DE102004038573A1 - Epitaxially growing thick tear-free group III nitride semiconductor layers used in the production of modern opto-electronic and electronic components comprises using an aluminum-containing group III nitride intermediate layer - Google Patents

Epitaxially growing thick tear-free group III nitride semiconductor layers used in the production of modern opto-electronic and electronic components comprises using an aluminum-containing group III nitride intermediate layer Download PDF

Info

Publication number
DE102004038573A1
DE102004038573A1 DE200410038573 DE102004038573A DE102004038573A1 DE 102004038573 A1 DE102004038573 A1 DE 102004038573A1 DE 200410038573 DE200410038573 DE 200410038573 DE 102004038573 A DE102004038573 A DE 102004038573A DE 102004038573 A1 DE102004038573 A1 DE 102004038573A1
Authority
DE
Germany
Prior art keywords
group iii
iii nitride
intermediate layer
electronic
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE200410038573
Other languages
German (de)
Inventor
Armin Dr.rer.nat. Dadgar
Alois Prof. Dr.rer.nat.habil. Krost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azzurro Semiconductors AG
Original Assignee
Azzurro Semiconductors AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azzurro Semiconductors AG filed Critical Azzurro Semiconductors AG
Priority to DE200410038573 priority Critical patent/DE102004038573A1/en
Publication of DE102004038573A1 publication Critical patent/DE102004038573A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

Epitaxially growing thick tear-free group III nitride semiconductor layers comprises depositing an aluminum-containing group III nitride intermediate layer which is grown at the same or higher temperature than the buffer material and has a thickness which leads to the aluminum-containing layer partially or completely relaxing.

Description

Das epitaktische Wachstum von Gruppe-III-Nitrid Schichten, wie sie für moderne optoelektronische und elektronische Bauelemente Verwendung finden, auf Silizium oder SiC führt je nach Methode und Wachstumstemperatur beim Abkühlen auf Raumtemperatur zur Ausbildung von Rissen aufgrund der stark verschiedenen thermischen Ausdehnungskoeffizienten dieser Materialien.The epitaxial growth of group III nitride layers, as they are modern optoelectronic and electronic components are used, on silicon or SiC leads depending on the method and growth temperature during cooling to room temperature Formation of cracks due to the very different thermal Expansion coefficients of these materials.

Eine Möglichkeit ist es, nur dünne Schichten oder bei einer niedrigen Temperatur abzuscheiden. Aufgrund der vorhandenen Gitterfehlanpassung kann damit jedoch nur sehr defektreiches Material erzielt werden. Erst dickere Schichten bei höheren Wachstumstemperaturen erfüllen Ansprüche, die für moderne optoelektronische und elektronische Bauelemente wichtig sind, wie eine mikroskopisch glatte Oberfläche und niedrige Versetzungsdichten.A possibility it is, only thin Layers or at a low temperature. by virtue of However, the existing lattice mismatch can thus only very rich in defects Material can be achieved. First thicker layers at higher growth temperatures fulfill Claims, the for modern ones Optoelectronic and electronic components are important, such as a microscopically smooth surface and low dislocation densities.

