CO6640056A1 - Compact X-ray sonographic source - Google Patents

Compact X-ray sonographic source

Info

Publication number
CO6640056A1
CO6640056A1 CO11112696A CO11112696A CO6640056A1 CO 6640056 A1 CO6640056 A1 CO 6640056A1 CO 11112696 A CO11112696 A CO 11112696A CO 11112696 A CO11112696 A CO 11112696A CO 6640056 A1 CO6640056 A1 CO 6640056A1
Authority
CO
Colombia
Prior art keywords
cavity
self
electrons
energy
mode
Prior art date
Application number
CO11112696A
Other languages
Spanish (es)
Inventor
Dugar-Zhabon Valeriy Dondokovich
Ospino Eduardo Alberto Orozco
Original Assignee
Univ Ind De Santander
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Ind De Santander filed Critical Univ Ind De Santander
Priority to CO11112696A priority Critical patent/CO6640056A1/en
Priority to EP12829086.3A priority patent/EP2753155B1/en
Priority to US14/342,346 priority patent/US9666403B2/en
Priority to JP2014527802A priority patent/JP6134717B2/en
Priority to PCT/IB2012/054504 priority patent/WO2013030804A2/en
Publication of CO6640056A1 publication Critical patent/CO6640056A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/12Cooling non-rotary anodes
    • H01J35/13Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/147Spot size control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/005Cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1204Cooling of the anode

Abstract

La presente invención divulga un dispositivo compacto capaz de producir rayos X duros de energía mayores que 200 keV, de no menor intensidad que las fuentes de rayos X tradicionales. En la fuente propuesta, los electrones inyectados por un extremo de tina cavidad resonante metálica cilíndrica sometida al vacío se aceleran por microondas de un modo TE(p=1,2,3...) de polarización lineal o circular. Sin embargo, la sección transversal de la cavidad también puede ser elíptica, excitada con el modo TE(P=1,2,3,...), e incluso rectangular excitada con cualquier modo TE; donde p=1,2,3....Para mantener el régimen de auto resonancia a lo largo de las trayectorias helicoidales de electrones dentro de la cavidad, se genera un campo magnético estático no homogéneo cuya intensidad se aumenta principalmente en la dirección de propagación de los electrones con un perfil que depende de la energía de inyección del haz y la amplitud del campo de microondas. El haz de electrones se acelera de manera ciclotrónica auto resonante desde su inyección en la cavidad hasta que impacte sobre un blanco. La trayectoria del haz es helicoidal y su aceleración se produce en condiciones de auto resonancia. Por lo anterior, la efectividad de la utilización de la potencia de microondas es la máxima posible. Para una frecuencia dada, cuanto mayor es el subíndice p, mayor energía puede ser transferida a los electrones.The present invention discloses a compact device capable of producing hard energy X-rays greater than 200 keV, of no less intensity than traditional X-ray sources. In the proposed source, the electrons injected by a tubular end resonant cylindrical metal cavity under vacuum are accelerated by microwave in a TE (p = 1,2,3 ...) linear or circular polarization mode. However, the cross section of the cavity can also be elliptical, excited with the TE mode (P = 1,2,3, ...), and even rectangular excited with any TE mode; where p = 1,2,3 .... To maintain the self-resonance regime along the helical trajectories of electrons within the cavity, a non-homogeneous static magnetic field is generated whose intensity is mainly increased in the direction of Electron propagation with a profile that depends on the beam injection energy and the amplitude of the microwave field. The electron beam accelerates in a self-resonant cyclotronic manner from its injection into the cavity until it hits a target. The trajectory of the beam is helical and its acceleration occurs in self-resonance conditions. Therefore, the effectiveness of the use of microwave power is the maximum possible. For a given frequency, the higher the subscript p, the more energy can be transferred to the electrons.

CO11112696A 2011-09-01 2011-09-01 Compact X-ray sonographic source CO6640056A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CO11112696A CO6640056A1 (en) 2011-09-01 2011-09-01 Compact X-ray sonographic source
EP12829086.3A EP2753155B1 (en) 2011-09-01 2012-08-31 Compact self-resonant x-ray source
US14/342,346 US9666403B2 (en) 2011-09-01 2012-08-31 Compact self-resonant X-ray source
JP2014527802A JP6134717B2 (en) 2011-09-01 2012-08-31 Self-resonant compact X-ray source
PCT/IB2012/054504 WO2013030804A2 (en) 2011-09-01 2012-08-31 Compact self-resonant x-ray source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CO11112696A CO6640056A1 (en) 2011-09-01 2011-09-01 Compact X-ray sonographic source

Publications (1)

Publication Number Publication Date
CO6640056A1 true CO6640056A1 (en) 2013-03-22

Family

ID=47756990

Family Applications (1)

Application Number Title Priority Date Filing Date
CO11112696A CO6640056A1 (en) 2011-09-01 2011-09-01 Compact X-ray sonographic source

Country Status (5)

Country Link
US (1) US9666403B2 (en)
EP (1) EP2753155B1 (en)
JP (1) JP6134717B2 (en)
CO (1) CO6640056A1 (en)
WO (1) WO2013030804A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10638594B2 (en) * 2016-10-20 2020-04-28 Paul Scherrer Institut Multi-undulator spiral compact light source
RU2760284C1 (en) * 2020-11-20 2021-11-23 Александр Викторович Коннов X-ray source with cyclotron autoresonance
CN114845460B (en) * 2022-03-04 2024-04-12 中国科学院上海光学精密机械研究所 Enhancement system of hard X-ray source based on density shock wave structure

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728217A (en) * 1972-06-05 1973-04-17 Atomic Energy Commission Bumpy torus plasma confinement device
US4165472A (en) * 1978-05-12 1979-08-21 Rockwell International Corporation Rotating anode x-ray source and cooling technique therefor
JPH02204952A (en) * 1989-02-03 1990-08-14 Denki Kagaku Kogyo Kk X-ray generating hot cathode
DE69213321T2 (en) * 1991-05-20 1997-01-23 Sumitomo Heavy Industries Linear accelerator operated in a TE11N mode
US5323442A (en) 1992-02-28 1994-06-21 Ruxam, Inc. Microwave X-ray source and methods of use
US6327338B1 (en) * 1992-08-25 2001-12-04 Ruxan Inc. Replaceable carbridge for an ECR x-ray source
JP3191554B2 (en) * 1994-03-18 2001-07-23 株式会社日立製作所 X-ray imaging device
AU4896297A (en) * 1996-10-18 1998-05-15 Microwave Technologies Inc. Rotating-wave electron beam accelerator
US6617810B2 (en) 2000-03-01 2003-09-09 L-3 Communications Corporation Multi-stage cavity cyclotron resonance accelerators
AU2003270910A1 (en) * 2002-09-27 2004-04-19 Scantech Holdings, Llc System for alternately pulsing energy of accelerated electrons bombarding a conversion target
US8094784B2 (en) * 2003-04-25 2012-01-10 Rapiscan Systems, Inc. X-ray sources
US8472584B2 (en) * 2003-10-07 2013-06-25 Ray Fresh Foods, Inc. Apparatus and method for killing pathogenic and non-pathogenic organisms using low-energy X-rays
US7206379B2 (en) 2003-11-25 2007-04-17 General Electric Company RF accelerator for imaging applications
US7558374B2 (en) * 2004-10-29 2009-07-07 General Electric Co. System and method for generating X-rays
JP2006283077A (en) * 2005-03-31 2006-10-19 Ngk Insulators Ltd Compound object
US8203289B2 (en) * 2009-07-08 2012-06-19 Accuray, Inc. Interleaving multi-energy x-ray energy operation of a standing wave linear accelerator using electronic switches

Also Published As

Publication number Publication date
WO2013030804A2 (en) 2013-03-07
US9666403B2 (en) 2017-05-30
EP2753155A4 (en) 2016-01-20
JP2014529866A (en) 2014-11-13
EP2753155A2 (en) 2014-07-09
US20150043719A1 (en) 2015-02-12
JP6134717B2 (en) 2017-05-24
WO2013030804A3 (en) 2013-07-11
EP2753155B1 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
AR086472A1 (en) CONVERGENT-ELECTRONIC AND PHOTON-BEAM GENERATOR EQUIPMENT
CO6640056A1 (en) Compact X-ray sonographic source
Hama et al. Conceptual design of an isochronous ring to generate coherent terahertz synchrotron radiation
Tot'meninov et al. Repetitively pulsed relativistic BWO with enhanced mechanical frequency tunability
Afanas’ ev et al. A high-power periodic nanosecond pulse source of coherent 8-cm electromagnetic radiation
Variola Advanced positron sources
Dudnikov et al. Potential for improving of the compact surface plasma sources
Loza et al. Increase in the average radiation power of a plasma relativistic microwave generator
Xiao et al. Frequency control of a klystron-type relativistic Cerenkov generator
Pasour et al. Plasma wakefield klystron
Dudnikov et al. Low energy beam transport system developments
RU2599388C1 (en) Relativistic magnetron with cathode end shields
KR20140066347A (en) Linear accelerator combined with pulse electron gun having linear accelerator frequency
Shi et al. A high efficient X-band klystron-like RBWO
Ginzburg et al. Generation of high-power ultrashort electromagnetic pulses on the basis of effects of superradiance of electron bunches
Rinolfi et al. The CLIC electron and positron polarized sources
Faus-Golfe Monochromatization for Higgs production
Li et al. A double-frequency rf gun for field emission
Fang et al. Analysis of spurious oscillations in klystron due to backstreaming electrons from collector
Choi Proton Linear Accelerator Development and Its Utilization Program in PEFP
Shulgin C-Band High Power Amplifier Klystron developed for Linear Electron Accelerators
Yamazaki The Construction of the Low-Energy Front 60-MeV Linac for the JAERI/KEK Joint Project
Veselov et al. GAS DISCHARGE BREAKDOWN THRESHOLD SUSTAINED BY POWERFUL RADIATION OF 1THZ GYROTRON
Nezhevenko et al. High‐Power Millimeter‐and Centimeter‐Wave Magnicons for Particle Accelerator Application
Dash et al. Beam dynamics study of a 100 MeV RF electron linac