DE102004032830A1 - Preparing hydrogen-rich synthesis gas from biogenous materials and carbon-containing compounds, by water vapor gasification in fluidized bed reactor, comprises providing heat transmission elements into fluidized bed and oxygen into reactor - Google Patents

Preparing hydrogen-rich synthesis gas from biogenous materials and carbon-containing compounds, by water vapor gasification in fluidized bed reactor, comprises providing heat transmission elements into fluidized bed and oxygen into reactor Download PDF

Info

Publication number
DE102004032830A1
DE102004032830A1 DE102004032830A DE102004032830A DE102004032830A1 DE 102004032830 A1 DE102004032830 A1 DE 102004032830A1 DE 102004032830 A DE102004032830 A DE 102004032830A DE 102004032830 A DE102004032830 A DE 102004032830A DE 102004032830 A1 DE102004032830 A1 DE 102004032830A1
Authority
DE
Germany
Prior art keywords
reactor
fluidized bed
oxygen
synthesis gas
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102004032830A
Other languages
German (de)
Inventor
Rolf Schmitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bilfinger SE
Original Assignee
Rolf Schmitt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolf Schmitt filed Critical Rolf Schmitt
Priority to DE102004032830A priority Critical patent/DE102004032830A1/en
Publication of DE102004032830A1 publication Critical patent/DE102004032830A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/092Wood, cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1838Autothermal gasification by injection of oxygen or steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1853Steam reforming, i.e. injection of steam only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Preparation of hydrogen-rich synthesis gas (I) from biogenous materials and other carbon-containing compounds, by means of water vapor gasification in a fluidized bed reactor, comprises providing heat transmission elements into the fluidized bed, which allows a certain heat introduction into the reactor; and providing oxygen into fluidized bed reactor. Preparation of hydrogen-rich synthesis gas (I) from biogenous materials and other carbon-containing compounds by means of water vapor gasification (steam reforming) in a fluidized bed reactor (C1, hybrid reactor) comprises providing heat transmission elements (W1) into the fluidized bed, which allows a certain heat introduction in into the reactor, without by the heating of the heat transmission elements possibly developing smoke gases into contact with the materials used in the reactor steps (allotherm warm introduction); and providing oxygen into the fluidized bed reactor, where the heat release in the reactor is made possible by partial oxidation of the used materials .

Description

Es ist bekannt, biogene Stoffe (Biomasse gemäß EEG, Biomüll, Klärschlamm/Gülle tierische Abfälle) und sonstige kohlenstoffhaltige Verbindungen (im folgenden Einsatzstoff genannt) mit unterschiedlichen Verfahren zu vergasen. Als wesentliche Verfahren sind hier sogenannte autotherme (direkt beheizte) und allotherme (indirekt beheizte) Vergaser bekannt und technisch ausgeführt.It is known, biogenic substances (biomass according to EEG, organic waste, sewage sludge / manure animal waste) and other carbonaceous compounds (hereinafter feedstock) called) to gasify with different methods. As essential Procedures are here called autothermal (directly heated) and Allotherme (indirectly heated) carburetor known and engineered.

In autothermen Systemen wird die für die Vergasung erforderliche Reaktionswärme über exotherme Reaktionen (partielle Oxidation) der Einsatzstoffe mit eingebrachten Sauerstoff bereitgestellt. Aufgrund der bekannten Teerproblematik und des geringen Heizwertes des erzeugten Gases sind diese Systeme jedoch nur sehr eingeschränkt für die Erzeugung von wasserstoffreichen Synthesegas geeignet.In autothermal systems will be the for the gasification required heat of reaction via exothermic reactions (partial Oxidation) of the feedstocks provided with oxygen introduced. by virtue of the well-known tar problem and the low calorific value of the generated Gases, however, these systems are very limited for the generation suitable for hydrogen-rich synthesis gas.

Allotherme Systeme mit Wasserdampfvergasung im Wirbelschichtreaktor hingegen liefern mittel- bis hochkalorische Gase mit hohem Wasserstoffanteil. Dieses aus dem Einsatzstoff erzeugte Gas entspricht aufgrund der wesentlichen Komponenten (H2, CH4, CO, CO2) den in der chemischen und petrochemischen Industrie bekannten Synthesegasen.allothermal By contrast, systems with steam gasification in the fluidized bed reactor supply medium to high calorific gases with high hydrogen content. This generated from the feed gas corresponds due to the essential components (H2, CH4, CO, CO2) in the chemical and petrochemical industry known synthesis gases.

In der technischen Anwendung der allothermen Systeme zeigen sich jedoch Schwierigkeiten die Reaktionswärme über in den Reaktor eingebrachte Heizflächen bereitzustellen. Aufgrund des Wärmeübertragungsverhaltens der bekannten Beheizungssysteme ergeben sich Beschränkungen bei der technischen Realisierbarkeit, da das erforderliche Verhältnis von Reaktorquerschnitt (Wirbelschicht) zu erforderlichen Heizflächen bei den derzeit bekannten Beheizungssysteme einer sinnvollen technischen Lösung entgegensteht.In However, the technical application of the allothermal systems is evident Difficulties the heat of reaction in the Reactor introduced heating surfaces provide. Due to the heat transfer behavior The known heating systems are subject to restrictions in the technical feasibility, since the required ratio of Reactor cross section (fluidized bed) to required heating surfaces at the currently known heating systems of a meaningful technical solution opposes.

Der in den Patentansprüchen 1–5 angegebenen Erfindung liegt die Aufgabe zugrunde die Vorteile der beiden allothermen und autothermen Verfahrensweise zur Vergasung von biogenen Einsatzstoffen zu verbinden und gleichzeitig die Nachteile der genannten Verfahren zu vermeiden.Of the in the claims 1-5 specified Invention is the object of the advantages of the two allothermal and autothermal procedure for the gasification of biogenic feedstocks to connect and at the same time the disadvantages of the said methods to avoid.

Erfindungsgemäß wird die vorstehende Aufgabe gelöst durch die Anwendung eines Verfahrens zur Erzeugung von Synthesegas mit den Merkmalen der Patentansprüche 1, 2 und 3.According to the invention solved the above task by the application of a process for the production of synthesis gas with the features of claims 1, 2 and 3.

Demnach ist ein Verfahren zur Erzeugung von Synthesegas dadurch gekennzeichnet, dass einerseits Wärmeübertragungselemente in einen Wirbelschichtreaktor eingebaut sind, wobei hier auf Systeme zurückgegriffen werden kann, die am freien Markt in technisch ausgereifter Ausführung zur Verfügung stehen.Therefore a process for the production of synthesis gas is characterized on the one hand heat transfer elements are incorporated in a fluidized bed reactor, in which case systems resorted can be used on the open market in technically mature execution disposal stand.

Je nach Effizienz der einzelnen Systeme und unter Berücksichtigung der möglichen in den Wirbelschichtreaktor einsetzbaren (sinvoll baubaren) Heizflächen ergibt sich eine in den Reaktor einzubringende Wärmeleistung, die die für die endotherme Vergasungsreaktionen erforderliche Reaktionswärme zu einem gewissen Teil abdeckt. Am Markt verfügbare Standardsysteme (Mantelstrahlbrenner, Lavalbrenner, etc) erlauben eine Einbringung der benötigten Reaktionswärme von mehr als 80%.ever according to the efficiency of each system and taking into account the possible can be used in the fluidized bed reactor (sinvoll baubaren) heating surfaces itself a to be introduced into the reactor heat output, that for the endothermic Gasification reactions required reaction heat to a certain extent covers. Standard systems available on the market (Mantelstrahlbrenner, Lavalbrenner, etc) allow a contribution the required heat of reaction of more than 80%.

Der für die endotherme Reaktion bei Vollast erforderliche Anteil an Wärmeenergie wird erfindungsgemäß durch das Einbringen von Sauerstoff in den Reaktor erreicht. Der zusammen mit dem heißen Fluidisierungsdampf eingebrachte Sauerstoff führt zur partiellen Oxidation der Kohlenstoffanteile der Einsatzstoffe bei einer Betriebstemperatur von ca. 780–830°Cel. Diese exotherme Reaktion setzt nun die für die Gesamtreaktionen des gesamten Einsatztstoffstromes erforderliche Wärmemenge frei, sodaß als Reaktionsprodukt ein wasserstoffreiches Synthesegas entsteht.Of the for the endothermic reaction at full load required fraction of heat energy is inventively achieved the introduction of oxygen into the reactor. The together with the hot fluidizing vapor introduced oxygen leads to Partial oxidation of the carbon content of the starting materials at an operating temperature of about 780-830 ° Cel. This exothermic reaction now sets the for the overall reactions of the entire feedstock stream required heat free, so as Reaction product a hydrogen-rich synthesis gas is formed.

Durch Veränderung der zugegebenen Sauerstoffmenge ist im Betriebspunkt zudem eine einfache Regelungsmöglichkeit des Reaktors gegeben.By change the amount of oxygen added is also one at the operating point easy control option given to the reactor.

Desweiteren ist erkannt, daß eine erfindungsgemäße Einbringung gemäß Anspruch 3 von Sauerstoff in den Entspannungsraum des Wirbelschichtreaktors eine weitere Verbesserung der Effizienz zur Folge hat, da im Entspannungsraum schwebende Kohlenstoffpartikel, die durch ein hohes spezifisches Oberflächenverhältnis gekennzeichnet sind, schlagartig mit dem eingebrachten Sauerstoff reagieren und einerseits Wärmeenergie bereitstellen und andererseits die Kohlenstoffkonversion des Gesamtsystems deutlich verbessern.Furthermore is recognized that a inventive introduction according to claim 3 of oxygen in the expansion space of the fluidized bed reactor a further improvement in efficiency results in the relaxation room floating carbon particles, which are characterized by a high specific Surface ratio marked are abruptly reacting with the oxygen introduced and on the one hand heat energy and on the other hand the carbon conversion of the whole system improve significantly.

Erreichte Vorteile:Achieved benefits:

Die mit der beschriebenen Erfindung erzielten Vorteile bei der Verwendung des beschriebenen Verfahrens bestehen insbesondere darin, dass:

  • • Aufgrund der Kopplung einer allothermen Wärmeeinbringung mit der Freisetzung von Wärmeenergie durch partielle Oxidation der Einsatzstoffe einfache, technisch bewährte Beheizungssysteme verwendet werden können, was eine hohe Zuverlässigkeit des Gesamtsystems bedeutet.
  • • Die Wärmezufuhr durch partielle Oxidation sowohl mit reinem Sauerstoff als auch mit Luftsauerstoff erzielt werden kann. Insbesondere bei der Verwendung von Luftsauerstoff lassen sich damit technisch einfache und kostengünstige Apparate zur Gaserzeugung herstellen.
  • • Aufgrund der Einbringung von Sauerstoff zusammen mit dem Fluidisierungsdampfeine optimale Vermischung und Reaktion des Sauerstoffs mit dem Kohlenstoff der Einsatzstoffe bei den Betriebstemperaturen von 780–830°Cel erfolgt, was eine direkte Freisetzung der exothermen Wärme aus der partiellen Oxidation in die Wirbelschicht ermöglicht. Aufgrund der intensiven Durchmischung in der Wirbelschicht bildet sich eine homogen Temperaturverteilung in der Wirbelschicht wodurch Störreaktionen minimiert werden.
  • • Aufgrund der Umsetzung des Fluidisierungsdampfes bei den Betriebstemperaturen von ca. 780–830°Cel und aufgrund der auftretenden Wassergas Reaktion eine Wasserstoffatmosphäre mit resultierenden geringen Partialdrücken für schwere Kohlenwasserstoffverbindungen (Teere) ausgebildet wird, die (auch aufgrund von damit induzierten Zerfällen von langkettigen Kohlenwasserstoffen) insgesamt zu einer reduzierten Teerbildung im System führt.
  • • Aufgrund der Möglichkeit von Sauerstoffeinblasung im Expansionsraum Teere weiterhin zerstört und die Kohlenstoffkonversion insgesamt erhöht wird.
The advantages achieved with the described invention in the use of the method described are in particular that:
  • • Due to the coupling of an allothermal heat input with the release of heat energy by partial oxidation of the feedstock simple, technically proven heating systems can be used, which means a high reliability of the entire system.
  • • The heat supply can be achieved by partial oxidation with both pure oxygen and atmospheric oxygen. Especially with the use of atmospheric oxygen can be so produce technically simple and cost-effective apparatus for generating gas.
  • Due to the introduction of oxygen along with the fluidization vapor, optimum mixing and reaction of the oxygen with the carbon of the feeds occurs at the operating temperatures of 780-830 ° Cel, allowing direct release of the exothermic heat from the partial oxidation to the fluidized bed. Due to the intensive mixing in the fluidized bed, a homogeneous temperature distribution is formed in the fluidized bed, whereby interference reactions are minimized.
  • Due to the implementation of the fluidization steam at the operating temperatures of about 780-830 ° C and due to the occurring water gas reaction, a hydrogen atmosphere with resulting low partial pressures is formed for heavy hydrocarbon compounds (tars) which (also due to the induced decay of long-chain hydrocarbons) leads overall to a reduced tar formation in the system.
  • • Due to the possibility of oxygen blowing in the expansion chamber tars continue to be destroyed and the overall carbon conversion is increased.

Durch Anwendung der Erfindung lässt sich ein Wasserdampf-Vergasungsreaktor für ein allotherm-autothermes Hybridverfahren realisieren, der es ermöglicht in wirtschaftlich und technisch attraktiver Weise aus biogenen Stoffen ein für verschiedenste Anwendungen interessantes Synthesegas zu erzeugen.By Application of the invention leaves a steam-gasification reactor for an allotherm-autothermal Realize hybrid process that makes it possible in economic and Technically attractive way of biogenic substances for a variety of Applications to produce interesting syngas.

Insbesondere geeignet ist das Verfahren für die nachgeschaltete Anwendung von Gasmotoren, da sich bei Anwendung von Luftsauerstoff aufgrund des enthaltenen N2 Anteils in der Luft eine für technisch und wirtschaftlich sinnvolle Gasmotoren realisierbare Methanzahl ergibt. Es ist sogar möglich den Gaserzeuger durch gezielte Einstellung der Luftmenge direkt auf die Anforderungen eines Standardgasmotors auszulegen. Damit gelingt es z.B. einfache und kostengünstige Anwendungen zur energetischen Nutzung von biogenen Stoffen darzustellen.Especially suitable is the method for the Downstream application of gas engines, since in use of atmospheric oxygen due to the N2 content in the air one for technically and economically feasible gas engines feasible Methane number results. It is even possible through the gas generator targeted adjustment of the air volume directly to the requirements to design a standard gas engine. This succeeds e.g. simple and inexpensive Applications for the energetic use of biogenic substances represent.

Weitere Anwendungsmöglichkeiten sind die Verwendung des erzeugten Synthesegases in GTL (Gas-To-Liquids) Anlagen oder die Erzeugung von "grünen" Wasserstoff mittels bekannter Verfahren.Further applications are the use of the generated synthesis gas in GTL (Gas-To-Liquids) Plants or the production of "green" hydrogen by means of known method.

Claims (5)

Verfahren zur Erzeugung von wasserstoffreichen Synthesegas aus biogenen Stoffen und sonstigen kohlenstoffhaltigen Verbindungen (im folgenden Einsatzstoff genannt) mittels Wasserdampfvergasung (Dampfreformierung) in einem Wirbelschichtreaktor (C1, Hybridreaktor), dadurch gekennzeichnet, dass, • in die Wirbelschicht Wärmeübertragungselemente (W1) eingebracht sind, die eine gewisse Wärmeeinbringung in den Reaktor erlauben, ohne dass die bei der Beheizung der Wärmeübertragungselemente möglicherweise entstehenden Rauchgase in Kontakt mit den im Reaktor befindlichen Einsatzstoffen treten (allotherme Wärrmeeinbringung). • in den Wirbelschichtreaktor Sauerstoff eingebracht werden kann, der eine Wärmefreisetzung im Reaktor durch partielle Oxidation der Einsatzstoffe ermöglicht;Process for the production of hydrogen-rich synthesis gas from biogenic substances and other carbon-containing compounds (hereinafter called feed) by steam gasification (steam reforming) in a fluidized bed reactor (C1, hybrid reactor), characterized in that, • in the fluidized bed heat transfer elements (W1) are introduced permit a certain heat input into the reactor, without the possibly arising during the heating of the heat transfer elements flue gases in contact with the feedstocks in the reactor (allothermal heat input). • In the fluidized bed reactor oxygen can be introduced, which allows heat release in the reactor by partial oxidation of the starting materials; Verfahren nach Anspruch 1 dadurch gekennzeichnet dass, • der eingebrachte Sauerstoff zusammen mit dem heissen Fluidisierungsdampf in der Form von reinen Sauerstoff oder Luftsauerstoff von unten in den Reaktor eingeblasen wird.A method according to claim 1 characterized that, • of the introduced oxygen together with the hot fluidizing steam in the form of pure oxygen or atmospheric oxygen from below is blown into the reactor. Verfahren nach Anspruch 1 dadurch gekennzeichnet dass, • Vorrichtungen für die Einblasung von Sauerstoff (reiner Sauerstoff oder Luftsauerstoff) in den Expansionsraum des Reaktors vorgesehen werden können.A method according to claim 1 characterized that, • Devices for the Injection of oxygen (pure oxygen or atmospheric oxygen) can be provided in the expansion space of the reactor. Verfahren nach Anspruch 1 dadurch gekennzeichnet dass, • Die im Synthesegas mitgeführten Feststoffe in einem ersten Zyklon (F1) abgeschieden und in den Reaktor zurückgeführt werden; Der Zyklon kann innerhalb oder ausserhalb des Reaktors angebracht sein;A method according to claim 1 characterized that, • The entrained in the synthesis gas Solids in a first cyclone (F1) and deposited in the reactor to be led back; The cyclone can be mounted inside or outside the reactor be; Verfahren nach Anspruch 1 dadurch gekennzeichnet dass, • Die Abscheidung der im Synthesegas mitgeführten Aschebestandteile in einem Feststoffzyklon (F2) nach der schlagartigen Abkühlung des Synthesegases im Quenchkühler (W2) erfolgt.A method according to claim 1 characterized that, • The Deposition of the ash components carried in the synthesis gas in a solid cyclone (F2) after the sudden cooling of the Synthesis gas in the quench cooler (W2) takes place.
DE102004032830A 2004-07-06 2004-07-06 Preparing hydrogen-rich synthesis gas from biogenous materials and carbon-containing compounds, by water vapor gasification in fluidized bed reactor, comprises providing heat transmission elements into fluidized bed and oxygen into reactor Withdrawn DE102004032830A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102004032830A DE102004032830A1 (en) 2004-07-06 2004-07-06 Preparing hydrogen-rich synthesis gas from biogenous materials and carbon-containing compounds, by water vapor gasification in fluidized bed reactor, comprises providing heat transmission elements into fluidized bed and oxygen into reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004032830A DE102004032830A1 (en) 2004-07-06 2004-07-06 Preparing hydrogen-rich synthesis gas from biogenous materials and carbon-containing compounds, by water vapor gasification in fluidized bed reactor, comprises providing heat transmission elements into fluidized bed and oxygen into reactor

Publications (1)

Publication Number Publication Date
DE102004032830A1 true DE102004032830A1 (en) 2006-02-23

Family

ID=35721083

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004032830A Withdrawn DE102004032830A1 (en) 2004-07-06 2004-07-06 Preparing hydrogen-rich synthesis gas from biogenous materials and carbon-containing compounds, by water vapor gasification in fluidized bed reactor, comprises providing heat transmission elements into fluidized bed and oxygen into reactor

Country Status (1)

Country Link
DE (1) DE102004032830A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007004294A1 (en) * 2007-01-23 2008-07-24 Spot Spirit Of Technology Ag Process and device for the production of energy, fuels or chemical raw materials using CO2-neutral biogenic feedstocks
DE102011075438A1 (en) * 2011-05-06 2012-11-08 Bilfinger Berger Industrial Services Gmbh Process and apparatus for producing synthesis gas from carbon dioxide-containing educts by gasification
CN105176594A (en) * 2015-10-23 2015-12-23 北京京诚泽宇能源环保工程技术有限公司 Device and method for producing reducing gas by lignite gasification
CN109852421A (en) * 2019-02-25 2019-06-07 合肥德博生物能源科技有限公司 A kind of device and method of biomass gasifying hydrogen making
DE102021134191A1 (en) 2021-12-22 2023-06-22 BHYO GmbH Process and plant network for the production of synthesis gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19900116C2 (en) * 1999-01-05 2002-02-14 Univ Muenchen Tech Device for generating fuel gas by allothermic gasification of biomass
DE10227074A1 (en) * 2002-06-17 2004-01-15 Clausthaler Umwelttechnikinstitut Gmbh, (Cutec-Institut) Process for gasifying biomass and plant therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19900116C2 (en) * 1999-01-05 2002-02-14 Univ Muenchen Tech Device for generating fuel gas by allothermic gasification of biomass
DE10227074A1 (en) * 2002-06-17 2004-01-15 Clausthaler Umwelttechnikinstitut Gmbh, (Cutec-Institut) Process for gasifying biomass and plant therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007004294A1 (en) * 2007-01-23 2008-07-24 Spot Spirit Of Technology Ag Process and device for the production of energy, fuels or chemical raw materials using CO2-neutral biogenic feedstocks
DE102011075438A1 (en) * 2011-05-06 2012-11-08 Bilfinger Berger Industrial Services Gmbh Process and apparatus for producing synthesis gas from carbon dioxide-containing educts by gasification
WO2012152638A1 (en) 2011-05-06 2012-11-15 Bilfinger Berger Industrial Services Gmbh Method and device for producing syngas from reactants which contain carbon, by means of gasification in a fluidised bed reactor
CN105176594A (en) * 2015-10-23 2015-12-23 北京京诚泽宇能源环保工程技术有限公司 Device and method for producing reducing gas by lignite gasification
CN109852421A (en) * 2019-02-25 2019-06-07 合肥德博生物能源科技有限公司 A kind of device and method of biomass gasifying hydrogen making
DE102021134191A1 (en) 2021-12-22 2023-06-22 BHYO GmbH Process and plant network for the production of synthesis gas
WO2023117637A1 (en) 2021-12-22 2023-06-29 BHYO GmbH Method and group of systems for producing synthesis gas

Similar Documents

Publication Publication Date Title
Ma et al. Gasification of rice husk in a downdraft gasifier: the effect of equivalence ratio on the gasification performance, properties, and utilization analysis of byproducts of char and tar
DE102012015314B4 (en) Process and plant for the production of carbon monoxide
Zhou et al. Steam-gasification of biomass with CaO as catalyst for hydrogen-rich syngas production
US4710483A (en) Novel carbonaceous material and process for producing a high BTU gas from this material
DE102008014799A1 (en) Process and apparatus for producing synthesis gas from biomass
US9493721B2 (en) Method to produce methane rich fuel gas from carbonaceous feedstocks using a steam hydrogasification reactor and a water gas shift reactor
DE2312350A1 (en) TWO-STAGE GASIFICATION OF PRE-TREATED COAL
EP2265696A2 (en) Method and device for converting carbonaceous raw materials
Li et al. Direct production of high hydrogen syngas by steam gasification of Shengli lignite/chars: Significant catalytic effect of calcium and its possible active intermediate complexes
WO2016075362A1 (en) Method and apparatus for gasifying raw material and gaseous product
JPS6324035B2 (en)
DE3140028A1 (en) METHOD FOR PRODUCING A HYDROGEN-rich GAS BY UNDERGROUND COAL GASIFICATION
EP2057252A1 (en) Method for producing fuels from waste
RU2531211C2 (en) Method of simultaneous obtaining of iron and unrefined synthetic natural gas containing co and h2
DE2903985C2 (en) Process for the generation of gases containing H 2 and CO
DE102004032830A1 (en) Preparing hydrogen-rich synthesis gas from biogenous materials and carbon-containing compounds, by water vapor gasification in fluidized bed reactor, comprises providing heat transmission elements into fluidized bed and oxygen into reactor
WO2003106594A1 (en) Method for the gasification of biomass and corresponding plant
DE102016008289B4 (en) Apparatus and method for allothermic fixed bed gasification of carbonaceous material
Nisamaneenate et al. Advanced reforming of agro-waste by modular gasifier for fuel generation
DE102004055407A1 (en) Internal combustion engine e.g. gaseous fuel engine, operating method, involves performing autothermic gasification of organic fuel into synthesis gas, and cleaning, compressing, and supplying gas to engine with turbocharger
AT405937B (en) Production of a nitrogen-lean gas and gasification plant
DE102008014297A1 (en) Converting carbon-containing raw materials such as biomass into liquid fuels for internal combustion engines, comprises allothermically gasifying the raw materials in a fixed bed counter-flow gasifier by introducing heated water steam
DE102013224037A1 (en) Preparation and conditioning of synthesis crude gases
DE202004021899U1 (en) Device for producing hydrogen-rich synthesis gas
Kojima et al. Kenaf as bioresource for production of hydrogen-rich gas

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
8127 New person/name/address of the applicant

Owner name: BILFINGER BERGER INDUSTRIAL SERVICES AG, 80992, DE

8181 Inventor (new situation)

Inventor name: SCHMITT, ROLF, 67069 LUDWIGSHAFEN, DE

8127 New person/name/address of the applicant

Owner name: BILFINGER BERGER INDUSTRIAL SERVICES GMBH, 809, DE

R082 Change of representative

Representative=s name: RAU, SCHNECK & HUEBNER PATENT- UND RECHTSANWAE, DE

R081 Change of applicant/patentee

Owner name: BILFINGER INDUSTRIAL SERVICES GMBH, DE

Free format text: FORMER OWNER: BILFINGER BERGER INDUSTRIAL SERVICES GMBH, 80992 MUENCHEN, DE

Effective date: 20130821

R082 Change of representative

Representative=s name: RAU, SCHNECK & HUEBNER PATENTANWAELTE RECHTSAN, DE

Effective date: 20130821

Representative=s name: RAU, SCHNECK & HUEBNER PATENT- UND RECHTSANWAE, DE

Effective date: 20130821

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20150203