Dadgar et al. [Dadgar 2000] haben gezeigt, dass das Einbringen von Niedertemperatur AIN-Zwischenschichten das Wachstum von rissfreien, ca. 1.3 μm dicken GaN Schichten auf Si im Gegensatz zu der sonst üblichen maximal 1 μm Schichtdicke erlaubt. Hauptproblem dieses Verfahrens ist der zeitaufwendige Abkühl- und Aufheizprozess für diese Zwischenschichten. Es wurde auch gezeigt [Dadgar 2004], dass gleichdicke AIN Schichten, die bei hohen Temperaturen gewachsen werden keinen entsprechenden Effekt auf die Rissvermeidung haben. Die Ursache für die Rissvermeidung durch Niedertemperatur AIN Zwischenschichten wurde untersucht und es wurde festgestellt [Dadgar 2004], dass ein relaxiertes Aufwachsen von AIN bei Temperaturen unterhalb von ca. 1000°C Wachstumstemperatur auftritt, wahrscheinlich da AIN dann eine Tendenz zum polykristallinen Wachstum besitzt. Feltin et al. [Feltin 2001] haben gezeigt, dass sich mit AIN/GaN Übergitterstrukturen eine kompressive Verspannung erzeugen lässt, die sich erst nach dem Wachstum von 2.5 μm GaN verbraucht hat, d.h. erst oberhalb dieser Schichtdicke bilden sich Risse aus. Sie haben auch gezeigt, dass die tensile Verspannung des GaN mit zunehmender Schichtdicke wächst. Dieses Verfahren der AIN/GaN Übergitterstrukturen ist jedoch recht aufwendig und lässt sich nicht für beliebig dicke Schichtpakete anwenden, da es nur im unteren Teil der Pufferschicht funktioniert, wo es eine entsprechende Druckkomponente zur Kompensation der thermischen Zugverspannung erzeugt.Dadgar et al. [Dadgar 2000] have shown that the introduction of low temperature AIN interlayer growth of crack-free, about 1.3 microns thick GaN layers on Si in contrast to the usual maximum 1 micron layer thickness allowed. The main problem of this process is the time-consuming cooling and heating process for these intermediate layers. It was also shown [Dadgar 2004] that same-thickness AIN layers, which are grown at high temperatures are not appropriate Have an effect on the crack prevention. The cause of the crack prevention low temperature AIN interlayers was investigated and it was found [Dadgar 2004] that a relaxed growing up of AIN at temperatures below about 1000 ° C growth temperature occurs, probably since AIN then has a tendency to polycrystalline growth. Feltin et al. [Feltin 2001] have shown that with AIN / GaN superlattice structures create a compressive tension, which only after the Growth of 2.5 μm GaN has consumed, i. only form above this layer thickness cracks out. They also showed that the tensile strain of GaN grows with increasing layer thickness. This method of AIN / GaN superlattice structures is quite expensive and leaves not for yourself Apply as thick layer packages as it is only in the lower part of the Buffer layer works where there is a corresponding pressure component generated to compensate for the thermal tensile stress.

Das Verfahren nach Anspruch 1 bewirkt durch das Wachstum einer ausreichend dicken Al-haltigen Zwischenschicht, dass diese mindestens teilweise relaxiert. Die Relaxation findet bei diesem Material dabei meist durch Rissbildung in der Zwischenschicht statt. Das darauf aufgewachsene GaN wird dann kompressiv vorgespannt und diese kompressive Vorspannung kompensiert die tensile Verspannung beim Abkühlen. Durch die Rissbildung und das dadurch erfolgende teilweise facettierte Wachstum der Zwischenschicht können auch sehr effektiv Versetzungen an der Grenzfläche zu der darauf aufwachsenden Schicht abgebaut werden wie beim FACELO Wachstum [Honda 2001]. Wichtig dabei ist, dass dieses Verfahren keinen Abkühlprozess benötigt und durch die bessere Qualität der Hochtemperatur AIN Schicht auch zu einer höheren Qualität der GaN Schicht führt.The The method of claim 1 causes by the growth of a sufficient thick Al-containing interlayer that these at least partially relaxes. The relaxation usually occurs with this material by cracking in the interlayer instead. The grown up on it GaN is then preloaded compressively and this compressive bias compensates for the tensile stress during cooling. By the cracking and the resulting partially faceted growth of the intermediate layer can also very effective dislocations at the interface to the growing on it Layer are degraded as in FACELO growth [Honda 2001]. Important it is that this process does not require a cooling process and through the better quality The high temperature AIN layer also leads to a higher quality of GaN Layer leads.

Die beste Dicke bei Verwendung von reinem AIN beträgt dabei, wie in Anspruch 2 genannt, je nach Schichtsystem mehr als 15 bis maximal 200 nm. Wichtig ist dabei, die Schicht nur so dick zu machen, dass diese Zwischenschicht nicht selbst beim Abkühlen reißt, d.h. sie muss so dünn sein, dass die aufgebaute Zugverspannung unterhalb des kritischen Wertes für ein Reißen liegt. Dieses Reißen geschieht auch bei während des Wachstums vollständig relaxierten Schichten, wenn diese sehr dick sind und führt auch bei einer kompressiven Vorspannung der darauf abgeschiedenen Schicht wiederum zu einem Reißen des gesamten Schichtpakets.The Best thickness when using pure AlN is thereby, as in claim 2 called, depending on the layer system more than 15 to a maximum of 200 nm. Important is going to make the layer just so thick that this interlayer not even when cooling tears, i.e. she has to be so skinny be that the tensile stress built up below the critical Value for a tearing lies. This tearing happens also during during of growth completely relaxed layers, if they are very thick and leads too at a compressive bias of the deposited layer turn to a tearing of the entire layer package.

Durch das wiederholte Anwenden solch vorgespannter Zwischenschichten nach Anspruch 3 wird das Wachstum sehr dicker rissfreier GaN Schichten ermöglicht.By the repeated application of such prestressed interlayers Claim 3 will be the growth of very thick crack-free GaN layers allows.

Eine geringfügige Absenkung der Wachstumstemperatur um 10-20°C zum Wachsen der AIN Zwischenschicht ist zwar nicht sinnvoll, da damit tendenziell schlechtere Schichtqualitäten erzielt werden. Trotzdem ist solch eine geringe Absenkung der Wachstumstemperatur, die schnell und unproblematisch durchgeführt werden kann, auch denkbar und soll daher zum Gegenstand der Erfindung gehören.A minor Lowering the growth temperature by 10-20 ° C to grow the AIN intermediate layer does not make sense, as it tends to result in poorer coating qualities become. Nevertheless, such a small lowering of the growth temperature, which can be done quickly and easily, also conceivable and should therefore belong to the subject of the invention.

Zusätzlich zu den reinen Gruppe-III-Nitriden im System Gruppe-III-N ist das erfindungsgemäße Verfahren auch auf alle Materialien im System Metall-Stickstoff-Arsen-Phosphor, d.h. auch auf alle stickstoffreichen Halbleiter wie GaNAs, anwendbar.In addition to the pure group III nitrides in the group III-N system is the process according to the invention also to all materials in the system metal-nitrogen-arsenic-phosphorous, i. also applicable to all nitrogen-rich semiconductors such as GaNAs.

Im Folgenden wird mit Bezug auf die schematische Darstellung der Schichtenfolge in 1 eins von vielen möglichen Ausführungsbeispielen gezeigt.In the following, with reference to the schematic representation of the layer sequence in FIG 1 one of many possible embodiments shown.

In einem MOVPE Reaktor wird zuerst eine dünne AIN-Keimschicht 1b auf einem Si(111) Substrat 1 abgeschieden. Darauf folgt bei normaler Wachstumstemperatur eine ca. 500 nm dicke GaN-Pufferschicht 2, um eine glatte, geschlossene Oberfläche zu erhalten. Darauf werden wie in Anspruch 2 genannt ca. 30 nm AIN 2b bei einer Temperatur oberhalb von 1000°C und mindestens bei der GaN Wachstumstemperatur abgeschieden und wieder ca. 1 μm GaN – Schicht 3 – bei derselben oder einer niedrigeren Wachstumstemperatur gewachsen. Nach einer zweiten AIN Zwischenschicht 3b nach Anspruch 3 wird die eigentliche dicke GaN-Schicht 4 begonnen, die mit der Bauelementstruktur abschließt bzw. diese ethält. Beeinflussen lässt sich die Verspannung durch die Dicken und die Kompositionen der Schichten, wodurch sie sich so einstellen lässt, dass das Substrat/Schichtsystem am Ende, d.h. nach dem Abkühlen auf Raumtemperatur idealerweise eben und rissfrei ist.In a MOVPE reactor, first a thin AIN seed layer is formed 1b on a Si (111) substrate 1 deposited. Followed by normal wax Tween a 500 nm thick GaN buffer layer 2 to get a smooth, closed surface. On it are as mentioned in claim 2 about 30 nm AIN 2 B deposited at a temperature above 1000 ° C and at least at the GaN growth temperature and again about 1 micron GaN layer 3 Grown at the same or lower growth temperature. After a second AIN interlayer 3b according to claim 3, the actual thick GaN layer 4 started, which concludes with the component structure or this ethält. The tension can be influenced by the thicknesses and the compositions of the layers, whereby they can be adjusted so that the substrate / layer system at the end, ie after cooling to room temperature is ideally flat and crack-free.

AbkürzungenAbbreviations

Alal
Aluminiumaluminum
Gaga
Galliumgallium
Gruppe-IIIGroup III
Elemente aus der dritten Hauptgruppe des Periodensystems der ElementeElements from the third Main group of the Periodic Table of the Elements
Gruppe-III-NGroup III-N
Verbindungshalbleiter aus Elementen der dritten Hauptgruppe des Periodensystems der Elemente mit StickstoffCompound semiconductor from elements of the third main group of the periodic table of the elements with nitrogen
MOVPEMOVPE
metal organic chemical vapor phase epitaxy, metallorganische Gasphasenepitaxiemetal organic chemical vapor phase epitaxy, organometallic vapor phase epitaxy
NN
Stickstoffnitrogen
SiSi
Silizium; als Substrat sind außer gewöhnlichen Si-Substraten auch Substrate wie z. B. Silicon-on-insulator Substrate eingeschlossenSilicon; as a substrate are out of the box ordinary Si substrates also substrates such as B. Silicon-on-insulator Substrates included
SiCSiC
Siliziumcarbitsilicon carbide
FACELOFACELO
Faceted Epitaxial Lateral Overgrowth, facettiertes epitaktisches laterales ÜberwachsenFaceted epitaxial Lateral Overgrowth, faceted epitaxial lateral overgrowth

Referenzenreferences

  • [Dadgar 2001] A. Dadgar et al., Jpn. J. Appl. Phys. 39, L1183 (2000)[Dadgar 2001] A. Dadgar et al., Jpn. J. Appl. Phys. 39, L1183 (2000)
  • [Dadgar 2004] A. Dadgar, R. Clos, G. Strassburger, F. Schulze, P. Veit, T. Hempel, J. Bläsing, A. Krtschil, I. Daumiller, M. Kunze, A. Kaluza, A. Modlich, M. Kamp, A. Diez, J. Christen, and A. Krost, in Advances in Solid State Physics 44, B. Kramer Herausgeber, Springer (2004)[Dadgar 2004] A. Dadgar, R. Clos, G. Strassburger, F. Schulze, P. Veit, T. Hempel, J. Bläsing, A. Krtschil, I. Daumiller, M. Kunze, A. Kaluza, A. Modlich, M. Kamp, A. Diez, J. Christen, and A. Krost, in Advances in Solid State Physics 44, B. Kramer Editor, Springer (2004)
  • [Feltin 2001] E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, M. Leroux, P. Gibart, Physica Status Solidi (a) 188, 531 (2001)[Feltin 2001] E. Feltin, B. Beaumont, M. Laugen, P. de Mierry, P. Vennéguès, M. Leroux, P. Gibart, Physica Status Solidi (a) 188, 531 (2001)
  • [Honda 2001] Yoshiaki Honda, Yasushi Iyechika, Takayoshi Maeda, Hideto Miyake, and Kazumasa Hiramatsu, Jpn. J. Appl. Phys, Part 2 40, L309 (2001)[Honda 2001] Yoshiaki Honda, Yasushi Iyechika, Takayoshi Maeda, Hideto Miyake, and Kazumasa Hiramatsu, Jpn. J. Appl. Phys, Part 2 40, L309 (2001)

Claims (3)

Verfahren zum epitaktischen Wachstum dicker, rissfreier Gruppe-III-Nitrid Halbleiterschichten mittels metallorganischer Gasphasenepitaxie auf Si oder SiC, gekennzeichnet durch das Abscheiden einer zum Puffermaterial zugverspannten Al-haltigen Gruppe-III-Nitrid Zwischenschicht, die bei derselben oder einer höheren Temperatur als das Puffermaterial aufgewachsen wird und eine Dicke besitzt, die dazu führt, dass die Al-haltige Schicht mindestens teilweise oder vollständig relaxiert.Process for epitaxial growth thicker, crack-free group III nitride semiconductor layers by means of organometallic Gas phase epitaxy on Si or SiC, characterized by the deposition an Al-containing Group III nitride intermediate layer tensioned to the buffer material, those at the same or higher Temperature as the buffer material is grown and a thickness owns that leads to that the Al-containing layer at least partially or completely relaxes. Verfahren nach Anspruch 1, gekennzeichnet durch das Wachsen einer 15 bis 200 nm dicken AIN Zwischenschicht.Method according to claim 1, characterized by Growing a 15 to 200 nm thick AIN intermediate layer. Verfahren nach Anspruch 1 oder 2 gekennzeichnet, durch das wiederholte Wachsen einer zum Puffermaterial zugverspannten AI-haltigen Gruppe-III-Nitrid Zwischenschicht.A method according to claim 1 or 2, characterized by the repeated growth of a zugensgespannten to the buffer material Al-containing Group III nitride intermediate layer.
DE200410038573 2004-08-06 2004-08-06 Epitaxially growing thick tear-free group III nitride semiconductor layers used in the production of modern opto-electronic and electronic components comprises using an aluminum-containing group III nitride intermediate layer Ceased DE102004038573A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE200410038573 DE102004038573A1 (en) 2004-08-06 2004-08-06 Epitaxially growing thick tear-free group III nitride semiconductor layers used in the production of modern opto-electronic and electronic components comprises using an aluminum-containing group III nitride intermediate layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200410038573 DE102004038573A1 (en) 2004-08-06 2004-08-06 Epitaxially growing thick tear-free group III nitride semiconductor layers used in the production of modern opto-electronic and electronic components comprises using an aluminum-containing group III nitride intermediate layer

Publications (1)

Publication Number Publication Date
DE102004038573A1 true DE102004038573A1 (en) 2006-03-16

Family

ID=35853437

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200410038573 Ceased DE102004038573A1 (en) 2004-08-06 2004-08-06 Epitaxially growing thick tear-free group III nitride semiconductor layers used in the production of modern opto-electronic and electronic components comprises using an aluminum-containing group III nitride intermediate layer

Country Status (1)

Country Link
DE (1) DE102004038573A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112699A2 (en) 2006-02-23 2009-10-28 Azzuro Semiconductors AG Nitride-based semiconductor product and method for its production
DE102008056175A1 (en) 2008-11-06 2010-05-12 Osram Opto Semiconductors Gmbh A method of manufacturing a radiation emitting thin film device and radiation emitting thin film device
US7825432B2 (en) 2007-03-09 2010-11-02 Cree, Inc. Nitride semiconductor structures with interlayer structures
EP2538435A1 (en) * 2010-02-16 2012-12-26 NGK Insulators, Ltd. Epitaxial substrate and method for producing same
US8362503B2 (en) 2007-03-09 2013-01-29 Cree, Inc. Thick nitride semiconductor structures with interlayer structures
WO2013045355A1 (en) * 2011-09-30 2013-04-04 Osram Opto Semiconductors Gmbh Method for fabricating an optoelectronic nitride compound semiconductor component
EP2696365A3 (en) * 2012-08-09 2014-02-26 Samsung Electronics Co., Ltd Semiconductor buffer structure, semiconductor device including the same, and method of manufacturing semiconductor device using semiconductor buffer structure
US8946773B2 (en) 2012-08-09 2015-02-03 Samsung Electronics Co., Ltd. Multi-layer semiconductor buffer structure, semiconductor device and method of manufacturing the semiconductor device using the multi-layer semiconductor buffer structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030136333A1 (en) * 2000-06-09 2003-07-24 Fabrice Semond Preparation method of a coating of gallium nitride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030136333A1 (en) * 2000-06-09 2003-07-24 Fabrice Semond Preparation method of a coating of gallium nitride

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E. Feltini, et al.:"Crack-Free Thick GnN Layw s on Silicon (111) by Metalorganic Vaper Phase Epitaxie", IN: phys. stat. sol. (a) 188, No. 2, 531-535 (2001) *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3731284A1 (en) 2006-02-23 2020-10-28 AZUR SPACE Solar Power GmbH Nitride semiconductor product
EP3731283A1 (en) 2006-02-23 2020-10-28 AZUR SPACE Solar Power GmbH Nitride-based semiconductor product
EP2112699A2 (en) 2006-02-23 2009-10-28 Azzuro Semiconductors AG Nitride-based semiconductor product and method for its production
US9054017B2 (en) 2007-03-09 2015-06-09 Cree, Inc. Thick nitride semiconductor structures with interlayer structures and methods of fabricating thick nitride semiconductor structures
US7825432B2 (en) 2007-03-09 2010-11-02 Cree, Inc. Nitride semiconductor structures with interlayer structures
US8324005B2 (en) 2007-03-09 2012-12-04 Cree, Inc. Methods of fabricating nitride semiconductor structures with interlayer structures
US8362503B2 (en) 2007-03-09 2013-01-29 Cree, Inc. Thick nitride semiconductor structures with interlayer structures
DE102008056175A1 (en) 2008-11-06 2010-05-12 Osram Opto Semiconductors Gmbh A method of manufacturing a radiation emitting thin film device and radiation emitting thin film device
US8420439B2 (en) 2008-11-06 2013-04-16 Osram Opto Semiconductors Gmbh Method of producing a radiation-emitting thin film component and radiation-emitting thin film component
EP2538435A4 (en) * 2010-02-16 2013-12-04 Ngk Insulators Ltd Epitaxial substrate and method for producing same
EP2538435A1 (en) * 2010-02-16 2012-12-26 NGK Insulators, Ltd. Epitaxial substrate and method for producing same
US9184051B2 (en) 2011-09-30 2015-11-10 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic nitride compound semiconductor component
WO2013045355A1 (en) * 2011-09-30 2013-04-04 Osram Opto Semiconductors Gmbh Method for fabricating an optoelectronic nitride compound semiconductor component
US8946773B2 (en) 2012-08-09 2015-02-03 Samsung Electronics Co., Ltd. Multi-layer semiconductor buffer structure, semiconductor device and method of manufacturing the semiconductor device using the multi-layer semiconductor buffer structure
EP2696365A3 (en) * 2012-08-09 2014-02-26 Samsung Electronics Co., Ltd Semiconductor buffer structure, semiconductor device including the same, and method of manufacturing semiconductor device using semiconductor buffer structure
US9136430B2 (en) 2012-08-09 2015-09-15 Samsung Electronics Co., Ltd. Semiconductor buffer structure, semiconductor device including the same, and method of manufacturing semiconductor device using semiconductor buffer structure

