DE10062768A1 - Heat pump has bypass limiting condensate flow through internal heat exchanger if large temperature difference between evaporation, condensation sides/very low evaporation temperatures - Google Patents

Heat pump has bypass limiting condensate flow through internal heat exchanger if large temperature difference between evaporation, condensation sides/very low evaporation temperatures

Info

Publication number
DE10062768A1
DE10062768A1 DE2000162768 DE10062768A DE10062768A1 DE 10062768 A1 DE10062768 A1 DE 10062768A1 DE 2000162768 DE2000162768 DE 2000162768 DE 10062768 A DE10062768 A DE 10062768A DE 10062768 A1 DE10062768 A1 DE 10062768A1
Authority
DE
Germany
Prior art keywords
heat exchanger
condensate
evaporation
internal heat
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2000162768
Other languages
German (de)
Inventor
Joachim Zschernig
Steffen Preuser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Buderus Heiztechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buderus Heiztechnik GmbH filed Critical Buderus Heiztechnik GmbH
Priority to DE2000162768 priority Critical patent/DE10062768A1/en
Publication of DE10062768A1 publication Critical patent/DE10062768A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/062Capillary expansion valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

The device has a coolant circuit via a heat exchanger, compressor, at least one heat exchanger in hot water and heating circuits and an expansion valve. Additional internal heat exchange occurs between coolant suction gas and condensate in a further heat exchanger. A bypass limits condensate flow through the internal heat exchanger for a large temperature difference between evaporation and condensation sides or very low evaporation temperatures. The device has a coolant circuit through a heat exchanger (WUe1) in the form of an evaporator, a compressor (V), at least one heat exchanger (WUe2,WUe3) for condensation in working circuits (NK1,NK2) for heating and hot water supply and an expansion valve (EV). Additional internal heat exchange takes place between the coolant suction gas and the condensate in a further heat exchanger (Wue4) in accordance with patent claim 100 29 655.6. A bypass limits the flow of condensate through the internal heat exchanger in the event of a large temperature difference between the evaporation and condensation sides or for a very low evaporation temperatures.

Description

Die Erfindung betrifft eine Wärmepumpe nach dem Oberbegriff des Patentanspruchs 1 gemäß Patentanmeldung 100 29 655.6.The invention relates to a heat pump according to the preamble of claim 1 according to patent application 100 29 655.6.

Wärmepumpen dieser Art besitzen einen Kältemittelkreislauf durch einen Verdampfer, in welchem das Kältemittel verdampft und dabei Wärme aus der Umgebung aufnimmt (Wär­ mequelle), einen Kompressor, in welchem das Kältemittel verdichtet wird, mit nachge­ schalten Verbrauchern zur Abgabe der frei werdenden Kondensationswärme (Wärme­ senke) und ein folgendes Expansionsventil zum Entspannen des Kältemittels, welches dann wieder dem Verdampfer zuströmt. Gemäß der genannten Patentanmeldung erfolgt ein zusätzlicher Wärmeaustausch zwischen dem Kältemittel-Sauggas auf der Seite der Wärmequelle und dem Kondensat auf der Seite der Wärmesenke.Heat pumps of this type have a refrigerant circuit through an evaporator, in which evaporates the refrigerant and thereby absorbs heat from the environment (heat mequelle), a compressor in which the refrigerant is compressed, with secondary switch consumers to release the condensation heat released (heat sink) and a subsequent expansion valve to relax the refrigerant, which then flows back to the evaporator. According to the patent application mentioned an additional heat exchange between the refrigerant suction gas on the side of the Heat source and the condensate on the side of the heat sink.

Der Betrieb einer solchen Wärmepumpe ist geprägt durch ein Parameterfeld in Bezug auf Wärmequellen- und Wärmesenkentemperaturen. Mit sinkenden Wärmequellen- und stei­ genden Wärmesenkentemperaturen steigen das Druckverhältnis und die Verdichtungs­ endtemperatur an. Bei der hier beschriebenen Wärmepumpe können die Verdich­ tungsendtemperaturen dann schnell kritische Werte erreichen. Grund sind die sich mit stei­ genden Temperaturen verschlechternden Schmiereigenschaften des Öles (sinkende Vis­ kosität) und die Gefahr der Verkokung des Öles. Bei Hermetikverdichtern bauen die Her­ steller deshalb in der Regel Schwellwertschalter ein, die bei Erreichen einer bestimmten Temperatur (z. B. 130-140°C) den Kompressor abschalten. Aber auch schon in einem gewissen Temperaturbereich unterhalb dieser Schwellwerttemperatur, die quasi einer a­ kuten Gefahrensituation für den Kompressor entspricht, ist ein längerer Betrieb nicht ohne negative Auswirkungen auf die Ölstabilität und damit auf die Lebensdauer des Kompres­ sors möglich (kritischer Temperaturbereich jeweils laut Herstellerangaben). Um das deutli­ che Primärenenergieeinsparungspotenzial der Zweikreiswärmepumpe so weit wie möglich ausnutzen zu können, muss die innere Wärmeübertragung bei niedrigen Wärmequellen­ temperaturen und/oder bei hohen Wärmesenktemperaturen begrenzt werden, und zwar um so mehr, je tiefer die Wärmequellentemperatur sinkt.The operation of such a heat pump is characterized by a parameter field in relation to Heat source and heat sink temperatures. With falling heat source and steep The heat sink temperatures increase the pressure ratio and the compression final temperature. With the heat pump described here, the compression end temperatures then quickly reach critical values. The reason is that they are steep lubricating properties of the oil that deteriorate in temperature (decreasing vis kosität) and the risk of coking of the oil. The Her build for hermetic compressors therefore usually set a threshold switch when a certain one is reached Temperature (e.g. 130-140 ° C) switch off the compressor. But also in one  certain temperature range below this threshold temperature, which is quasi an a kuten dangerous situation for the compressor, a longer operation is not without negative effects on the oil stability and thus on the life of the compress possible (critical temperature range in each case according to the manufacturer's instructions). To make it clear The primary energy saving potential of the dual-circuit heat pump as much as possible To be able to exploit the internal heat transfer at low heat sources temperatures and / or at high heat sink temperatures are limited The lower the heat source temperature drops, the more.

Der Erfindung liegt die Aufgabe zugrunde, bei einer gattungsgemäßen Wärmepumpe die innere Wärmeübertragung bei hohen Temperaturdifferenzen zwischen der Wärmequelle und der Wärmesenke, bzw. bei einer sehr niedrigen Wärmequellentemperatur, auf das notwendige Maß zu begrenzen.The invention is based, in a generic heat pump the task internal heat transfer at high temperature differences between the heat source and the heat sink, or at a very low heat source temperature, on the limit necessary measure.

Die erfindungsgemäße Wärmepumpe besitzt die im Patentanspruch 1 genannten Merk­ male.The heat pump according to the invention has the Merk mentioned in claim 1 times.

Die angestrebte Begrenzung der inneren Wärmeübertragung in den genannten kritischen Fällen kann am besten dadurch realisiert werden, dass nicht der gesamte Kältemit­ telmassestrom an der inneren Wärmeübertragung teilnimmt. Ein geregelter Bypass würde allerdings zu einer höheren Komplexität des Systems und vor allem zu einer Verteuerung führen und ist daher nicht wünschenswert. Zu empfehlen ist dagegen ein ungeregelter By­ pass parallel zum inneren Wärmeübertrager und zum Expansionsventil in Form einer Drosselkapillare.The desired limitation of internal heat transfer in the critical The best way to do this is to not use all of the cold tele mass flow participates in the internal heat transfer. A regulated bypass would however to a higher complexity of the system and above all to an increase in price lead and is therefore not desirable. In contrast, an unregulated by is recommended fit parallel to the inner heat exchanger and to the expansion valve in the form of a Drosselkapillare.

Drosselkapillaren werden in der Kältetechnik, z. B. in Kühlschränken, anstelle eines Expan­ sionsventiles eingesetzt. Prinzipiell harmonieren die Wirkung und die Aufgabe der Kapillare gut. Wenn beim Zweikreiswärmepumpenprozess ohne Kapillare die Verdichtungsendtem­ peraturen hoch sind, lässt sich durch den Einsatz einer Bypasskapillare auch der Masse­ strom durch den inneren Wärmeübertrager verringern. Durch die Wahl einer geeigenten Kapillargeometrie lässt sich die Verdichtungsendtemperatur dort, wo sie kritische Werte erreichen könnte, wirksam reduzieren, während sich die Kapillare andererseits dort, wo eine maximale innere Wärmeübertragung mit resultierendem maximalen Anteil der Enthit­ zung an der Heizwärme wünschenswert ist, nicht kontra-produktiv auswirkt. Throttle capillaries are used in refrigeration, e.g. B. in refrigerators, instead of an expan sionsventile used. In principle, the effect and the task of the capillary harmonize Good. If the compression end in the two-circuit heat pump process without capillary temperatures are high, the mass can also be reduced by using a bypass capillary reduce current through the internal heat exchanger. By choosing a suitable one Capillary geometry allows the final compression temperature to be where it is critical could effectively reduce, while the capillary on the other hand where a maximum internal heat transfer with the resulting maximum share of enthit heating heat is desirable, does not have a counterproductive effect.  

Die Zeichnung stellt in einer einzigen Figur ein Wärmepumpenschema als Ausführungsbei­ spiel der Erfindung dar.The drawing shows a heat pump diagram as an embodiment in a single figure game of the invention.

Ein Kältemittelkreislauf führt durch eine Wärmequelle mit einem Wärmeübertrager WÜ 1 als Verdampfer, durch einen Kompressor V von dort durch eine Wärmesenke mit einem Wärmeübertrager WÜ 2 in einem höher temperierten Nutzungskreis NK 2 für eine Warm­ wasserbereitung und einem Wärmeübertrager WÜ 3 in einem niedriger temperierten Nut­ zungskreis NK 1 für den Heizbetrieb und anschließend durch ein Expansionsventil EV. In einem inneren Wärmeübertrager WÜ 4 tritt Sauggas aus dem Verdampfer mit Kondensat aus dem Kondensator in einen hocheffizienten Wärmetausch.A refrigerant circuit leads through a heat source with a heat exchanger WÜ 1 as an evaporator, through a compressor V from there through a heat sink with a heat exchanger WÜ 2 in a higher temperature usage zone NK 2 for hot water production and a heat exchanger WÜ 3 in a lower temperature usage circle NK 1 for heating operation and then through an expansion valve EV. In an internal heat exchanger WÜ 4 suction gas from the evaporator with condensate from the condenser enters a highly efficient heat exchange.

Um bei niedrigen Wärmequellentemperaturen (Verdampfungstemperaturen) und/ oder bei hohen Wärmesenkentemperaturen (Temperaturen des Kondensats) die Wärmeübertragung im inneren Wärmeübertrager WÜ 4 zu begrenzen, ist ein den inneren Wärmeübertager WÜ 4 und das Expansionsventil EV umgehender Bypass By in Form einer Drosselkapillare vorgesehen. Die Auswirkung auf den Gesamtpro­ zess ist von dem Durchmesser und der Länge der Kapillare abhängigTo at low heat source temperatures (evaporation temperatures) and / or at high heat sink temperatures (temperatures of the condensate) Limiting heat transfer in the internal heat exchanger WÜ 4 is one of the internal heat exchanger WÜ 4 and the bypass expansion valve EV By provided in the form of a throttle capillary. The impact on the overall pro zess depends on the diameter and length of the capillary

Claims (2)

1. Wärmepumpe mit einem Kältemittelkreislauf durch einen Wärmeübertrager WÜ 1 als Verdampfer, durch einen Kompressors V und mindestens einem der Kondensation die­ nenden Wärmeübertrager WÜ 2, WÜ 3 in Nutzungskreisen NK 2, NK 1 für die Warmwas­ serbereitung und die Heizung und durch ein Expansionsventil EV sowie mit einem zusätzli­ chen inneren Wärmeaustausch zwischen dem Kältemittel-Sauggas und dem Kondensat in einem Wärmeübertrager WÜ 4 gemäß Patentanmeldung 100 29 655.6, gekennzeichnet durch einen bei einer hohen Temperaturdifferenz zwischen der Ver­ dampfungs- und der Kondensatseite, bzw. bei sehr niedrigen Verdampfungstemperaturen, die Strömung des Kondensats durch den inneren Wärmeübertrager WÜ 4 begrenzenden, diesen Wärmeübertrager WÜ 4 und das Expansionsventil EV umgehenden Bypass By.1. Heat pump with a refrigerant circuit through a heat exchanger WÜ 1 as an evaporator, through a compressor V and at least one of the condensers, the heat exchangers WÜ 2, WÜ 3 in use groups NK 2 , NK 1 for hot water preparation and heating and through an expansion valve EV and with an additional internal heat exchange between the refrigerant suction gas and the condensate in a heat exchanger WÜ 4 according to patent application 100 29 655.6, characterized by a at a high temperature difference between the evaporating and the condensate side, or at very low evaporation temperatures, the Flow of the condensate through the internal heat exchanger WÜ 4, bypassing this heat exchanger WÜ 4 and the expansion valve EV bypass. 2. Wärmepumpe nach Anspruch 1, dadurch gekennzeichnet, dass der Bypass By als ungeregelter Bypass in Form einer Dros­ selkapillare gestaltet ist.2. Heat pump according to claim 1, characterized in that the bypass by as an uncontrolled bypass in the form of a Dros selcapillary is designed.
DE2000162768 2000-12-15 2000-12-15 Heat pump has bypass limiting condensate flow through internal heat exchanger if large temperature difference between evaporation, condensation sides/very low evaporation temperatures Withdrawn DE10062768A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2000162768 DE10062768A1 (en) 2000-12-15 2000-12-15 Heat pump has bypass limiting condensate flow through internal heat exchanger if large temperature difference between evaporation, condensation sides/very low evaporation temperatures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2000162768 DE10062768A1 (en) 2000-12-15 2000-12-15 Heat pump has bypass limiting condensate flow through internal heat exchanger if large temperature difference between evaporation, condensation sides/very low evaporation temperatures

Publications (1)

Publication Number Publication Date
DE10062768A1 true DE10062768A1 (en) 2002-06-20

Family

ID=7667425

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2000162768 Withdrawn DE10062768A1 (en) 2000-12-15 2000-12-15 Heat pump has bypass limiting condensate flow through internal heat exchanger if large temperature difference between evaporation, condensation sides/very low evaporation temperatures

Country Status (1)

Country Link
DE (1) DE10062768A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213339A1 (en) * 2002-03-26 2003-10-16 Gea Happel Klimatechnik Heat pump for simultaneous cooling and heating
DE102005040456A1 (en) * 2005-08-26 2007-03-01 Bernhard Wenzel Cooling medium circuit for heat pump, has condensers dimensioned for compressor-condensation capacity such that amount of cooling medium in condensers is not completely liquefied, and condensers are over dimensioned
GB2453515A (en) * 2007-07-31 2009-04-15 Space Engineering Services Ltd Vapour compression system
DE102020206823A1 (en) 2020-06-02 2021-12-02 BSH Hausgeräte GmbH HOUSEHOLD APPLIANCE, IN PARTICULAR LAUNDRY DRYERS, WITH A HEAT PUMP INCLUDING AN EXPANSION DEVICE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213339A1 (en) * 2002-03-26 2003-10-16 Gea Happel Klimatechnik Heat pump for simultaneous cooling and heating
DE102005040456A1 (en) * 2005-08-26 2007-03-01 Bernhard Wenzel Cooling medium circuit for heat pump, has condensers dimensioned for compressor-condensation capacity such that amount of cooling medium in condensers is not completely liquefied, and condensers are over dimensioned
GB2453515A (en) * 2007-07-31 2009-04-15 Space Engineering Services Ltd Vapour compression system
DE102020206823A1 (en) 2020-06-02 2021-12-02 BSH Hausgeräte GmbH HOUSEHOLD APPLIANCE, IN PARTICULAR LAUNDRY DRYERS, WITH A HEAT PUMP INCLUDING AN EXPANSION DEVICE

Similar Documents

Publication Publication Date Title
DE10138255B4 (en) Arrangement of cascade refrigeration system
EP1895246A2 (en) Refrigeration circuit and method for operating a refrigeration circuit
WO2006015741A1 (en) Refrigeration circuit and method for operating a refrigeration circuit
WO2014191230A1 (en) Cooling system and cooling process for use in high-temperature environments
DE69310408T2 (en) Pressure operated switching valve for a refrigeration system
DE10159892A1 (en) A heat pump circuit has a compressor temperture control system which automatically reduces the operating temperature when the outside temperature reaches abnormally low values.
EP2321592B1 (en) Heat pump or refrigeration device and method for operating a heat pump or refrigeration device
DE10062768A1 (en) Heat pump has bypass limiting condensate flow through internal heat exchanger if large temperature difference between evaporation, condensation sides/very low evaporation temperatures
EP2564142A1 (en) Heat exchanger arrangement
WO1982002588A1 (en) Heat pump arrangement
DE102011012644A1 (en) Cooling system for cooling and freezing of foods in warehouses or supermarkets, has refrigerant circuit, which is provided for circulation of refrigerant, particularly carbon dioxide, in operating flow direction
DE102013021177A1 (en) Thermoelectric subcooler
EP2215412A1 (en) System for refrigeration, heating or air-conditioning technology, particularly refrigeration systems
DE10062764A1 (en) Heat pump, for hot water systems, has additional heat exchanger after useful circuit heat exchangers that provides further super-cooling of coolant condensate by passing heat to hot water system
DE102008043823B4 (en) heat pump system
DE102012004801B4 (en) Arrangement for a heat pump with screw compressor
DE2921257A1 (en) Heat pump for central heating - combines heat exchanger and evaporator in common unit in refrigeration section of circuit
DE102011005749B4 (en) Collector for cooling and / or heating systems and cooling and / or heating system
WO2011023352A2 (en) Heat pump
EP0184181B1 (en) Heat pump
DE2438418A1 (en) Rotating vane gas compressor for refrigerating plant - has means for injecting the gas in liquid state into the compression chamber
EP2674698A1 (en) Heat pump assembly
DE102013008080A1 (en) Arrangement for a cooling-heat coupling
EP3577397A1 (en) Heat pump and method for operating a heat pump
DE10338388B3 (en) Method for controlling an air conditioning system

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: BBT THERMOTECHNIK GMBH, 35576 WETZLAR, DE

8127 New person/name/address of the applicant

Owner name: ROBERT BOSCH GMBH, 70469 STUTTGART, DE

8141 Disposal/no request for examination