DE10023218A1 - Coating a heat exchanger comprises subjecting the heat exchanger to a plasma stream produced from a process gas to which silicon dioxide, aluminum oxide, silicon compounds and/or titanium compounds are added - Google Patents

Coating a heat exchanger comprises subjecting the heat exchanger to a plasma stream produced from a process gas to which silicon dioxide, aluminum oxide, silicon compounds and/or titanium compounds are added

Info

Publication number
DE10023218A1
DE10023218A1 DE10023218A DE10023218A DE10023218A1 DE 10023218 A1 DE10023218 A1 DE 10023218A1 DE 10023218 A DE10023218 A DE 10023218A DE 10023218 A DE10023218 A DE 10023218A DE 10023218 A1 DE10023218 A1 DE 10023218A1
Authority
DE
Germany
Prior art keywords
heat exchanger
coating
compounds
added
process gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10023218A
Other languages
German (de)
Inventor
Volkeer Gabler
Jan Plawer
Original Assignee
Joh Vaillant GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joh Vaillant GmbH and Co filed Critical Joh Vaillant GmbH and Co
Priority to DE10023218A priority Critical patent/DE10023218A1/en
Publication of DE10023218A1 publication Critical patent/DE10023218A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • F24H1/43Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

Coating a heat exchanger comprises subjecting the heat exchanger to a plasma stream produced from a process gas to which SiO2, Al2O3, silicon compounds and/or titanium compounds are added. Preferred Features: The coating is applied under atmospheric pressure or in a vacuum.

Description

Die Erfindung bezieht sich auf ein Verfahren gemäß dem Oberbegriff des Anspruches 1.The invention relates to a method according to the preamble of claim 1.

Wärmetauscher von gasbeheizten Wasserheizern sind im Betrieb einem ständigen Angriff einer korrosiven Umgebung ausgesetzt, wodurch sich eine entsprechend begrenzte Lebensdauer der Wärmetauscher ergibt, auch wenn die Wärmetauscher aus hochwertigen Werkstoffen hergestellt sind, wie z. B. Edelstahl.Heat exchangers of gas-heated water heaters are a constant attack during operation exposed to a corrosive environment, which results in a correspondingly limited Lifespan of the heat exchanger results, even if the heat exchanger is made of high quality Materials are made, such as. B. stainless steel.

Ziel der Erfindung ist es, ein Verfahren anzugeben, durch das sich eine deutlich höhere Lebensdauer der Wärmetauscher ergibt, auch wenn diese im Brennwertbetrieb eingesetzt sind.The aim of the invention is to provide a method by which a significantly higher Lifespan of the heat exchanger results, even if it is used in condensing operation are.

Erfindungsgemäß wird dies bei einem Verfahren der eingangs erwähnten Art durch die kennzeichnenden Merkmale des Anspruches 1 erreicht.According to the invention, this is achieved in a method of the type mentioned at the outset by characteristic features of claim 1 achieved.

Durch die vorgeschlagenen Maßnahmen wird eine Keramik-, bzw. Silikatbeschichtung auf einfache Weise auf den Wärmetauscher aufgebracht, die diesen gegen einen Korrosionsangriff sehr weitgehend schützt. Dabei schützt die Beschichtung gegen den Angriff von Kondensat, wie es bei einem Brennwertbetrieb anfällt, das verschiedene Säuren, wie Schwefelsäure, Salpetersäure u. a., wie auch Chlor-Ionen enthält. The proposed measures result in a ceramic or silicate coating simply applied to the heat exchanger, this against one Corrosion attack very largely protects. The coating protects against the Attack of condensate, as occurs in a condensing boiler that uses different acids, such as sulfuric acid, nitric acid and the like. a., also contains chlorine ions.  

Durch die Beschichtung kann die Wandstärke des Wärmetauschers bei gleicher oder höherer Dauerhaltbarkeit des Wärmetauschers auch geringer gehalten werden, wodurch sich ein höherer Wirkungsgrad, sowie ein geringerer Materialverbrauch bei der Herstellung und ein niedrigeres Gewicht des Wärmetauschers ergeben.Due to the coating, the wall thickness of the heat exchanger can be the same or higher durability of the heat exchanger can also be kept lower, whereby a higher efficiency, as well as a lower material consumption in the production and result in a lower weight of the heat exchanger.

Weiter ergibt sich auch der Vorteil, daß aufgrund des Umstandes, daß das Grundmaterial des Wärmetauschers mit chemisch aggressiven Medien aus den Verbrennungsgasen aufgrund der Beschichtung nicht in Kontakt kommt, ein geringwertigerer Werkstoff, oder ein Werkstoff mit besserer Wärmeleitfähigkeit verwendet werden kann, wie z. B. Messing.There is also the further advantage that, due to the fact that the base material of the heat exchanger with chemically aggressive media from the combustion gases due to the coating does not come into contact, a lower quality material, or a Material with better thermal conductivity can be used, such as. B. brass.

Durch die höhere flächenspezifische Wärmeübertragungsleistung aufgrund der geringeren Wandstärke und besseren Wärmeleitfähigkeit des Grundmaterials ist es bei unveränderter Baugröße des Wärmetauschers möglich, höhere Wärmeleistungen zu übertragen.Due to the higher area-specific heat transfer performance due to the lower Wall thickness and better thermal conductivity of the base material is unchanged Size of the heat exchanger possible to transfer higher heat outputs.

Durch die Beschichtung vermindern sich auch die Ablagerungen an dem Wärmetauscher, die in regelmäßigen Abständen entfernt werden müssen.The coating also reduces the deposits on the heat exchanger, which must be removed at regular intervals.

Durch die Merkmale des Anspruches 2 ergibt sich eine einfachere Beschichtung, welche sich vorteilhaft in der Großserienfertigung auswirkt.The features of claim 2 result in a simpler coating, which is beneficial in large-scale production.

Die Erfindung wird nun anhand der Zeichnung näher erläutert. Dabei zeigen:The invention will now be explained in more detail with reference to the drawing. Show:

Fig. 1 schematisch die Beschichtung einer Rohrwendel im Schnitt und Fig. 1 shows schematically the coating of a coiled tubing in section and

Fig. 2 schematisch die Beschichtung eines montierten Wärmetauschers. Fig. 2 shows schematically the coating of an assembled heat exchanger.

Bei der Beschichtung einer Außenwandung einer Rohrwendel 1 wird in einem Rohr 2 ein Prozeßgas 3, dem ein Beschichtungswerkstoff 4, wie z. B. SiO2 oder Al2O3 beigegeben ist, mittels einer Plasmawelle 10 aktiviert. Das Rohr 2 ist so im hohlen Zentrum der Rohrwendel 1 angeordnet, daß der entstehende Plasmastrom 11 und der Beschichtungswerkstoff 4 im wesentlichen radial nach außen und zwischen den Abständen 14 der einzelnen Rohrwindungen 5 hindurch strömt.In the coating of an outer wall of a coiled tubing 1 in a pipe 2, a process gas 3, to which a coating material 4, such. B. SiO 2 or Al 2 O 3 is added, activated by means of a plasma wave 10 . The tube 2 is arranged in the hollow center of the tube coil 1 in such a way that the resulting plasma stream 11 and the coating material 4 flow essentially radially outwards and between the distances 14 of the individual tube turns 5 .

Dabei lagert sich der Beschichtungsstoff 4 an der Oberfläche 6 der Rohrwendel 1 ab und bildet eine Schicht, die die Rohrwendel 1 von einem Korrosionsangriff schützt.The coating material 4 is deposited on the surface 6 of the coiled tubing 1 and forms a layer which protects the coiled tubing 1 from a corrosion attack.

Die Beschichtung kann bei Atmosphärendruck oder besser unter einem verminderten Druck durchgeführt werden.The coating can be at atmospheric pressure or better under a reduced pressure be performed.

Bei der Ausführungsform des Verfahrens nach der Fig. 2 wird ein als Rohrwendel 1 ausgebildeter Wärmetauscher 12, der in einer Brennkammer 7 eines Wasserheizers angeordnet ist, beschichtet. Dabei wird die offene Unterseite 15 der Brennkammer 7 mit einer Kammer 8 abgeschlossen. In die Kammer 8 werden das Prozeßgas 3 und der Beschichtungsstoff 4 zugegeben und mittels der Plasmaquelle 10 aktiviert.In the embodiment of the method according to FIG. 2, a heat exchanger 12 designed as a tube coil 1 and which is arranged in a combustion chamber 7 of a water heater is coated. The open underside 15 of the combustion chamber 7 is closed with a chamber 8 . The process gas 3 and the coating material 4 are added to the chamber 8 and activated by means of the plasma source 10 .

Der entstehende Plasmastrom 11 nimmt den gleichen Weg wie die beim üblichen Betrieb der Brennkammer durch einen Brenner entstehenden Abgase und durchströmt die Zwischenräume zwischen den einzelnen Windungen 5 der Rohrwendel 1 in radialer Richtung nach außen. Dieser Weg ist durch eine Unterteilung 13 bedingt. Der beladene Plasmastrom 11 umströmt in weiterer Folge die Unterteilung 13 bzw. deren Peripherie 16, durchströmt die Zwischenräume zwischen den restlichen Windungen 5 und strömt über einen Abgasabzug 9 ab. Der Abgasabzug 9 ist so eingerichtet, daß sich in der Kammer 7 Atmosphärendruck oder Grobvakuum einstellt. Das Beschichtungsmaterial 4 lagert sich außen an den Windungen 5 des Wärmetauschers 12 an und bildet die Beschichtung 6. The resulting plasma stream 11 takes the same path as the exhaust gases generated by a burner during normal operation of the combustion chamber and flows through the gaps between the individual turns 5 of the tube coil 1 in the radial direction to the outside. This way is conditioned by a subdivision 13 . The loaded plasma stream 11 subsequently flows around the subdivision 13 or its periphery 16 , flows through the spaces between the remaining turns 5 and flows out via an exhaust gas discharge 9 . The exhaust vent 9 is set up so that atmospheric pressure or rough vacuum is established in the chamber 7 . The coating material 4 is deposited on the outside of the windings 5 of the heat exchanger 12 and forms the coating 6 .

Auf diese Weise ist es auch möglich, bereits montierte Wärmetauscher 12 mit einer Beschichtung 6 zu versehen und damit deren Korrosionsbeständigkeit zu erhöhen.In this way, it is also possible to provide heat exchangers 12 that have already been installed with a coating 6 and thus to increase their corrosion resistance.

Claims (2)

1. Verfahren zur Beschichtung eines Wärmetauschers, insbesondere eines Rohrwendel-Wärmetauschers, dadurch gekennzeichnet, daß der Wärmetauscher (12) einem diesen vorzugsweise in Richtung der Abgase durchströmenden mittels einer Plasmaquelle aus einem Prozeßgas erzeugten Plasmastrom ausgesetzt wird, dem vorzugsweise SiO2, Al2O3, Si-Verbindungen, Ti-Verbindungen oder deren Mischungen im flüssigen oder gasförmigen Zustand zugesetzt wird.1. A method for coating a heat exchanger, in particular a tube coil heat exchanger, characterized in that the heat exchanger ( 12 ) is exposed to a plasma stream generated by a plasma source, preferably flowing in the direction of the exhaust gases, from a process gas, which is preferably SiO 2 , Al 2 O. 3 , Si compounds, Ti compounds or mixtures thereof is added in the liquid or gaseous state. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Beschichtung bei Atmosphärendruck oder unter Grobvakuum durchgeführt wird.2. The method according to claim 1, characterized in that the coating is carried out at atmospheric pressure or under a rough vacuum.
DE10023218A 2000-05-06 2000-05-06 Coating a heat exchanger comprises subjecting the heat exchanger to a plasma stream produced from a process gas to which silicon dioxide, aluminum oxide, silicon compounds and/or titanium compounds are added Withdrawn DE10023218A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10023218A DE10023218A1 (en) 2000-05-06 2000-05-06 Coating a heat exchanger comprises subjecting the heat exchanger to a plasma stream produced from a process gas to which silicon dioxide, aluminum oxide, silicon compounds and/or titanium compounds are added

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10023218A DE10023218A1 (en) 2000-05-06 2000-05-06 Coating a heat exchanger comprises subjecting the heat exchanger to a plasma stream produced from a process gas to which silicon dioxide, aluminum oxide, silicon compounds and/or titanium compounds are added

Publications (1)

Publication Number Publication Date
DE10023218A1 true DE10023218A1 (en) 2001-11-08

Family

ID=7641743

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10023218A Withdrawn DE10023218A1 (en) 2000-05-06 2000-05-06 Coating a heat exchanger comprises subjecting the heat exchanger to a plasma stream produced from a process gas to which silicon dioxide, aluminum oxide, silicon compounds and/or titanium compounds are added

Country Status (1)

Country Link
DE (1) DE10023218A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10141525B4 (en) * 2001-08-24 2009-12-31 ZAE Bayern Bayerisches Zentrum für angewandte Energieforschung eV Mass and heat exchange reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10141525B4 (en) * 2001-08-24 2009-12-31 ZAE Bayern Bayerisches Zentrum für angewandte Energieforschung eV Mass and heat exchange reactor

Similar Documents

Publication Publication Date Title
EP1344013B1 (en) Condensation heat-transfer device
EP0608793B1 (en) Electric flowmeter
DE3924411A1 (en) RIB TUBE HEAT EXCHANGER
EP1052308B1 (en) Process for coating of a heat exchanger
DE10023218A1 (en) Coating a heat exchanger comprises subjecting the heat exchanger to a plasma stream produced from a process gas to which silicon dioxide, aluminum oxide, silicon compounds and/or titanium compounds are added
DE10253457B3 (en) A heat transfer partition with a structured layer with peaks and valleys especially useful for electric heaters for water heating containers or heat exchangers
AT411625B (en) Heat exchanger, especially a coiled tube heat exchanger of a water heater, is coated using a plasma stream containing added silicon dioxide, aluminum oxide, silicon compound and-or titanium compound
DE2919188C2 (en) Method for treating a surface of a metallic wall for the transfer of heat and its application
WO2018134302A1 (en) Use of sio2 coatings in water-carrying cooling systems
WO1998018977A1 (en) Coating for components and process for producing the same
TW448287B (en) Heating element for a regenerative heat exchanger, and process for producing a heating element
EP1143206A2 (en) Heat exchanger for boiler or instantaneous heater
AT405321B (en) CORROSION-RESISTANT COMPOSITE PIPE, METHOD FOR THE PRODUCTION AND USE THEREOF
EP1475597B1 (en) Heating element for regenerative heat exchanger and process for manufacturing same
DE2943590C2 (en)
DE2720078A1 (en) Improving heat transfer in graphite heat exchange elements - by coating the graphite with viscous resin and embedding electro-graphite in the resin
DE3331340A1 (en) Central heating boiler
DE10144865B4 (en) Method for protecting an electric radiator and radiator
DE3151418A1 (en) Low-temperature heating process, utilising the upper calorific value of fuels
DE10359573A1 (en) Heat transfer unit for a heat exchanger
DE10257251A1 (en) Continuous-flow water heater, useful e.g. in coffee machines, has internal coating of fluorine-free nanocomposite to prevent deposition of scale
JPH02309153A (en) Hot water supply device
JPH03133632A (en) Heat transfer pipe for u-shape type heat exchanger and manufacture therefor
EP0711954A2 (en) Air/waste gas
DE2035250B2 (en) Heat-absorbing matrix for regenerative heat exchangers

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: VAILLANT GMBH, 42859 REMSCHEID, DE

8181 Inventor (new situation)

Free format text: GABLER, VOLKER, 50733 KOELN, DE PLAWER, JAN, 40237 DUESSELDORF, DE

8141 Disposal/no request for examination