Similar Documents

Publication Publication Date Title
KR100453210B1 (en) METHOD FOR PRODUCING GaN-BASED COMPOUND SEMICONDUCTOR AND GaN-BASED COMPOUND SEMICONDUCTOR DEVICE
EP1908099B1 (en) Semi-conductor substrate and method and masking layer for producing a free-standing semi-conductor substrate by means of hydride-gas phase epitaxy
US8525230B2 (en) Field-effect transistor with compositionally graded nitride layer on a silicaon substrate
CA2392041C (en) Pendeoepitaxial growth of gallium nitride layers on sapphire substrates
US8039869B2 (en) Gallium nitride device substrate containing a lattice parameter altering element
US7128786B2 (en) Process for depositing III-V semiconductor layers on a non-III-V substrate
Jang et al. High-quality GaN/Si (1 1 1) epitaxial layers grown with various Al0. 3Ga0. 7N/GaN superlattices as intermediate layer by MOCVD
KR100895654B1 (en) Growth of nitride semiconductor crystals
WO2005053042A1 (en) Method for fabricating gan-based nitride layer
EP1459362A2 (en) Method for depositing iii-v semiconductor layers on a non-iii-v substrate
DE19725900A1 (en) Process for the epitaxy of gallium nitride on silicon substrates
JP2007502546A (en) Fabrication of gallium nitride substrates by lateral growth through a mask and devices fabricated therefrom.
DE102004038573A1 (en) Epitaxially growing thick tear-free group III nitride semiconductor layers used in the production of modern opto-electronic and electronic components comprises using an aluminum-containing group III nitride intermediate layer
DE112014000633B4 (en) Semiconductor layer sequence and method for producing a semiconductor layer sequence
Acord et al. In situ stress measurements during MOCVD growth of AlGaN on SiC
McAleese et al. Strain effects of AlN interlayers for MOVPE growth of crack-free AlGaN and AlN/GaN multilayers on GaN
DE60303014T2 (en) Intermediate for the production of optical, electronic or optoelectronic components
DE102009042349A1 (en) Semipolar wurtzitic Group III nitride based semiconductor layers and semiconductor devices based thereon
DE102012204553B4 (en) Process for producing a template, template produced in this way, its use, process for producing III-N single crystals, process for producing III-N crystal wafers, their use and use of mask materials
DE10219223A1 (en) Gaseous formation of thick III-V semiconductor layers on non-III-V substrate, especially silicon, comprises deposition of thin intermediate layer between two III-V layers
DE69938609T2 (en) EPITACTIC SUBSTRATE OF ALUMINUM GALLIUM NITRIDE SEMICONDUCTORS AND METHOD OF PRODUCTION THEREOF
JP4545389B2 (en) Dislocation reduction method for epitaxial substrate and group III nitride layer group
RU2750295C1 (en) Method for producing heteroepitaxial layers of iii-n compounds on monocrystalline silicon with 3c-sic layer
DE102011011043B4 (en) Semiconductor layer system with a semipolar or m-planar group III nitride layer system and a semiconductor component based thereon
US20200035482A1 (en) Buffer layer for Gallium Nitride-on-Silicon epitaxy

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection