt von Vorüberschlagscharakteristik 11a und der Spannungsverlauf etwa zum Zeitpunkt 5 ms gegeben, das heißt, bereits zu diesem Zeitpunkt würde sich ein Vorüberschlag einstellen, dadurch wird jedoch der ideale Zeitpunkt der Einleitung eines elektrischen Stromes zum Spannungsnulldurchgang vorverlegt. Demzufolge ist für einen idealen Einschaltvorgang einer kapazitiven Last ein elektrisches Schaltgerät zu verwenden, welches eine vergleichsweise steile Vorüberschlagscharakteristik aufweist. Bei dem in der 7 dargestellten Ausführungsbeispiel mit der Vorüberschlagscharakteristik 11 fallen galvanischer Kontakt der Kontaktstücke und der Vorüberschlag zum Zeitpunkt 10 ms zusammen und gestatten ein nahezu überspannungsfreies Schalten des elektrischen Schaltgerätes.
  • Bei dem in der 8 dargestellten Beispiel ist eine induktive Last zu schalten. Die Vorüberschlagscharakteristik 11 ist jedoch derartig steil, dass unweigerlich ein Schnittpunkt zwischen der Vorüberschlagscharakteristik und dem Spannungsverlauf entsteht. Zum Zeitpunkt 5 ms wird sich zwischen den bewegten Kontaktstücken der Unterbrecherstrecke 1 ein Lichtbogen ausbilden und ein Vorüberschlag entstehen. Zum Zeitpunkt 7,6 ms wird eine Berührung der relativ zueinander bewegbaren Kontaktstücke erfolgen.
  • Bei einer Koppelung des erfindungsgemäßen Verfahrens und einer Beachtung der Überschlagscharakteristik des verwendeten elektrischen Schaltgerätes kann so das Auftreten von Schaltüberspannungen bei einem Schaltvorgang effektiv verhindert werden.
  • Die 9 zeigt einen prinzipiellen Aufbau einer Vorrichtung zur Durchführung des Verfahrens.
  • Die Vorrichtung weist eine Einrichtung 12 zum Vergleichen der Anstiege der treibenden Spannung A und der Schwingspannung B auf. Bei einem Eintreten von festgelegten Verhältnissen der Anstiege zueinander wird ein Signal 13 abgegeben.

Claims (12)

  1. Verfahren zur Bestimmung eines Schaltzeitpunktes eines elektrischen Schaltgerätes mit einer Unterbrecherstrecke (1), die zwischen einem mit einer treibenden Spannung (A1) beaufschlagten ersten Leitungsabschnitt (2) und einem nach einem Ausschaltvorgang des Schaltgerätes einen Schwingkreis ausbildenden zweiten Leitungsabschnitt (3) angeordnet ist, dadurch gekennzeichnet, dass – ein zeitlicher Verlauf der treibenden Spannung (A1) nach einem Ausschaltvorgang des elektrischen Schaltgerätes ermittelt wird, – ein zeitlicher Verlauf einer in dem Schwingkreis nach dem Ausschaltvorgang des elektrischen Schaltgerätes auftretenden Schwingspannung ermittelt wird, – ein zeitlicher Verlauf einer resultierende Spannung (Cl), die einer Differenz aus der treibenden Spannung (A1) und der Schwingspannung (B1) entspricht, ermittelt wird und – zumindest ein Anstieg der treibenden Spannung (A1) und zumindest ein Anstieg der Schwingspannung (B1) ausgewertet werden und in Abhängigkeit der Anstiege und des zeitlichen Verlaufes der resultierenden Spannung (C1) ein Schaltzeitpunkt festgelegt wird.
  2. Verfahren zur Bestimmung eines Schaltzeitpunktes eines elektrischen Schaltgerätes mit einer Unterbrecherstrecke (1), die zwischen einem mit einer treibenden Spannung (A) beaufschlagten ersten Leitungsabschnitt (2) und einem nach einem Ausschaltvorgang des Schaltgerätes einen Schwingkreis ausbildenden zweiten Leitungsabschnitt (3) angeordnet ist, dadurch gekennzeichnet, dass – ein zeitlicher Verlauf der treibenden Spannung (A) nach einem Ausschaltvorgang des elektrischen Schaltgerätes ermittelt wird, – ein zeitlicher Verlauf eines in dem Schwingkreis nach dem Ausschaltvorgang des elektrischen Schaltgerätes auftretenden Schwingspannung (B1) ermittelt wird, – ein zeitlicher Verlauf eines in dem Schwingkreis nach dem Ausschaltvorgang des elektrischen Schaltgerätes fließenden Schwingstromes (D) ermittelt wird, – ein zeitlicher Verlauf einer resultierende Spannung (C), die einer Differenz aus der treibenden Spannung (A) und der Schwingspannung (B) entspricht, ermittelt wird, – zumindest ein Anstieg der treibenden Spannung (A) und zumindest eine Polarität des Schwingstromes (D) ausgewertet werden und in Abhängigkeit des zumindest einen Anstieges der treibenden Spannung (A) und der zumindest einen Polarität des Schwingstromes (D) und des zeitlichen Verlaufes der resultierenden Spannung ein Schaltzeitpunkt festgelegt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Schaltzeitpunkt in der Nähe eines Nulldurchganges der resultierenden Spannung (C, C1) liegt.
  4. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass für den Schaltzeitpunkt die Nähe eines Nulldurchganges der resultierenden Spannung (C1) gewählt wird, an welchem die treibende Spannung (A1) und die Schwingspannung (B1) Anstiege mit gleichem Richtungssinn aufweisen.
  5. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass für den Schaltzeitpunkt die Nähe eines Nulldurchganges der resultierenden Spannung (C) gewählt wird, an welchem die treibende Spannung (A) einen negativen Anstieg und der Schwingstrom (D) eine positive Polarität oder die treibende Spannung (A) einen positiven Anstieg und der Schwingstrom (D) eine negative Polarität aufweisen.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Schwingstrom durch eine Kompensationsdrossel (6, 8, 9) fließt.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der zeitliche Verlauf der Schwingspannung (B, B1) und/oder des Schwingstromes (D) mittels einer Prony-Methode ermittelt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die über der Unterbrecherstrecke (1) nach einem Ausschaltvorgang anliegende Spannung der resultierenden Spannung (C, C1) entspricht.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass bei der Bestimmung des Schaltzeitpunktes die Vorüberschlagscharakteristik des Schaltgerätes berücksichtigt wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass bei einer voranschreitenden Dämpfung der Schwingspannung (B, B1) und/oder des Schwingstromes (D) der Schaltzeitpunkt in der Nähe eines beliebigen Nulldurchganges der resultierenden Spannung (C, C1) festgelegt wird.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Schaltzeitpunkt für einen Einschaltvorgang des elektrischen Schaltgerätes genutzt wird.
  12. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Vorrichtung eine Einrichtung (12) zum Vergleichen des Anstieges der treibenden Spannung und der Schwingspannung und/oder der Polarität des Schwingstromes aufweist.
DE102005005228A 2005-01-31 2005-01-31 Verfahren sowie Vorrichtung zur Bestimmung eines Schaltzeitpunktes eines elektrischen Schaltgerätes Withdrawn DE102005005228A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DE102005005228A DE102005005228A1 (de) 2005-01-31 2005-01-31 Verfahren sowie Vorrichtung zur Bestimmung eines Schaltzeitpunktes eines elektrischen Schaltgerätes
EP20060704214 EP1844484B1 (de) 2005-01-31 2006-01-17 Verfahren sowie vorrichtung zur bestimmung eines schaltzeitpunktes eines elektrischen schaltgerätes
PCT/EP2006/050236 WO2006082131A1 (de) 2005-01-31 2006-01-17 Verfahren sowie vorrichtung zur bestimmung eines schaltzeitpunktes eines elektrischen schaltgerätes
US11/815,124 US7723872B2 (en) 2005-01-31 2006-01-17 Method and apparatus for determining a switching time for an electrical switching device
CN2006800036079A CN101111912B (zh) 2005-01-31 2006-01-17 用于确定电开关设备的开关时刻的方法和装置
JP2007552620A JP4629113B2 (ja) 2005-01-31 2006-01-17 電気開閉装置の閉路時点を決定するための方法と装置
RU2007132724A RU2393572C2 (ru) 2005-01-31 2006-01-17 Способ и устройство для определения момента коммутации электрического коммутационного аппарата
KR1020077019997A KR100933579B1 (ko) 2005-01-31 2006-01-17 전기 스위칭 장치의 스위칭 시간을 결정하기 위한 방법 및장치
CA 2596192 CA2596192C (en) 2005-01-31 2006-01-17 Method and apparatus for determining a switching time for an electrical switching device
BRPI0606816-2A BRPI0606816A2 (pt) 2005-01-31 2006-01-17 método e aparelho para determinar um tempo de comutação para um dispositivo de comutação elétrica
UAA200708771A UA90880C2 (ru) 2005-01-31 2006-01-17 Способ определения момента коммутации электрического коммутационного аппарата (варианты) и устройство для его осуществления
DE200650008993 DE502006008993D1 (de) 2005-01-31 2006-01-17 Verfahren sowie vorrichtung zur bestimmung eines s

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005005228A DE102005005228A1 (de) 2005-01-31 2005-01-31 Verfahren sowie Vorrichtung zur Bestimmung eines Schaltzeitpunktes eines elektrischen Schaltgerätes

Publications (1)

Publication Number Publication Date
DE102005005228A1 true DE102005005228A1 (de) 2006-08-31

Family

ID=36096234

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102005005228A Withdrawn DE102005005228A1 (de) 2005-01-31 2005-01-31 Verfahren sowie Vorrichtung zur Bestimmung eines Schaltzeitpunktes eines elektrischen Schaltgerätes
DE200650008993 Active DE502006008993D1 (de) 2005-01-31 2006-01-17 Verfahren sowie vorrichtung zur bestimmung eines s

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE200650008993 Active DE502006008993D1 (de) 2005-01-31 2006-01-17 Verfahren sowie vorrichtung zur bestimmung eines s

Country Status (11)

Country Link
US (1) US7723872B2 (de)
EP (1) EP1844484B1 (de)
JP (1) JP4629113B2 (de)
KR (1) KR100933579B1 (de)
CN (1) CN101111912B (de)
BR (1) BRPI0606816A2 (de)
CA (1) CA2596192C (de)
DE (2) DE102005005228A1 (de)
RU (1) RU2393572C2 (de)
UA (1) UA90880C2 (de)
WO (1) WO2006082131A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009138395A1 (de) * 2008-05-16 2009-11-19 Siemens Aktiengesellschaft Verfahren zur bestimmung eines schaltzeitpunktes eines elektrischen schaltgerätes
DE102016117273A1 (de) 2016-09-14 2018-03-15 Phoenix Contact Gmbh & Co. Kg Relais mit einer Steuerung und Verfahren zur Steuerung eines Relais
DE102016117271B3 (de) 2016-09-14 2018-03-15 Phoenix Contact Gmbh & Co. Kg Relais mit einer Steuerung und Verfahren zur Steuerung eines Relais

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0804330B1 (pt) * 2008-10-13 2019-03-12 Universidade Estadual De Campinas - Unicamp Método para religamento tripolar rápido em linhas de transmissão com compensação reativa em derivação
EP2707958B1 (de) * 2011-05-09 2015-11-18 ABB Technology AG Abb-steuergerät mit mindestens drei überwachungseingaben
US9779892B2 (en) 2012-12-14 2017-10-03 Mitsubishi Electric Corporation Power switching control apparatus for switching timings of breaker to suppress transit voltage and current upon turning on the breaker
US20160225548A1 (en) * 2013-10-15 2016-08-04 Mitsubishi Electric Corporation Power switching control apparatus and closing control method
US10177553B2 (en) * 2013-10-17 2019-01-08 Mitsubishi Electric Corporation Power switching control apparatus and switching control method therefor
US10074494B2 (en) * 2013-12-23 2018-09-11 Abb Schweiz Ag Method for point on wave switching and a controller therefor
CN104409280B (zh) * 2014-12-01 2017-01-25 深圳市宝安任达电器实业有限公司 Eps电源输出控制继电器防打火花控制方法及控制电路
EP3629437B1 (de) 2018-09-28 2023-08-02 Hitachi Energy Switzerland AG Verfahren und vorrichtung zum steuern mindestens eines leistungsschalters eines stromsystems
US11680986B2 (en) * 2020-03-09 2023-06-20 Siemens Aktiengesellschaft Method and device for determining closing time of circuit breaker, and computer-readable medium
RU2737047C1 (ru) * 2020-04-22 2020-11-25 Общество с ограниченной ответственностью Научно-производственное предприятие "ЭКРА" Способ автоматического повторного включения ЛЭП с шунтирующими реакторами

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180716A (ja) * 1984-09-28 1986-04-24 株式会社日立製作所 電力系統
US5430599A (en) * 1993-03-18 1995-07-04 Hydro-Quebec System for opening/closing circuit breakers
JPH07192584A (ja) * 1993-12-28 1995-07-28 Fuji Electric Co Ltd 交流スイッチの電流零点遮断制御方法
US6233132B1 (en) * 1998-09-03 2001-05-15 Ranco Incorporated Of Delaware Zero cross relay actuation method and system implementing same
DE69824420T2 (de) * 1998-12-03 2005-06-16 Abb Research Ltd. Steuer- und Überwachungseinrichtung für die Öffnung oder die Schliessung eines elektrischen Betätigungselementes
JP2000188044A (ja) * 1998-12-21 2000-07-04 Mitsubishi Electric Corp 位相制御開閉装置
JP3986810B2 (ja) * 2001-12-03 2007-10-03 三菱電機株式会社 電力開閉制御装置
ATE287123T1 (de) * 2002-04-05 2005-01-15 Abb Technology Ag Verfahren fur ein netzsynchrones schalten von leistungsschaltern und vorrichtung zur durchfuhrung dieses verfahrens
US6768615B2 (en) * 2002-06-24 2004-07-27 Daniel Liu Spark elimination circuit for controlling relay contacts
FR2853466B1 (fr) * 2003-04-02 2005-05-06 Alstom Procede de determination de l'instant de fermeture d'un disjoncteur sur une ligne haute tension
DE102006022845B4 (de) * 2005-05-23 2016-01-07 Infineon Technologies Ag Ansteuerschaltung für eine Schaltereinheit einer getakteten Leistungsversorgungsschaltung und Resonanzkonverter
JP4452653B2 (ja) * 2005-06-07 2010-04-21 三菱電機株式会社 電磁誘導機器への投入位相検出装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009138395A1 (de) * 2008-05-16 2009-11-19 Siemens Aktiengesellschaft Verfahren zur bestimmung eines schaltzeitpunktes eines elektrischen schaltgerätes
DE102008024420A1 (de) 2008-05-16 2009-11-19 Siemens Aktiengesellschaft Verfahren zur Bestimmung eines Schaltzeitpunktes eines elektrischen Schaltgerätes
RU2507623C2 (ru) * 2008-05-16 2014-02-20 Сименс Акциенгезелльшафт Способ для определения момента времени переключения электрического переключающего прибора
DE102016117273A1 (de) 2016-09-14 2018-03-15 Phoenix Contact Gmbh & Co. Kg Relais mit einer Steuerung und Verfahren zur Steuerung eines Relais
DE102016117271B3 (de) 2016-09-14 2018-03-15 Phoenix Contact Gmbh & Co. Kg Relais mit einer Steuerung und Verfahren zur Steuerung eines Relais
DE102016117273B4 (de) 2016-09-14 2018-03-29 Phoenix Contact Gmbh & Co. Kg Relais mit einer Steuerung und Verfahren zur Steuerung eines Relais
US9997318B2 (en) 2016-09-14 2018-06-12 Phoenix Contact Gmbh & Co. Kg Relay with a controller
US11189448B2 (en) 2016-09-14 2021-11-30 Phoenix Contact Gmbh & Co. Kg Relay with a controller

Also Published As

Publication number Publication date
RU2007132724A (ru) 2009-03-10
JP4629113B2 (ja) 2011-02-09
DE502006008993D1 (de) 2011-04-14
CA2596192C (en) 2014-06-17
CN101111912A (zh) 2008-01-23
US7723872B2 (en) 2010-05-25
KR100933579B1 (ko) 2009-12-22
RU2393572C2 (ru) 2010-06-27
BRPI0606816A2 (pt) 2009-07-14
KR20070099682A (ko) 2007-10-09
JP2008529227A (ja) 2008-07-31
US20080211317A1 (en) 2008-09-04
CA2596192A1 (en) 2006-08-10
EP1844484A1 (de) 2007-10-17
WO2006082131A1 (de) 2006-08-10
EP1844484B1 (de) 2011-03-02
UA90880C2 (ru) 2010-06-10
CN101111912B (zh) 2010-06-23

Similar Documents

Publication Publication Date Title
EP1844484B1 (de) Verfahren sowie vorrichtung zur bestimmung eines schaltzeitpunktes eines elektrischen schaltgerätes
EP2737510B1 (de) Gleichspannungs-leistungsschalter
WO2009056432A1 (de) Verfahren zur kurzschlusserkennung in einem elektrischen stromnetz
EP0993695A1 (de) Verfahren und anordnung zur erkennung von kurzschlüssen in niederspannungsnetzen
EP3510617B1 (de) Schutzschaltgerät
EP1454332B1 (de) Verfahren zur ermittlung eines zukünftigen spannungs und/oder stromverlaufs
DE102006019467A1 (de) Verfahren und Vorrichtung zur Kurzschlussfrüherkennung in einem elektrischen Netz
DE19923362C5 (de) Verfahren zur Bewertung des Kontaktzustandes eines Leistungsschalters
EP0696830A1 (de) Erdschlussortung in elektrischen Netzen mit einer Erdschlussspule
WO2002033716A1 (de) Verfahren und vorrichtung zur reduzierung des kontaktabbrandes eines schaltgerätes
EP3323136B1 (de) Gleichstrom-schalteinrichtung und deren verwendung
EP3143417B1 (de) Verfahren und system zum prüfen einer schaltanlage für energieübertragungsanlagen
DE2026685B2 (de) Verfahren und Schalteinrichtung zum Unterbrechen von Gleichstrom-Energieübertragungsnetzen
EP1986203A1 (de) Verfahren zur Feststellung des Vorhandenseins einer Kontaktisolierschicht bei einem kontaktbehafteten Schaltelement sowie Schaltgerät mit einem derartigen Schaltelement
DE10307668B3 (de) Verfahren zur Bestimmung der Parameter eines gelöschten Netzes
DE2735756A1 (de) Verfahren und vorrichtung zur erdschlussrichtungsbestimmung in kompensierten netzen
DE19503626C2 (de) Verfahren zum Gewinnen eines eine Pendelung in einem elektrischen Energieversorgungsnetz anzeigenden Signals
EP0745862A2 (de) Verfahren und Vorrichtung zum Bestimmen von Isolationseigenschaften von Prüfobjekten
EP4141455B1 (de) Grosssignalinduktivitätsmesseinrichtung und verfahren zum durchführen eines messvorgangs zum messen einer induktivität
EP2737514B1 (de) Schaltgeraet
EP2274758A1 (de) Verfahren zur bestimmung eines schaltzeitpunktes eines elektrischen schaltgerätes
DE202017101240U1 (de) Steuergerät zum gesteuerten Schalten eines Leistungsschalters
WO2022207159A1 (de) Überwachung der funktionsfähigkeit eines hochspannungsschalters
DE102020203187A1 (de) Schaltanordnung und Verfahren zum Zuschalten von Kondensatorbatterien
WO2022043035A1 (de) Verfahren zur zustandsbestimmung eines betriebsmittels und betriebsmittel

Legal Events

Date Code Title Description
OR8 Request for search as to paragraph 43 lit. 1 sentence 1 patent law
R163 Identified publications notified

Effective date: 20111013

R005 Application deemed withdrawn due to failure to request examination

Effective date: 20120201