DE102004001965A1 - Zellenradschleuse - Google Patents

Zellenradschleuse Download PDF

Info

Publication number
DE102004001965A1
DE102004001965A1 DE102004001965A DE102004001965A DE102004001965A1 DE 102004001965 A1 DE102004001965 A1 DE 102004001965A1 DE 102004001965 A DE102004001965 A DE 102004001965A DE 102004001965 A DE102004001965 A DE 102004001965A DE 102004001965 A1 DE102004001965 A1 DE 102004001965A1
Authority
DE
Germany
Prior art keywords
rotary valve
cellular wheel
valve according
opening
webs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102004001965A
Other languages
English (en)
Other versions
DE102004001965B4 (de
Inventor
Harald Faber
Klaus Kohlmüller
Robert Weinand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schenck Process Europe GmbH
Original Assignee
Schenck Process GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schenck Process GmbH filed Critical Schenck Process GmbH
Priority to DE102004001965.7A priority Critical patent/DE102004001965B4/de
Priority to US10/586,297 priority patent/US7882992B2/en
Priority to EP05706861.1A priority patent/EP1704369B1/de
Priority to DK05706861.1T priority patent/DK1704369T3/en
Priority to PCT/EP2005/000181 priority patent/WO2005068910A1/de
Publication of DE102004001965A1 publication Critical patent/DE102004001965A1/de
Application granted granted Critical
Publication of DE102004001965B4 publication Critical patent/DE102004001965B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/40Feeding or discharging devices
    • B65G53/46Gates or sluices, e.g. rotary wheels
    • B65G53/4608Turnable elements, e.g. rotary wheels with pockets or passages for material
    • B65G53/4625Turnable elements, e.g. rotary wheels with pockets or passages for material with axis of turning perpendicular to flow
    • B65G53/4633Turnable elements, e.g. rotary wheels with pockets or passages for material with axis of turning perpendicular to flow the element having pockets, rotated from charging position to discharging position, i.e. discrete flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/40Feeding or discharging devices
    • B65G53/46Gates or sluices, e.g. rotary wheels
    • B65G53/4608Turnable elements, e.g. rotary wheels with pockets or passages for material
    • B65G53/4625Turnable elements, e.g. rotary wheels with pockets or passages for material with axis of turning perpendicular to flow
    • B65G53/4633Turnable elements, e.g. rotary wheels with pockets or passages for material with axis of turning perpendicular to flow the element having pockets, rotated from charging position to discharging position, i.e. discrete flow
    • B65G53/4641Turnable elements, e.g. rotary wheels with pockets or passages for material with axis of turning perpendicular to flow the element having pockets, rotated from charging position to discharging position, i.e. discrete flow with means for clearing out the pockets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/10Supply line fittings
    • F23K2203/104Metering devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2900/00Special features of, or arrangements for fuel supplies
    • F23K2900/03001Airlock sections in solid fuel supply lines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

Die Erfindung betrifft eine Zellenradschleuse, die als Durchblasschleuse ausgebildet ist und zur Sekundärbrennstoffdosierung dient. Die Durchblasschleuse verfügt im oberen Bereich über einen Zuführschacht (2) und einen darunter angeordneten zylinderförmigen Gehäuseteil (1), in dem horizontal ein Zellenrad (4) angeordnet ist. Das Zellenrad (4) ist mit radialen Zellenradstegen (3) versehen, in deren Rotationsbereich an den Gehäusestirnseiten (26) gegenüberliegend eine Einblas- (10) und eine Ausblasöffnung (11) vorgesehen sind. Die Erfindung ist dadurch gekennzeichnet, daß im Bereich der Einblasöffnung (10) im Gehäuse eine Injektordüse (15) integriert ist, die die Förderluft in die vorbeirotierenden Dosierkammern (5) zur Entleerung einbläst. Dadurch kommt es zu Druckdifferenzen in der auszublasenden Dosierkammer (5) durch die nur geringe Druckbelastungen auf die Spaltabdichtungen wirken. Nach der Erfindung sind deshalb an den radialen Endbereichen der Zellenradstege (3) metallisch harte Spaltabdichtungen vorgesehen, die insbesondere bei der Sekundärbrennstoffdosierung hohe Standzeiten und geringe Leckluftmengen aufweisen.

Description

  • Die Erfindung betrifft eine Zellenradschleuse, insbesondere für Sekundärbrennstoffe, gemäß dem Oberbegriff des Patentanspruchs 1.
  • Zunehmend werden in industriellen Herstellungsverfahren Recyclingprodukte zur Wärmeerzeugung eingesetzt. Insbesondere zur Herstellung von Zement- und anderen Keramikprodukten werden als sogenannte Sekundärbrennstoffe neben den Primärbrennstoffen wie Kohlenstaub und dergleichen auch staubförmige, granulierte, pelletierte, flockige und faserige Sekundärbrennstoffe in den Drehrohröfen verfeuert. Diese Sekundärbrennstoffe werden aus recycelten Müll- oder Abfallstoffen hergestellt, indem diese zerkleinert und nach Stoffgruppen sortiert zur thermischen Verwertung abgegeben werden. Dabei handelt es sich beispielsweise um Plastikschredder, Farbstäube, Teppichbodenfasern, Tiermehl oder andere Brennstoffe aus Müll oder aus Produktionsreststoffen. In der Zementindustrie werden bei einigen Öfen schon mehr als die Hälfte des Brennstoffbedarfs durch Sekundärbrennstoffe zugesetzt, die wegen der geringen Kosten immer mehr an Bedeutung gewinnen. Diese werden meist über Dosiervorrichtungen in pneumatische Förderleitungen eingegeben und dem Brennprozeß zugeführt. Zum eingeben in die pneumatische Förderleitung haben sich in der Praxis Zellenradschleusen bewährt, durch die eine volumetrische Dosierung unter pneumatischer Abdichtung zur Brennstoffzuführung möglich ist.
  • Eine derartige Brennstoffdosierung mit einer Zellenradschleuse ist aus der DE 200 06 800 U1 bekannt. Dabei ist zur Brennstoffdosierung eine Durchblaszellenradschleuse vorgesehen, bei der die Zellenradschleusenachse in Richtung des Hauptförder- stromes verläuft. Vor der Zellenradschleuse ist ein Gebläse angeordnet, durch das die Sekundärbrennstoffe aus der Zellenradschleusenkammer in die Förderleitung zum Ofen ausgeblasen werden. Bei derartigen Durchblaszellenradschleusen tritt oft das Problem auf, daß die eingeblasene Luft, die unter einem gewissen Druck der Lufterzeugung steht, beim Weiterdrehen des Zellenrades als sogenannte Schöpfluft zur Materialzufuhr gelangt und dort dem Materialfluß entgegengerichtet austritt, wodurch dieser behindert wird. Gleichzeitig entstehen über die Spalte zwischen den Zellenradstegen und den Zellenradgehäusewänden Leckluftströme, die gleichzeitig auch Materialanteile über die Spalte in den Einfüllschacht zurückblasen. Dies macht eine Brennstoffdosiereinrichtung mit einer derartigen Durchblaszellenradschleuse häufig uneffektiv und auch ungenau, da es aus diesem Grund zu einer pulsierenden Beschickung kommen kann und damit Dosiergenauigkeitsschwankungen entstehen. Oftmals kommt es dabei auch zu einer nicht völligen Entleerung der Dosierkammern. Um dies zu verhindern, wird dann mehr Luft in die Zellenradkammer eingeblasen, wodurch die Reaktion im Ofen gestört und uneffektiv werden kann.
  • Zur Verhinderung eines derartigen Schöpfluft- und Leckluftanteils ist aus der DE 101 17 187 C1 eine Zellenradschleuse zur Sekundärbrennstoffdosierung bekannt, die ebenfalls als Durchblaszellenradschleuse ausgebildet ist. Dabei ist ein Zellenrad mit verhältnismäßig großem Innenkern vorgesehen, durch den nur im äußeren Bereich der radial abstehenden Stege trapezförmige Dosierkammern entstehen. Diese Dosierkammern werden mit einem Einlaß- und einem Auslaßrohr verbunden, dessen Querschnitt etwa der Größe der Dosierkammern entspricht. Dabei ist insbesondere zur Verminderung des Schöpfluftanteils die Auslaßöffnung gegenüber der Einlaßöffnung verbreitert, so daß beim Weiterdrehen des Zellenrades die Einlaßöffnung bereits geschlossen ist, während die Auslaßöffnung zumindest noch an den Verbrei terungsstellen einen Öffnungsspalt aufweist. Dadurch soll ein Unterdruck entstehen, der den Luftanteil bei geschlossener Einlaßöffnung aus der Dosierkammer heraussaugt, so daß der Schöpfluftanteil verringert wird. Gleichzeitig weist diese Zellenradschleuse an den Enden der Dosierstege Dichtlippen zum Gehäuse auf, die den Leckluftspalt verschließen sollen, so daß dadurch eine kontinuierlichere Dosierung und verbesserte Kammerentleerung durch die Reduzierung der Leckluftanteile erreichbar ist. Derartige Dichtlippen, die am Gehäuse anliegen, werden in der Regel aus weichen, gummiartigen Dichtmaterialien hergestellt, die den Spalt abdichten, aber trotzdem die Gehäusewandungen nicht beschädigen oder verschleißen. Da aber Sekundärbrennstoffe häufig abrasive Staubbestandteile, Faserreste oder metallische Draht- oder Stiftrückstände enthalten, sind die Standzeiten derartiger Dichtlippen verhältnismäßig kurz und erfordern deshalb häufiger Instandhaltungsarbeiten.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Zellenradschleuse insbesondere für eine Sekundärbrennstoffdosierung der eingangs genannten Art derart weiterzuentwickeln, daß bei hoher Dosiergenauigkeit die Verschleißteile der Zellenradschleuse hohe Standzeiten aufweisen und damit wenig störungsanfällig sind.
  • Diese Aufgabe wird durch die im Patentanspruch 1 angegebene Erfindung gelöst. Weiterbildungen und vorteilhafte Ausführungsbeispiele der Erfindung sind in den Unteransprüchen angegeben.
  • Die Erfindung hat den Vorteil, daß durch die integrierte Injektordüse am Anfang der Ausblaskammer eine verhältnismäßig hohe Einblasgeschwindigkeit in dieser Kammer wirksam wird, die eine vollständige Kammerentleerung gewährleistet und nur eine geringe Druckbelastung an den Zellenradspalten erzeugt. Dadurch wird der Leckluftanteil entlang der ausblasbaren Dosier kammer um bis zu 70% verringert, so daß vorteilhafterweise eine genaue und gleichmäßige Dosierung der verschiedensten Sekundärbrennstoffe möglich ist. Die geringe Druckbelastung an den Zellenradspalten der Durchblaskammer ermöglicht gleichzeitig einen Einsatz von verschleißfesten metallischen sogenannten harten Stegabdichtungen, die insbesondere bei unterschiedlichen auch abrasiven Sekundärbrennstoffen vorteilhafterweise sehr hohe Standzeiten der Verschleißteile gewährleisten. Dadurch sind gleichzeitig abscherende Zellenradstegkanten möglich, die vorteilhaft ein Zusetzen und Abnutzen der Zellenradschleuse entlang der rotierenden Zellenradkammerspalte verhindern und damit einen störungsfreien Betrieb gewährleisten.
  • Die Erfindung hat weiterhin den Vorteil, daß durch die integrierte Injektordüse die Förderleitungsquerschnitte weitgehend unabhängig von dem Dosierkammervolumen sind, da durch die höhere Einblasgeschwindigkeit auch großvolumige Dosierkammern vollständig entleert werden können, ohne daß nennenswerte Leckluft in Kauf genommen werden muß. Damit ist vorteilhafterweise auch praktisch jeder aufgearbeitete brennbare Müll durch die selbe Zellenradschleuse dosierbar, ohne daß die Förderrohrquerschnitte oder die Gebläseleistung daran angepaßt werden müßten. Dadurch sind auch gleichzeitig hohe Gegendrücke hinnehmbar, ohne weiche Spaltabdichtungen einsetzen zu müssen, so daß bei gleichbleibender Dosiergenauigkeit auch harte verschleißfeste Spaltabdichtmittel vorteilhaft verwandt werden können.
  • Durch den Einsatz der integrierten Injektordüse können vorteilhafterweise auch hohe Befüllungsgrade in den Dosierkammern von mindestens 30% zum Ofen gefördert werden, wodurch ein effektives Luft-Brennstoff-Verhältnis einhaltbar ist, das zu einer möglichst rückstandsfreien umweltverträglichen Verbrennung führt.
  • Die Erfindung hat weiterhin den Vorteil, daß durch die Einsatzmöglichkeit der harten bzw. verschleißfesten metallischen Spaltabdichtungen auch eine hohe Temperaturbeständigkeit erreichbar ist, durch die eine hohe Flammendurchschlag- und Druckstoßsicherheit gewährleistet ist.
  • Die Erfindung wird anhand eines Ausführungsbeispiels, das in der Zeichnung dargestellt ist, näher erläutert. Es zeigen:
  • 1: die Seitenansicht als schematische Schnittdarstellung durch die axiale Mittenebene einer Zellenradschleuse;
  • 2: die Vorderansicht als schematische Schnittdarstellung durch die Quermittenebene einer Zellenradschleuse, und
  • 3: eine Schnittdarstellung durch den Vorderteil einer Injektordüse.
  • In 1 der Zeichnung ist eine Zellenradschleuse zur Sekundärbrennstoffdosierung schematisch dargestellt, die als Durchblasschleuse mit harten Spaltabdichtungen 12 ausgebildet ist und in einer Einblasöffnung 10 der Gebläseleitung 18 eine integrierte Injektordüse 15 aufweist.
  • Die Zellenradschleuse besteht aus einem zylinderförmigen Gehäuseteil 1, auf dem ein nach oben offener Zuführschacht 2 angeordnet ist. In dem Zuführschacht 2 werden die herangeführten Sekundärbrennstoffe zur Dosierung eingegeben. Die Sekundärbrennstoffe können aus einem Silo oder einer Dosierbandwaage in den Zuführschacht 2 schwerkraftmäßig eingegeben werden. Als Sekundärbrennstoffe werden heute aufbereitete Reststoffe aus Müll- oder Produktionsrückständen verwandt, die brennfähig sind. Diese werden zu Folien-, Faserschnipseln oder Pellets verarbeitet, die Kantenlängen von ca. 10 bis 50 mm aufweisen und noch kleinere körnige oder staubförmige Anteile enthalten.
  • Aus Produktionsrückständen sind aber auch reine staub- und körnige Rückstände aus Tiermehl, Futtermitteln, Holzhackschnitzeln, Altholzschnitzel und Sägemehl als Sekundärbrennstoffe verwertbar. Diese werden als Schüttgüter angeliefert, die Schüttgutdichten von ca. 50 bis 500 kg/m3 aufweisen, wobei Sekundärbrennstoffe aus Tiermehl und Futtermittelresten auch mit Dichten bis 800 kg/m3 vorkommen. Derartige Sekundärbrennstoffe sind teilweise auch sehr abrasiv und enthalten zum Teil auch harte störende Anteile aus kleinen Stein-, Draht- oder Schraubenresten, die einen hohen Verschleiß an den damit in Berührung kommenden Teilen der Zellenradschleuse zur Folge haben können. Deshalb sind hohe Standzeiten aller Verschleißteile erforderlich, um einen ungestörten und genauen Dosierbetrieb zu ermöglichen.
  • Die zu dosierenden vorgenannten Sekundärbrennstoffe werden mit Hilfe einer pneumatischen Förderleitung 19 in einen nachfolgenden Brennofen eingeblasen. Um eine optimale Verbrennung und nicht zu große Verbrennungsrückstände zu gewährleisten, wird eine Beladung von 2,5 bis 4 kg Sekundärbrennstoff pro Kilogramm Luft vorgesehen, bei dem sich vorteilhafterweise ein Befüllungsgrad in den Dosierkammern 5 von ca. 30% erreichen läßt.
  • Die dargestellte Zellenradschleuse ist für eine Förderstärke von ca. 3t/h ausgelegt, bei der der Zuführschacht 2 etwa eine Länge von 800 mm und eine Breite von 450 mm aufweist. In dem zylindrischen Gehäuseteil 1 ist unterhalb des Zuführschachtes 2 axial in Förderrichtung ein Zellenrad 4 angeordnet, das zehn radial auskragende Zellenradstege 3 enthält. Die Zellenradstege 3 können in axialer Richtung geradlinig, schräg oder auch leicht schraubenförmig verlaufen. Aus 2 der Zeichnung ist ersichtlich, daß die Zellenradstege 3 zehn umlaufende Dosierkammern 5 bilden, mit deren Hilfe die Sekundärbrennstoffe vom Zuführschacht 2 in die Förderleitung 19 eingegeben werden.
  • Das Zellenrad 4 enthält eine zentrale Antriebswelle 7, die in zwei Kugellagern 8 an den Gehäusestirnflächen 26 reibungsarm gelagert ist. Um die Antriebswelle 7 des Zellenrades 4 ist noch ein rohrförmiger Kern 9 angeordnet, an dem die Zellenradstege 3 befestigt sind und dadurch trapezförmige Dosierkammern 5 bilden. Das Zellenrad 4 ist vorzugsweise etwa 800 mm lang und besitzt einen Außendurchmesser von ca. 600 mm. Unterhalb der Antriebswelle 7 und im Rotationsbereich des Zellenrades 4 sind an den beiden Stirnwänden 26 des Gehäuses zwei axial gegenüberliegend angeordnete Öffnungen 10, 11 zum Anschluß der Förderleitung 19 oder eines Gebläses vorgesehen. Dabei ist linksseitig oder gebläseseitig eine Einblasöffnung 10 und rechtsseitig oder ofenseitig eine Ausblasöffnung 11 angeordnet, deren Querschnitt etwa dem Dosierkammerquerschnitt entspricht. Die Einblasöffnung 10 ist mit einem Einblasrohrstutzen 16 verbunden, der an der Gehäusestirnwand 26 trapezförmig und zum Gebläseanschlußrohr 18 rund ausgebildet ist, und zur Befestigung einen Anschlußflansch 27 besitzt. Der Einblasrohrstutzen 16 ist über das Gebläseanschlußrohr 18 mit einem nicht dargestellten Gebläse verbunden, das die pneumatischen Fördermittel in die auszublasende Dosierkammer 5 der Zellenradschleuse einbläst.
  • In den Einblasrohrstutzen 16 ist eine Injektordüse 15 integriert, die zwischen dem Befestigungsflansch 27 des Einblasrohrstutzens 16 und dem Gebläseanschlußrohr 18 luftdicht eingeklemmt ist. Die Injektordüse 15 ist mit ihrem einblasseitigen Vorderteil in 3 der Zeichnung als Schnittbild näher dargestellt. Dabei besteht die Injektordüse 15 im wesentlichen aus einem zylinderförmigen Rohr 22, das an seiner Luftaustrittsseite eine kegelförmige Verjüngung 23 aufweist, und in ihrem Zentrum eine kreisförmige Düsenöffnung 24 enthält. Bei dem projektierten Ausführungsbeispiel besitzt das Düsenrohr 22 vorzugsweise eine lichte Weite von 109 mm und ist koaxial zum Einblasrohrstutzen 16 angeordnet und ragt mit seiner Düsenöffnung 24 vorzugsweise bis in die Einblasöffnung 10 hinein. Zur besseren Führung ist um die Düsenöffnung 24 ein zylinderförmiger Führungsrand 25 angeordnet, der an der Innenwandung des Einblasrohrstutzens 16 zumindest teilweise anliegt. Die Düsenöffnung 24 besitzt eine lichte Weite von vorzugsweise 41 mm und erweitert sich zum Austrittsrand auf eine lichte Weite von vorzugsweise 42 mm, um die Luftverwirbelungen an der Austrittskante zu verringern. Die Einblasöffnung 10 ist vorzugsweise trapezförmig ausgebildet, kann aber wegen der Injektordüse 15 auch kleinere runde Öffnungsquerschnitte aufweisen.
  • Die Ausblasöffnung 11 ist der Einblasöffnung 10 axial gegenüberliegend an der anderen Stirnfläche der Zellenradschleuse angeordnet und vorzugsweise auch trapezförmig ausgebildet. Dabei besitzt die Ausblasöffnung 11 einen Querschnitt der dem der Dosierkammern 5 entspricht, damit eine gute Entleerung der rotierenden Dosierkammern 5 gewährleistet ist. Förderleitungsseitig ist an der Ausblasöffnung 11 ebenfalls ein Ausblasrohrstutzen 17 an der Stirnfläche des Gehäuses befestigt, das den Anschluß zur Förderleitung 19 herstellt, durch die die ausgeblasenen Sekundärbrennstoffe zum Ofen befördert werden.
  • Beim Betrieb der Durchblasschleuse wird diese mit einer Drehzahl von ca. 20 Umdrehungen pro Minute von einem nicht dargestellten Elektromotor angetrieben, durch den die eingebrachten Sekundärbrennstoffe mit der vorgegebenen Förderstärke von 3t/h zur Ausblasöffnung 11 gefördert werden. Dazu wird vorteilhafterweise ein möglichst großer Auslaßquerschnitt gewählt, der möglichst dem Querschnitt der Dosierkammer 5 entspricht und an dem ein vorgegebener Gegendruck von ca. 400 mbar nicht überstiegen werden soll. Bei einem höheren Gegendruck wäre die Belastung an den Stegabdichtungen und damit die Leckluftmenge relativ groß, so daß insbesondere die leicht flüchtigen Brennstoffanteile wieder in den Zuführschacht 2 gelangen könnten.
  • Dies würde aber zu einem ungenauen Dosierbetrieb führen und den Verschleiß an den Abdichtstellen sowie den Zwischenräumen erhöhen.
  • Um den Verschleiß gering zu halten, verfügt die Zellenradschleuse über ein spezielles Verschleißkonzept, das die Standzeiten der Verschleißteile auf mindestens ein Jahr erhöht. Deshalb sind die Zellenradstege 3 in ihren Randbereichen als Schneidkanten 12 ausgebildet, die über eine Gegenschneide 13 in dem Zuführschacht 2 ein Eindringen von Sekundärbrennstoffpartikeln in den Spalt zwischen den Gehäuseteilen 1, 26 und Zellenrad 4 verhindert. Dazu ist zusätzlich im Zuführschacht 2 noch ein Vorabstreifer 20 vorgesehen, der die Sekundärbrennstoffe von den Abdichtspalten weg in die Dosierkammern 5 lenkt. Zusätzlich sind die Schneidkanten 12 als separate Schleißkanten ausgebildet, die vorzugsweise aus rostfreiem Messerstahl oder anderen abriebfesten Stahllegierungen bestehen und auswechselbar an den Endbereichen der Zellenradstege 3 befestigt sind.
  • Eine derartige Schleißauskleidung 14 ist auch an den Innenflächen der Gehäusestirnseiten 26 vorgesehen, die auch dort eine Vergrößerung der Spaltbreiten durch abrasive Schüttgutpartikel verhindern sollen. Vorteilhafterweise wird auch die Innenfläche des zylinderförmigen Gehäuseteils 1 mit einer Verschleißbuchse 21 aus Federstahl oder anderen abriebfesten Stahllegierungen ausgekleidet, durch die die Standzeiten zusätzlich erhöht werden. Dabei sind zwischen der Verschleißbuchse 21 und den Schneidkanten 12 der Zellenradstege 3 sowie den Stirnflächen 26 geringe Spaltweiten zur Abdichtung von etwa 0,2 bis 0,5 mm notwendig, um eine Berührung mit dem rotierenden Zellenrad 4 und damit eine hohe Reibung oder Beschädigung an den inneren Gehäusewänden zu vermeiden. Dadurch sind Leckluftanteile, die in den Zuführschacht gelangen können, im Grunde unvermeidlich, die insbesondere die leicht flüchtigen Sekundär brennstoffteile durch die Spalte drücken können und derart aufwirbeln, daß eine kontinuierliche Dosierung beeinträchtigt . wird. Dies wurde bisher meist durch zusätzliche spezielle Spaltabdichtungen oder eine Leckluftabsaugung verhindert.
  • Deshalb schlägt die Erfindung für eine verschleißarme Zellenradschleuse eine integrierte Injektordüse 15 vor, deren Düsenöffnung 24 mit der Stirnseite der Einblasöffnung 10 fluchtet. Da die Düsenöffnung 24 eine Querschnittsverringerung bewirkt, entsteht in. der Einblasöffnung 10 eine Erhöhung der Luftgeschwindigkeit wie bei einer Erhöhung der Gebläseleistung, die gerade am Dosierkammeranfang für eine rasche Ausräumung sorgt. Durch die Querschnittsverbreiterung innerhalb der Dosierkammer 5 erfolgt aber wiederum in Ausblasrichtung eine kontinuierliche Verringerung der Luftgeschwindigkeit, die bei vorteilhafter Bemessung etwa bei Erreichen der Dosierkammerhälfte die ursprüngliche Gebläseluftgeschwindigkeit wieder erreicht. Durch diese Druckunterschiede in der ersten Dosierkammerhälfte entstehen an den Dosierkammerspalten Unterdruckbereiche, die einen Austritt von Leckluft verhindern und gleichzeitig die in der Dosierkammer 5 befindlichen Sekundärbrennstoffe in den Ausblasluftstrom ziehen. Dadurch baut sich erst zum Dosierkammerausgang der vorgegebene Gegendruck auf, so daß erst am Dosierkammerende ein nennenswerter Leckluftanteil wirksam werden kann.
  • Durch eine derartige Absenkung des Leckluftanteils um bis zu 70% kann überraschenderweise auf eine verschleißbehaftete weiche Abdichtung aus gut dichtenden gummiartigen Werkstoffen verzichtet werden, ohne daß dadurch die Dosiergenauigkeit beeinträchtigt wird. Gleichzeitig ist durch die Verringerung des Leckluftanteils nur eine verhältnismäßig geringe Gebläseleistung erforderlich, obgleich an der Injektordüse 15 ein Druckabfall von 0,2 bis 0,3 bar auftritt. Dadurch wird auch gleichzeitig sichergestellt, daß die Dosierkammer 5 bei einem vorge gebenen Brennstoffanteil von 2 bis 4kg pro kg Luft zuverlässig und vollständig ausgeblasen wird.
  • Wegen der geringen Leckluftverluste können auch Sekundärbrennstoffe mit unterschiedlichen Schüttgutgewichten pro Rauminhalt mit der selben Zellenradschleuse dosiert werden, da dies durch die Anpassung der Düsenquerschnitte auf einfache Weise ausgleichbar ist. Deshalb sind auch großvolumige Zellenradschleusen ausführbar, die dann nur vergleichsweise geringe Förderleitungsquerschnitte aufweisen müssen, da auch hohe Gegendruckwerte nur vergleichsweise geringe Leckluftmengen verursachen. Zur Dosierung derartiger Sekundärbrennstoffe sind Durchblasschleusen mit Förderstärken von ca. 1 bis mindesten 15 t/h ausführbar, die mit gleichbleibenden Kammer- und Förderrohrquerschnitten nahezu alle vorkommenden Sekundärbrennstoffe dauerhaft und verschleißarm gut dosiert in pneumatische Förderleitungen 19 einbringen können.
  • Bei einer weiteren Ausführungsform der Zellenradschleuse ist vorgesehen, die mit den Schneidkanten 12 versehenen Zellenradstege 3 in axialer Richtung schräg oder leicht schraubenförmig auszubilden, so daß bereits bei Überlaufen der Einblasöffnung 10 die Ausblasöffnung 11 noch wirksam zur Ausblasung geöffnet ist. Dadurch wird an der geraden Gegenschneide 13 eine ruckfreie gleichmäßige Abscherung der Sekundärbrennstoffe erreicht. Bei axial geraden Schneidkanten 12 bzw. Zellenradstegen 3 kann auch die Gegenschneide 13 in axialer Richtung schräg angeordnet sein, um eine gleichmäßige ruckfreie Abscherung zu gewährleisten.
  • Die Erfindung ist weiterhin nicht nur auf die dargestellten Ausführungsbeispiele beschränkt, sondern kann durch konstruktive Ausgestaltungen auch in vergleichbaren Ausführungsformen eingesetzt werden. Dabei ist auch eine Anwendung für Primärbrennstoffe denkbar, die wie die vorgenannten Sekundärbrenn stoffe aufbereitet sind, aber nicht aus Müll oder anderen Fertigungsrückständen stammen. Mit einer derartigen Zellenradschleuse ist auch eine pneumatische Förderung von vorsortiertem oder aufbereitetem Müll durchführbar, auch wenn dies außerhalb einer thermischen Verwertung vorgesehen ist.

Claims (9)

  1. Zellenradschleuse, die als Durchblasschleuse ausgebildet ist, insbesondere zur Sekundärbrennstoffdosierung, die einen Zuführschacht (2) und darunter ein mit radialen Zellenradstegen (3) versehenes horizontal angeordnetes Zellenrad (4) enthält, das unterhalb der Zellenradachse im Rotationsbereich der Zellenradstege (3) stirnseitig gegenüberliegend angeordnete Einblas- (10) und Ausblasöffnungen (11) im Gehäuse aufweist, dadurch gekennzeichnet, daß im Bereich der Einblasöffnung (10) eine Injektordüse (15) integriert ist, die die Förderluft in die durch die Zellenradstege (3) gebildeten Dosierkammern (5) einbläst und daß die Zellenradstege (3) an ihren radialen Endbereichen metallisch harte Spaltabdichtungen (12) aufweisen.
  2. Zellenradschleuse nach Anspruch 1, dadurch gekennzeichnet, daß die Injektordüse (15) in einem an der Einblasöffnung (10) befestigten Einblasrohrstutzen (16) koaxial innenliegend eingesetzt ist, und im Bereich der Einblasöffnung (10) eine Verringerung des Einblasquerschnitts gegenüber dem Einblasrohrquerschnitt bewirkt.
  3. Zellenradschleuse nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Einblasöffnung (10) und die Ausblasöffnung (11) axial gegenüberliegend an den Gehäusestirnflächen (26) angeordnet sind und daß die Querschnittsfläche mindestens der Ausblasöffnung (11) in etwa den Querschnitt der Dosierkammern (5) aufweist.
  4. Zellenradschleuse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Injektordüse (15) rohrförmig ausgebildet ist und eine Düsenöffnung (24) aufweist, dessen Durchmesser höchstens dem halben mittleren Dosierkammerdurchmesser entspricht.
  5. Zellenradschleuse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Spaltabdichtungen als separate Schneidkanten (12) ausgebildet sind, die aus einem Federstahl oder einer anderen verschleißarmen Stahllegierung bestehen und austauschbar an den Zellenradstegen (3) befestigt sind.
  6. Zellenradschleuse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Zuführschacht (2) parallel zu den Schneidkanten (12) eine Gegenschneide (13) vorgesehen ist, an der die Schneidkanten (12) im geringen Abstand in entgegengerichteter Ausrichtung rotierend vorbeibewegt werden.
  7. Zellenradschleuse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gehäuseteil (1) an der zylinderförmigen Innenwand mit einer Verschleißbuchse (21) und an den Stirnseiten mit jeweils einer Schleißauskleidung (14) versehen ist, die aus einem Federstahlmaterial oder einer verschleißarmen Stahllegierung bestehen.
  8. Zellenradschleuse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zellenradstege (3) mit den Schneidkanten (12) in axialer Richtung schräg verlaufend oder leicht schraubenförmig am Zellenradkern (9) befestigt sind.
  9. Zellenradschleuse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Gegenschneide (13) schräg zur axialen Richtung der geraden Zellenradstege (3) angeordnet ist.
DE102004001965.7A 2004-01-13 2004-01-13 Zellenradschleuse Expired - Fee Related DE102004001965B4 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102004001965.7A DE102004001965B4 (de) 2004-01-13 2004-01-13 Zellenradschleuse
US10/586,297 US7882992B2 (en) 2004-01-13 2005-01-11 Cellular wheel sluice
EP05706861.1A EP1704369B1 (de) 2004-01-13 2005-01-11 Zellenradschleuse
DK05706861.1T DK1704369T3 (en) 2004-01-13 2005-01-11 Rotary valve
PCT/EP2005/000181 WO2005068910A1 (de) 2004-01-13 2005-01-11 Zellenradschleuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004001965.7A DE102004001965B4 (de) 2004-01-13 2004-01-13 Zellenradschleuse

Publications (2)

Publication Number Publication Date
DE102004001965A1 true DE102004001965A1 (de) 2005-08-25
DE102004001965B4 DE102004001965B4 (de) 2014-06-18

Family

ID=34778057

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004001965.7A Expired - Fee Related DE102004001965B4 (de) 2004-01-13 2004-01-13 Zellenradschleuse

Country Status (5)

Country Link
US (1) US7882992B2 (de)
EP (1) EP1704369B1 (de)
DE (1) DE102004001965B4 (de)
DK (1) DK1704369T3 (de)
WO (1) WO2005068910A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009002860U1 (de) 2009-02-27 2009-04-30 Di Matteo Förderanlagen GmbH & Co. KG Zellenradschleuse
DE102012007701A1 (de) 2012-04-19 2013-10-24 Hess Anlagenbau UG (haftungsbeschränkt) Durchblaszellenradschleuse

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8720541B2 (en) 2008-06-26 2014-05-13 Canrig Drilling Technology Ltd. Tubular handling device and methods
WO2016144874A1 (en) * 2015-03-06 2016-09-15 Cold Jet, Llc Particle feeder
CN106524212B (zh) * 2016-12-22 2018-09-28 重庆华万伦生物新能源科技有限公司 一种风输送生物燃料锅炉隔离装置
EP3749600A1 (de) * 2018-02-06 2020-12-16 Schenck Process Europe GmbH System zur befestigung einer dichtung an einem rotorblatt einer zellenradschleuse
DE102018216654B3 (de) * 2018-09-27 2020-02-13 Coperion Gmbh Zellenradschleuse für granulatförmiges Schüttgut
GB2592188B (en) * 2020-02-11 2024-01-10 Schenck Process Europe Gmbh Improved blow-through rotary valve
DE102022102276A1 (de) 2022-02-01 2023-08-03 Di Matteo Förderanlagen GmbH & Co. Kommanditgesellschaft Zellenradschleuse

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE562287C (de) *
DE10117187C1 (de) * 2001-04-05 2002-06-06 Energieberatunsbuero Hess Gmbh Brennstoffdosiereinrichtung mit einer Zellenradschleuse und Zellenradschleuse

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2903302A (en) * 1958-02-03 1959-09-08 Warren Manuel J Material handling apparatus
DE1869987U (de) * 1962-07-11 1963-04-04 Miag Muehlenbau & Ind Gmbh Zellenradschluese zur beladung von gasstroemen mit foerdergut.
US3708890A (en) * 1970-02-05 1973-01-09 Wyssmont Co Inc Rotary air lock apparatus
US3913800A (en) * 1973-08-15 1975-10-21 Occidental Petroleum Corp Intercompartment seal for rotary feeder
US5368311A (en) * 1976-04-16 1994-11-29 Heyl; Robert D. Shaft seal assembly for a rotary valve
US4155486A (en) * 1977-10-25 1979-05-22 Brown Winfred E Rotary feeder
US4231495A (en) * 1978-02-23 1980-11-04 Rader Companies, Inc. Rotary feeder for pneumatic conveying line
US4268205A (en) * 1979-06-07 1981-05-19 Mayfran, Div. Of Fischer Industries, Inc. Method and apparatus for removing material from the ends of a rotary air lock
US4411390A (en) * 1981-04-06 1983-10-25 Woten Homer G Insulation blowing and spraying apparatus
DE3401774A1 (de) * 1984-01-19 1985-08-01 Erich 8151 Neukolbing Weichenrieder sen. Dosiervorrichtung fuer schuettbare materialien, insbesondere folienreste enthaltende kunststoffabfaelle
SE8500193L (sv) * 1984-01-19 1985-07-20 Recycloplast Ag Forfarande for att blanda hellbara material med ett instellbart blandningsforhallande som en del av ett forfarande for att bearbeta materialen jemte anordning for att utfora forfarandet
DE3445710A1 (de) * 1984-12-14 1986-06-19 Waeschle Maschinenfabrik Gmbh, 7980 Ravensburg Zellenradschleuse fuer granulierte schuettgueter
DE3710677A1 (de) * 1987-03-31 1988-10-13 Bat Cigarettenfab Gmbh Vorrichtung zum expandieren von zerkleinertem tabakmaterial
US4906144A (en) * 1988-11-04 1990-03-06 Sanko Air Plant, Ltd. Eccentric rotary feeder and pressurized pneumatic conveying system
US4978252A (en) * 1989-06-07 1990-12-18 Henry Sperber Material feeding apparatus using pressurized air
DE4004415C1 (en) 1990-02-13 1990-12-13 Waeschle Maschinenfabrik Gmbh, 7980 Ravensburg, De Sliding vane closure for granular bulk material - has deflector body, filling pocket-shaped recess, formed by scraper edge sections on housing inner wall
DE4110036A1 (de) * 1991-03-27 1992-10-01 Motan Verfahrenstechnik Zellenradschleuse
DE4127408A1 (de) * 1991-08-19 1993-02-25 Kloeckner Humboldt Deutz Ag Zellenradschleuse fuer druckbehaelter
US5299888A (en) * 1991-11-27 1994-04-05 Finn Corporation Apparatus for conveying and discharging bulk materials
US5324143A (en) * 1993-01-28 1994-06-28 Sanders Kenneth L Pneumatic grain conveyor and related method
US5829649A (en) * 1993-02-16 1998-11-03 Western Fibers, Inc. Apparatus for conditioning and dispensing loose fill insulation material
US5725332A (en) * 1995-09-14 1998-03-10 Saf-T-Source, Inc. Air lock feeder apparatus
DE19901967A1 (de) * 1999-01-20 2000-08-03 Waeschle Gmbh Zellenradschleuse
US20030215293A1 (en) * 1999-05-11 2003-11-20 Andritz Inc. High pressure feeder having smooth pocket in rotor
US6109488A (en) * 1999-08-13 2000-08-29 Western Fibers, Inc. Apparatus for conditioning and dispensing loose fill insulation material
DE19960221C2 (de) * 1999-12-14 2002-09-12 Motan Fuller Verfahrenstechnik Zellenradschleuse mit verbesserter Abdichtung gegen Leckluft
DE20006800U1 (de) * 2000-04-13 2000-07-13 Hess, Armin, 64757 Rothenberg Brennstoffdosiereinrichtung mit einer Zellenradschleuse und Zellenradschleuse
DE10119306A1 (de) * 2001-04-19 2002-10-24 Buehler Ag Zellenradschleuse
DE20108844U1 (de) * 2001-05-26 2002-01-17 Th. Buschhoff GmbH & Co., 59227 Ahlen Zellenradschleuse
DE102004041254A1 (de) * 2004-08-26 2006-03-02 Zeppelin Silos- & Systems Gmbh Verfahren und Vorrichtung zur Kompensation der thermischen Ausdehnung eines Zellenradschleusenrotors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE562287C (de) *
DE10117187C1 (de) * 2001-04-05 2002-06-06 Energieberatunsbuero Hess Gmbh Brennstoffdosiereinrichtung mit einer Zellenradschleuse und Zellenradschleuse

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009002860U1 (de) 2009-02-27 2009-04-30 Di Matteo Förderanlagen GmbH & Co. KG Zellenradschleuse
DE102009015434A1 (de) 2009-02-27 2010-09-02 Di Matteo Förderanlagen GmbH & Co. KG Zellenradschleuse
DE102012007701A1 (de) 2012-04-19 2013-10-24 Hess Anlagenbau UG (haftungsbeschränkt) Durchblaszellenradschleuse

Also Published As

Publication number Publication date
EP1704369A1 (de) 2006-09-27
US20070151995A1 (en) 2007-07-05
DK1704369T3 (en) 2018-10-15
WO2005068910A1 (de) 2005-07-28
DE102004001965B4 (de) 2014-06-18
EP1704369B1 (de) 2018-07-04
US7882992B2 (en) 2011-02-08

Similar Documents

Publication Publication Date Title
EP1704369B1 (de) Zellenradschleuse
EP2297519B1 (de) Verfahren und vorrichtung für das zufördern von förderfähigen materialien zu reaktionsöfen
DE3590508T1 (de) Schraubenförmiger Pulverförderer
DE2751773A1 (de) Foerdereinrichtung fuer pulverfoermiges material
EP0203119B1 (de) Verwendung einer vorrichtung zum fördern von fliessfähigem material
DE2411393C3 (de) Vorrichtung zum Fördern von pulverförmigem Material
EP1637301A2 (de) Schneckenanordnung eines Extruders und Vakuumaggregat
DE874877C (de) Einrichtung zum Foerdern von feuchtem und breiigem Gut, insbesondere von Nasstrebern, in Rohrleitungen
EP1331443B1 (de) Vorrichtung zur Einbringung von Sekundärbrennstoffen in eine Verbrennungsanlage
WO2002022476A1 (de) Vorrichtung zum einleiten von schwer fliessendem schüttgut in eine förderleitung
DE3241239A1 (de) Vorrichtung zum austragen von feststoffen aus einem wirbelschichtreaktor
DE19909132B4 (de) Vorrichtung zum Fördern von Schüttgütern
DE102011000675B4 (de) Verfahren und Vorrichtung zum Fördern eines Schüttgutstromes
EP2185287B8 (de) Schwingmühle
DE102012007701A1 (de) Durchblaszellenradschleuse
EP1606553B1 (de) VERFAHREN UND VORRICHTUNG ZUR BESCHICKUNG VON INDUSTRIELLEN FEUERUNGSANLAGEN MIT ABFALLMATERIAL, INSBESONDERE MIT SEKUNDÄRBRENNSTOFFen
AT518671B1 (de) Heizvorrichtung
EP2612094B1 (de) Vorrichtung zum einbringen von abfallstoffen und/oder alternativen brennstoffen in den innenraum eines aggregats
DE20100783U1 (de) Vorrichtung zum Dosieren und Fördern von Schüttgütern
DE3441082A1 (de) Schmelzanordnung
CH657600A5 (de) Foerderanlage.
DE1858292U (de) Vorrichtung zum einschleusen von schuettgut bei pneumatischen foerderanlagen.
EP1654176A1 (de) Vorrichtung zum einleiten von schüttgut in eine vielzahl von förderleitungen
DE19704061A1 (de) Vorrichtung zum Einspeisen von pulverförmigem Gut in eine pneumatische Förderleitung
EP2151628A2 (de) Brennerzuführung

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
R016 Response to examination communication
R082 Change of representative
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R020 Patent grant now final

Effective date: 20150319

R081 Change of applicant/patentee

Owner name: SCHENCK PROCESS EUROPE GMBH, DE

Free format text: FORMER OWNER: SCHENCK PROCESS GMBH, 64293 DARMSTADT, DE

R081 Change of applicant/patentee

Owner name: SCHENCK PROCESS EUROPE GMBH, DE

Free format text: FORMER OWNER: SCHENCK PROCESS EUROPE GMBH, 64293 DARMSTADT, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee