DE10037612A1 - Neue für das rpi-Gen kodierende Nukleotidsequenzen - Google Patents

Neue für das rpi-Gen kodierende Nukleotidsequenzen

Info

Publication number
DE10037612A1
DE10037612A1 DE10037612A DE10037612A DE10037612A1 DE 10037612 A1 DE10037612 A1 DE 10037612A1 DE 10037612 A DE10037612 A DE 10037612A DE 10037612 A DE10037612 A DE 10037612A DE 10037612 A1 DE10037612 A1 DE 10037612A1
Authority
DE
Germany
Prior art keywords
polynucleotide
sequence
gene
lysine
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10037612A
Other languages
English (en)
Inventor
Natalie Schischka
Bettina Moeckel
Walter Pfefferle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Priority to DE10037612A priority Critical patent/DE10037612A1/de
Publication of DE10037612A1 publication Critical patent/DE10037612A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Die Erfindung betrifft ein isoliertes Polynukleotid, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe DOLLAR A a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält, DOLLAR A b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2, DOLLAR A c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und DOLLAR A d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Basen der Polynukleotidsequenz von a), b) oder c), DOLLAR A und Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verstärkung des rpi-Gens, sowie die Verwendung des Polynukleotids als Primer oder Hybridisierungssonde.

Description

Gegenstand der Erfindung sind für das rpi-Gen kodierende Nukleotidsequenzen und Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin unter Verwendung von coryneformen Bakterien, in denen das rpi-Gen verstärkt wird.
Stand der Technik
Aminosäuren, insbesondere L-Lysin, finden in der Humanmedizin und in der pharmazeutischen Industrie, insbesondere aber in der Tierernährung Anwendung.
Es ist bekannt, daß Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensbesserungen können fermentationstechnische Maßnahmen wie z. B. Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie z. B. die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch z. B. Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.
Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite wie z. B. das Lysin-Analogon S-(2-Aminoethyl)-Cystein oder auxotroph für regulatorisch bedeutsame Metabolite sind und Aminosäuren wie z. B. L-Lysin produzieren.
Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung Aminosäure produzierender Stämme von Corynebacterium eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht. Übersichtsartikel hierzu findet man unter anderem bei Kinoshita ("'Glutamic Acid Bacteria", in: Biology of Industrial Microorganisms, Demain and Solomon (Eds.), Benjamin Cummings, London, UK, 1985, 115-142), Hilliger (BioTec 2, 40-44 (1991)), Eggeling (Amino Acids 6: 261-272 (1994)), Jetten und Sinskey (Critical Reviews in Biotechnology 15, 73-103 (1995)) und Sahm et al. (Annuals of the New York Academy of Science 782, 25-39 (1996)).
Aufgabe der Erfindung
Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von Aminosäuren insbesondere L-Lysin bereitzustellen.
Beschreibung der Erfindung
Aminosäuren insbesondere L-Lysin finden in der Humanmedizin, in der pharmazeutischen Industrie und insbesondere in der Tierernährung Anwendung. Es besteht daher ein allgemeines Interesse daran; haue verbesserte Verfahren zur Herstellung von Aminosäuren insbesondere L-Lysin bereitzustellen.
Wenn im folgenden L-Lysin oder Lysin erwähnt werden, sind damit nicht nur die Base sondern auch die Salze wie z. B. Lysin-Monohydrochlorid oder Lysin-Sulfat gemeint.
Gegenstand der Erfindung ist ein isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das rpi-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
  • a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
  • b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
  • c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
  • d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Basen der Polynukleotidsequenz von a), b) oder c),
wobei das Polypeptid bevorzugt die Aktivität der Phosphopentose-Isomerase aufweist.
Gegenstand der Erfindung ist ebenfalls das Polynukleotid gemäß Anspruch 1, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:
  • a) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
  • b) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Codes entspricht, oder
  • c) mindestens eine Sequenz, die mit der zur Sequenz (i) oder (ii) komplementären Sequenz hybridisiert, und gegebenenfalls
  • d) funktionsneutralen Sinnmutationen in (i).
Weitere Gegenstände sind
ein Polynukleotid gemäß Anspruch 4, enthaltend die Nukleo­ tidsequenz wie in SEQ ID No. 1 dargestellt,
ein Polynukleotid gemäß Anspruch 6, das für ein Polypeptid kodiert, das die Aminosäuresequenz, wie in SEQ ID No. 2 dargestellt, enthält
ein Vektor, enthaltend das Polypeptid gemäß Anspruch 1, insbesondere Pendelvektor oder Plasmidvektor
und als Wirtszelle dienende coryneforme Bakterien, die den Vektor enthalten oder in denen das rpi-Gen verstärkt wird.
Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank, die das vollständige Gen mit der Polynukleotidsequenz entsprechend SEQ ID No. 1 enthält, mit einer Sonde, die die Sequenz des genannten Polynukleotids gemäß SEQ ID No. 1 oder ein Fragment davon enthält und Isolierung der genannten DNA-Sequenz.
Polynukleotidsequenzen gemäß der Erfindung sind geeignet als Hybridisierungs-Sonden für RNA, cDNA und DNA, um Nukleinsäuren bzw. Polynukleotide oder Gene in voller Länge zu isolieren, die für die Phosphopentose-Isomerase kodieren, oder um solche Nukleinsäuren bzw. Polynukleotide der Gene zu isolieren, die eine hohe Ähnlichkeit der Sequenz mit der des Phosphopentose-Isomerase-Gens aufweisen.
Polynukleotidsequenzen gemäß der Erfindung sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für Phosphopentose-Isomerase kodieren.
Solche als Sonden oder Primer dienende Oligonukleotide enthalten mindestens 30, bevorzugt mindestens 20, ganz besonders bevorzugt mindestens 15 aufeinanderfolgende Basen. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 40 oder 50 Basenpaaren.
"Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.
"Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.
Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.
Die Polypeptide gemäß Erfindung schließen ein Polypeptid gemäß SEQ ID No. 2, insbesondere solche mit der biologischen Aktivität der Phosphopentose-Isomerase und auch solche ein, die zu wenigstens 70%, bevorzugt zu wenigstens 80% und besonders zu wenigstens 90% bis 95% identisch sind mit dem Polypeptid gemäß SEQ ID No. 2 und die genannte Aktivität aufweisen.
Die Erfindung betrifft weiterhin ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits eine Aminosäure produzieren, und in denen die für das rpi-Gen kodierenden Nukleotidsequenzen verstärkt, insbesondere überexprimiert werden.
Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen verwendet, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.
Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können L-Aminosäuren, insbesondere L-Lysin aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.
Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum, sind die zum Beispiel bekannten Wildtypstämme
Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium thermoaminogenes FERM BP-1539
Corynebacterium melassecola ATCC17965
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020
und daraus hergestellte L-Lysin produzierende Mutanten bzw. Stämme, wie beispielsweise
Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464 und
Corynebacterium glutamicum DSM5715.
Den Erfindern gelang es, das neue, für das Enzym Phosphopentose-Isomerase (EC 5.3.1.6) kodierende rpi-Gen von C. glutamicum zu isolieren.
Zur Isolierung des rpi-Gens oder auch anderer Gene von C. glutamicum wird zunächst eine Genbank dieses Mikroorganismus in E. coli angelegt. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990) oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495-508 (1987)) in λ-Vektoren angelegt wurde. Bathe et al. (Molecular and General Genetics, 252: 255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84: 2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acids Research 16 : 1563-1575) angelegt wurde.
Börmann et al. (Molecular Microbiology 6(3), 317-326)) wiederum beschreiben eine Genbank von C. glutamicum ATCC13032 unter Verwendung des Cosmids pHC79 (Hohn und Collins, Gene 11, 291-298 (1980)). Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) oder pUC9 (Viera et al., 1982, Gene, 19: 259-268) verwendet werden. Als Wirte eignen sich besonders solche E. coli- Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5αmcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde. Die mit Hilfe von Cosmiden klonierten langen DNA-Fragmente können anschließend wiederum in gängige für die Sequenzierung geeignete Vektoren subkloniert und anschließend sequenziert werden, so wie es z. B. bei Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74: 5463-5467, 1977) beschrieben ist.
Es wurde die neue, für das Gen rpi kodierende DNA-Sequenz von C. glutamicum gefunden, die als SEQ ID No. 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurde aus der vorliegenden DNA-Sequenz die Aminosäuresequenz des entsprechenden Proteins abgeleitet. In SEQ ID No. 2 ist die sich ergebende Aminosäuresequenz des rpi-Genproduktes dargestellt.
Kodierende DNA-Sequenzen, die sich aus SEQ ID No. 1 durch die Degeneriertheit des genetischen Codes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z. B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in Proteinen als "Sinnmutationen" (sense mutations) bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen, d. h. funktionsneutral sind. Weiterhin ist bekannt, daß Änderungen am N- und/oder C-Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169: 751-757 (1987)), bei O'Regan et al. (Gene 77: 237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3: 240-247 (1994)), bei Hochuli et al. (Bio/Technology 6: 1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID No. 2 ergeben, sind ebenfalls Bestandteil der Erfindung.
In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren Bestandteil der Erfindung. Schließlich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Primern hergestellt werden, die sich aus SEQ ID No. 1 ergeben. Derartige Oligonukleotide haben typischerweise eine Länge von mindestens 15 Basenpaaren.
Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260). Anleitungen zur Amplifikation von DNA- Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonukleotide synthesis: a practical approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).
Die Erfinder fanden heraus, daß coryneforme Bakterien nach Überexpression des rpi-Gens in verbesserter Weise Aminosäuren insbesondere L-Lysin produzieren.
Zur Erzielung einer Überexpression kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die Promotor- und Regulationsregion oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen L-Lysin-Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der m-RNA wird ebenfalls die Expression verbessert. Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.
Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift EPS 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991), bei Remscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al. (Gene 134, 15-24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides (Microbiological Reviews 60: 512-538 (1996)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.
Beispielhaft wurde das erfindungsgemäße rpi-Gen mit Hilfe von Plasmiden überexprimiert. Als Plasmide eignen sich solche, die in coryneformen Bakterien repliziert werden. Zahlreiche bekannte Plasmidvektoren wie z. B. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKExl (Eikmanns et al., Gene 102: 93-98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107: 69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere Plasmidvektoren wie z. B. solche, die auf pCG4 (US-A 4,489,160) oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)) oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise verwendet werden.
Zusätzlich kann es für die Produktion von Aminosäuren, insbesondere L-Lysin, vorteilhaft sein, neben dem rpi-Gen eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Pentosephosphatweges oder des Aminosäure-Exports zu überexprimieren.
So kann beispielsweise für die Herstellung von L-Lysin eines oder mehrere Gene, ausgewählt aus der Gruppe
  • - das für die OpcA-Untereinheit des Enzyms Glucose-6- Phosphat-Dehydrogenase kodierende opcA-Gen (DSM13264),
  • - das für die Zwf-Untereinheit der Glucose-6-Phosphat- Dehydrogenase kodierende zwf-Gen (Moritz et al., 2000, European Journal of Biochemistry 267: 3442-2452),
  • - das für die Transketolase kodierende tkt-Gen (Genbankeintrag accession number AB023377),
  • - das für die Transaldolase kodierende tal-Gen (DSM 13263),
  • - das für die 6-Phosphogluconat-Dehydrogenase kodierende gnd-Gen (JP-17-9-224662),
  • - das für die Dihydrodipicolinat-Synthase kodierende dapA- Gen (EP-B 0 197 335),
  • - das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende gap-Gen (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
  • - das für die Triosephosphat Isomerase kodierende tpi- Gen (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
  • - das für die 3-Phosphoglycerat Kinase kodierende pgk- Gen (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
  • - das für die Enolase kodierende eno-Gen (DE: 199 47 791.4),
  • - das für die Pyruvat-Carboxylase kodierende pyc-Gen (DE-A-198 31 609)
  • - das für den Lysin-Export kodierende lysE-Gen (DE-A-195 48 222)
verstärkt, insbesondere überexprimiert werden.
Weiterhin kann es für die Produktion von L-Aminosäuren, insbesondere L-Lysin, vorteilhaft sein, zusätzlich zu der Verstärkung des rpi-Gens gleichzeitig eines oder mehrere Gene, ausgewählt aus der Gruppe
  • - das für die Phosphoenolpyruvat-Carboxykinase codierende pck-Gen (DE 199 50 409.1, DSM 13047),
  • - das für die Glucose-6-Phosphat-Isomerase codierende pgi- Gen (US 09/396,478, DSM 12969),
  • - das für die Pyruvat-Oxidase codierende poxB Gen (DE 198 46 499.1; DSM 13114)
abzuschwächen, insbesondere die Expression zu verringern.
Der Begriff "Abschwächung" beschreibt in diesem Zusammenhang die Verringerung oder Ausschaltung der intrazellulären Aktivität eines oder mehrerer Enzyme (Proteine) in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise einen schwachen Promotor verwendet oder ein Gen, beziehungsweise Allel verwendet, das für ein entsprechendes Enzym mit einer niedrigen Aktivität kodiert, beziehungsweise das entsprechende Gen oder Enzym (Protein) inaktiviert und gegebenenfalls diese Maßnahmen kombiniert.
Weiterhin kann es für die Produktion von Aminosäuren, insbesondere L-Lysin, vorteilhaft sein, neben der Überexpression des rpi-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).
Die erfindungsgemäß hergestellten Mikroorganismen können kontinuierlich oder diskontinuierlich im batch-Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von Aminosäuren, insbesondere L-Lysin, kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.
Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedenener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D. C., USA, 1981) enthalten. Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z. B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z. B. Sojaöl, Sonnenblumenöl, Erdnussöl und Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z. B. Glycerin und Ethanol und organische Säuren wie z. B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden. Als Stickstoffquelle können organische Stickstoff haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden. Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten wie z. B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.
Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z. B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe wie z. B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten werden Sauerstoff oder sauerstoff­ haltige Gasmischungen wie z. B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum an Lysin gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.
Die Analyse von L-Lysin kann durch Anionenaustauschchromatographie mit anschließender Ninhydrin Derivatisierung erfolgen, so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben.
Das erfindungsgemäße Verfahren dient zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin.
Beispiele
Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.
Beispiel 1 Herstellung einer genomischen Cosmid-Genbank aus Corynebacterium glutamicum ATCC 13032
Chromosomale DNA aus Corynebacterium glutamicum ATCC 13032 wurde wie bei Tauch et al. (1995, Plasmid 33: 168-179) beschrieben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Molecular Biochemicals, Mannheim, Deutschland, Produktbeschreibung SAP, Code no. 1758250) dephosphoryliert. Die DNA des Cosmid-Vektors SuperCos1 (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84: 2160-2164), bezogen von der Firma Stratagene (La Jolla, USA, Produktbeschreibung SuperCos1 Cosmid Vektor Kit, Code no. 251301) wurde mit dem Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02) gespalten und ebenfalls mit shrimp alkalischer Phosphatase dephosphoryliert. Anschließend wurde die Cosmid-DNA mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten. Die auf diese Weise behandelte Cosmid-DNA wurde mit der behandelten ATCC13032-DNA gemischt und der Ansatz mit T4-DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no. 27-0870-04) behandelt. Das Ligationsgemisch wurde anschließend mit Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XL Packing Extract, Code no. 200217) in Phagen verpackt. Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Research 16: 1563-1575) wurden die Zellen in 10 mM MgSO4 aufgenommen und mit einem Aliquot der Phagensuspension vermischt. Infektion und Titerung der Cosmidbank wurden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1: 190) mit 100 µg/ml Ampicillin ausplattiert wurden. Nach Inkubation über Nacht bei 37°C wurden rekombinante Einzelklone selektioniert.
Beispiel 2 Isolierung und Sequenzierung des rpi-Gens
Die Cosmid-DNA einer Einzelkolonie wurde mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Molecular Biochemicals, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach gelelektrophoretischer Auftrennung erfolgte die Isolierung der Cosmidfragmente im Größenbereich von 1500 bis 2000 bp mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany). Die DNA des Sequenziervektors pZero-1 bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung Zero Background Cloning Kit, Product No. K2500-01) wurde mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den Sequenziervektor pZero-1 wurde wie von Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wurde. Dieses Ligationsgemisch wurde anschließend in den E. coli Stamm DH5aMCR (Grant, 1990, Proceedings of the National Academy of Sciences USA., 87: 4645-4649) elektroporiert (Tauch et al. 1994, FEMS Microbiol Letters, 123: 343-7) und auf LB-Agar (Lennox, 1955, Virology, 1: 190) mit 50 µg/ml Zeocin ausplattiert. Die Plasmidpräparation der rekombinanten Klone erfolgte mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Deutschland). Die Sequenzierung erfolgte nach der Dideoxy- Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academy of Sciences USA., 74: 5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18: 1067). Es wurde der "RR dahodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems (Product No. 403044, Weiterstadt, Deutschland) verwendet. Die gelelektrophoretische Auftrennung und Analyse der Sequenzierreaktion erfolgte in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29 : 1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).
Die erhaltenen Roh-Sequenzdaten wurden anschließend unter Anwendung des Staden-Programpakets (1986, Nucleic Acids Research, 14: 217-231) Version 97-0 prozessiert. Die Einzelsequenzen der pZerol-Derivate wurden zu einem zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wurde mit dem Programm XNIP (Staden, 1986, Nucleic Acids Research, 14: 217-231) angefertigt.
Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergab ein offenes Leseraster von 471 Basenpaaren, welches als rpi-Gen bezeichnet wurde. Das rpi-Gen kodiert für ein Protein von 157 Aminosäuren.
SEQUENZPROTOKOLL

Claims (16)

1. Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe
  • a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
  • b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
  • c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
  • d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Basen der Polynukleotidsequenz von a), b) oder c).
2. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
3. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
4. Polynukleotid gemäß Anspruch 2, enthaltend die Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.
5. Replizierbare DNA gemäß Anspruch 2, enthaltend
  • a) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
  • b) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Codes entspricht, oder
  • c) mindestens eine Sequenz, die mit der zur Sequenz (i) oder (ii) komplementären Sequenz hybridisiert, und gegebenenfalls
  • d) funktionsneutrale Sinnmutationen in (i).
6. Polynukleotidsequenz gemäß Anspruch 2, das für ein Polypeptid kodiert, das die Aminosäuresequenz in SEQ ID No. 2 darstellt, enthält.
7. Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Lysin, dadurch gekennzeichnet, daß man folgende Schritte durchführt:
  • a) Fermentation der die L-Lysin produzierenden coryneformen Bakterien, in denen man zumindest das rpi-Gen oder dafür kodierende Nukleotidsequenzen verstärkt, insbesondere überexprimiert.
  • b) Anreicherung von der L-Aminosäure im Medium oder in den Zellen der Bakterien und
  • c) Isolieren der L-Aminosäure.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt.
9. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung des L-Lysins verringern.
10. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, daß man einen mit einem Plasmidvektor transformierten Stamm einsetzt, und der Plasmidvektor die für das rpi-Gen kodierende Nukleotidsequenz trägt.
11. Verfahren gemäß einem oder mehreren der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß man coryneforme Bakterien verwendet, die L-Lysin herstellen.
12. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß gleichzeitig ein S-(2-Aminoethyl)-Cystein- Resistenz vermittelndes DNA-Fragment amplifiziert wird.
13. Verfahren gemäß dem Anspruch 8, dadurch gekennzeichnet, daß man für die Herstellung von Lysin Bakterien fermentiert, in denen gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
  • a) das für die Dihydrodipicolinat-Synthase kodierende dapA-Gen,
  • b) das für die Triosephosphat Isomerase kodierende tpi-Gen,
  • c) das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende gap-Gen
  • d) das für die 3-Phosphoglycerat Kinase kodierende pgk-Gen,
  • e) das für die Pyruvat-Carboxylase kodierende pyc- Gen
verstärkt, insbesondere überexprimiert oder amplifiziert werden.
14. Verwendung von Polynukleotidsequenzen oder Teilen davon gemäß Anspruch 1 als Primer zur Herstellung der DNA von Genen, die für Ribulose-Phosphat 3-Epimerase kodieren, durch die Kettenreaktion.
15. Verwendung von Polynukleotidsequenzen gemäß Anspruch 1 als Hybridisierungssonden zur Isolierung von cDNA oder Genen, die eine hohe Homologie mit der Sequenz des rpi-Gens aufweisen.
16. Coryneforme Bakterien, dadurch gekennzeichnet, daß in ihnen das rpi-Gen oder dafür kodierende Nukleotidsequenzen verstärkt, insbesondere überexprimiert werden.
DE10037612A 2000-08-02 2000-08-02 Neue für das rpi-Gen kodierende Nukleotidsequenzen Withdrawn DE10037612A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10037612A DE10037612A1 (de) 2000-08-02 2000-08-02 Neue für das rpi-Gen kodierende Nukleotidsequenzen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10037612A DE10037612A1 (de) 2000-08-02 2000-08-02 Neue für das rpi-Gen kodierende Nukleotidsequenzen

Publications (1)

Publication Number Publication Date
DE10037612A1 true DE10037612A1 (de) 2002-02-14

Family

ID=7651048

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10037612A Withdrawn DE10037612A1 (de) 2000-08-02 2000-08-02 Neue für das rpi-Gen kodierende Nukleotidsequenzen

Country Status (1)

Country Link
DE (1) DE10037612A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013081296A1 (ko) 2011-12-01 2013-06-06 씨제이제일제당 (주) L-아미노산 및 리보플라빈을 동시에 생산하는 미생물 및 이를 이용한 l-아미노산 및 리보플라빈을 생산하는 방법
CN114829596A (zh) * 2021-04-12 2022-07-29 Cj第一制糖株式会社 新糖磷酸异构酶/差向异构酶变体及使用其生产l-赖氨酸的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013081296A1 (ko) 2011-12-01 2013-06-06 씨제이제일제당 (주) L-아미노산 및 리보플라빈을 동시에 생산하는 미생물 및 이를 이용한 l-아미노산 및 리보플라빈을 생산하는 방법
CN114829596A (zh) * 2021-04-12 2022-07-29 Cj第一制糖株式会社 新糖磷酸异构酶/差向异构酶变体及使用其生产l-赖氨酸的方法
CN114829596B (zh) * 2021-04-12 2022-11-22 Cj第一制糖株式会社 新糖磷酸异构酶/差向异构酶变体及使用其生产l-赖氨酸的方法

Similar Documents

Publication Publication Date Title
EP1111062B1 (de) Für das zwa1-Gen codierende Nukleotidsequenzen
DE19947791A1 (de) Neue für das eno-Gen codierende Nukleotidsequenzen
EP1136559B1 (de) Für das dapC-Gen kodierende Nukleotidsequenzen und Verfahren zur Herstellung von L-Lysin
DE10044681A1 (de) Neue für das lldD2-Gen kodierende Nukleotidsequenzen
DE10162387A1 (de) Für das rpoB-Gen kodierende Nukleotidsequenzen
DE10045497A1 (de) Neue für das ppsA-Gen kodierende Nukleotidsequenzen
DE10045496A1 (de) Neue für das ptsi-Gen kodierende Nukleotidsequenzen
DE10063314A1 (de) Neue für das ilvE-Gen kodierende Nukleotidsequenzen
DE10001101A1 (de) Neue für das ptsH-Gen codierende Nukleotidsequenzen
DE10045487A1 (de) Neue für das ccsB-Gen kodierende Nukleotidsequenzen
DE10046623A1 (de) Neue für das dps-Gen kodierende Nukleotidsequenzen
DE10045579A1 (de) Neue für das atr61-Gen kodierende Nukleotidsequenzen
DE10043331A1 (de) Neue für das sigD-Gen kodierende Nukleotidsequenzen
DE10047403A1 (de) Neue für das ppgK-Gen kodierende Nukleotidsequenzen
DE19958159A1 (de) Neue für das glk-Gen codierende Nukleotidsequenzen
EP1106622A2 (de) Neue für das pfkA-Gen codierende Nukleotidsequenzen
DE10047866A1 (de) Neue für das dep67-Gen kodierende Nukleotidsequenzen
DE10047404A1 (de) Neue für das msik-Gen kodierende Nukleotidsequenzen
DE10047864A1 (de) Neue für das truB-Gen kodierende Nukleotidsequenzen
DE10057801A1 (de) Neue für das cysQ-Gen kodierende Nukleotidsequenzen
DE19956131A1 (de) Neue für das pfk-Gen codierende Nukleotidsequenzen
DE10055869A1 (de) Neue für das nadA-Gen kodierende Nukleotidsequenzen
DE10037612A1 (de) Neue für das rpi-Gen kodierende Nukleotidsequenzen
DE10037611A1 (de) Neue für das rpe-Gen kodierende Nuleotidsequenzen
DE10046625A1 (de) Neue für das ndkA-Gen kodierende Nukleotidsequenzen

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee