CN218211510U - 低温贮槽液位高精度检测装置 - Google Patents

低温贮槽液位高精度检测装置 Download PDF

Info

Publication number
CN218211510U
CN218211510U CN202222169302.4U CN202222169302U CN218211510U CN 218211510 U CN218211510 U CN 218211510U CN 202222169302 U CN202222169302 U CN 202222169302U CN 218211510 U CN218211510 U CN 218211510U
Authority
CN
China
Prior art keywords
liquid
liquid level
valve
point
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202222169302.4U
Other languages
English (en)
Inventor
赵文毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Csun Industrial Co
Original Assignee
Chengdu Csun Industrial Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Csun Industrial Co filed Critical Chengdu Csun Industrial Co
Priority to CN202222169302.4U priority Critical patent/CN218211510U/zh
Application granted granted Critical
Publication of CN218211510U publication Critical patent/CN218211510U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

本实用新型公开了低温贮槽液位高精度检测装置,包括液位计、低温贮槽、气相阀、液相阀、密度上阀、密度下阀。本实用新型中液位计L的第一差压传感器S1检测到的低温贮槽两个固定液位点a和b的差压可以计算出实际低温液体密度,来修正低温液体密度随工作压力变化而变化带来的液位计算误差;液位计L的第二差压传感器S2检测到的低温贮槽一个固定液位点a到液封点c的差压可以计算出内胆底部d面到液封点c之间的距离来保证液位H是液面到内胆底部d面的高度。本实用新型解决了目前液位计测量不准的缺点,提高了低温液体液位的测量精度,满足了客户对低温贮槽液体的液位越来越高的计量要求。

Description

低温贮槽液位高精度检测装置
技术领域
本实用新型涉及低温贮槽内液体液位高精度检测装置。
背景技术
低温贮槽是一种盛装液氮、液氧、液氩、液氢、液氦、液态二氧化碳和液化天然气等低温液体的压力容器,低温液体的密度会随低温贮槽压力的变化而变化,并且低温贮槽压力不是饱和蒸气压,无法通过检测低温贮槽压力来修正低温液体的密度,像LNG这类低温液体还有可能因为成分不同导致密度不同;传统差压式液位计检测液位的原理是通过检测的差压和设定的密度计算出来的,低温贮槽的压力不是恒定的,因此密度是个变量,计算出来的液位就会不准;同时低温贮槽内胆的液相端引压管有个液封点,由于制造工艺等原因,这个液封点的位置是很难保证是可知的固定值,可能比低温贮槽内胆的底部低,也可能比低温贮槽内胆的底部高,它到低温贮槽内胆的底部是有液体的,这段液位就会产生差压带来误差。
发明内容
本实用新型的目的是解决以上问题,提供一种低温贮槽液位高精度检测装置。
本实用新型的技术方案如下:
低温贮槽液位高精度检测装置,其特征是:包括液位计L、低温贮槽(2)、气相阀V1、液相阀V4、密度上阀V2、密度下阀V3;
液位计L内部有第一差压传感器S1、第二差压传感器S2、第三差压传感器S3;
液位计L的第三差压传感器S3分别通过引压管与气相阀V1、液相阀V4连接,气相阀V1通过引压管连接到低温贮槽(2)的气相端(10),液相阀V4通过引压管连接到低温贮槽(2)的液相端(11),第三差压传感器S3的目的是测量液面到液封点c的差压来计算液位高度h3;
液位计L的第一差压传感器S1分别通过引压管与密度上阀V2、密度下阀V3连接,密度上阀V2通过引压管连接到低温贮槽(2)的密度上阀引压端(12),密度下阀V3通过引压管连接到低温贮槽(2)的密度下阀引压端(13),第一差压传感器S1的目的是测量液体a点与b点的差压来计算液体的实际密度;
液位计L的第二差压传感器S2分别通过引压管与密度上阀V2、液相阀V4连接,第二差压传感器S2的目的是测量液体a点与c点的差压来计算内胆底部d到液封点c的液位高度h5;
密度上阀引压端(12)连接的a点和密度下阀引压端(13)连接的b点的位置在允许的最大液位和内胆底部d之间,对于不同介质,低温贮槽液体的最大充满率为内胆几何容积的90%~95%;
其中a点是密度上阀引压端(12)对应到低温贮槽(2)的内胆引压点,b点是密度下阀引压端(13)对应到低温贮槽(2)的内胆引压点,c点是低温贮槽(2)液相液封点,c点到内胆之间的引压管内是液体,c点到液相端(11)之间的引压管内是气体,d点是低温贮槽(2)内胆底部。
所述的低温贮槽液位高精度检测装置,其特征在于:液位计包含三个差压变送器和数据采集装置。
所述的低温贮槽液位高精度检测装置,其特征在于:低温贮槽(2)的形状是带封头或不带封头的圆柱形、球形、方形。
所述的低温贮槽液位高精度检测装置,其特征在于:低温贮槽(2)的形式是卧式、立式。
所述的低温贮槽液位高精度检测装置的工作原理:
第一步:液位计L的第一差压传感器S1检测到低温贮槽(2)内液体的a、b两点的差压ΔP1,通过(1)式计算出低温液体的密度为ρ,h1是贮槽制造商出厂时提供的一个固定值,
ρ=ΔP1/h1………………(1)
式中
ρ表示低温液体的密度
ΔP1表示液体的a、b两点的差压值
h1表示a、b两点之间的高度;
第二步:液位计L的第二差压传感器S2检测到低温贮槽(2)内液体的a、c两点的差压ΔP2,通过(2)式计算出h2,再通过(3)式计算出低温贮槽(2)的内胆底部d到液封点c的高度h5,h4是贮槽制造商出厂时提供的一个固定值,
h2=ΔP2/ρ………………(2)
h5=h2-h4………………(3)
式中
ρ表示低温液体的密度
ΔP2表示液体的a、c两点的差压值
h2表示a、c两点之间的高度
h4表示a点与低温贮槽内胆底部d之间的高度
h5表示低温贮槽内胆底部d与c点之间的高度;
第三步:液位计L的第三差压传感器S3检测到低温贮槽(2)内液体的液面到液封点c的差压ΔP3,通过(4)式计算出h3,通过(5)式计算出低温贮槽(2)内胆盛装液体的实际液位H,
h3=ΔP3/ρ………………(4)
H=h3-h5…………………(5)
式中,
ρ表示低温液体的密度
ΔP3表示液体的液面与c点的差压值
h3表示液体的液面与c点之间的高度
h5表示低温贮槽内胆底部d与c点之间的高度
H表示低温贮槽内胆盛装液体的实际液位高度。
优点和效果:
1、传统差压式液位计显示的液位是检测的差压和设置的固定密度计算出来的,本实用新型中液位计L的第一差压传感器S1检测到的低温贮槽两个固定液位点a和b的差压可以计算出实际低温液体密度,来修正低温液体密度随工作压力变化而变化带来的液位计算误差;
2、传统差压式液位计显示的液位是包含内胆底部d到液封点c的引压管内液体产生的差压带来的液位,本实用新型中液位计L的第二差压传感器S2检测到的低温贮槽一个固定液位点a到液封点c的差压可以计算出内胆底部d面到液封点c之间的距离来保证液位H是液面到内胆底部d面的高度,提高了低温液体液位H的测量精度;
3、本实用新型满足了客户对低温贮槽液体的液位越来越高的计量要求,特别是对卧式贮槽和球罐通过液位高度计算准确的液体体积和液体重量有重大意义。
在所述的低温贮槽液位高精度检测装置中,液位计L的第一差压传感器S1检测到的低温贮槽(2)两个固定液位点a和b的差压可以计算出实际低温液体密度,来修正低温液体密度随工作压力变化而变化带来的液位计算误差;液位计L的第二差压传感器S2检测到的低温贮槽(2)一个固定液位点a到液封点c的差压可以计算出内胆底部d面到液封点c之间的液位h5产生的误差,来保证液位H是液面到内胆底部d面的高度。
液位计L内部有对第一差压传感器S1、第二差压传感器S2、第三差压传感器S3的数据采集处理单元和显示单元。
附图说明
图1是低温贮槽液位高精度检测装置的原理图。
具体实施方式
下面结合附图对本实用新型作进一步的详细描述。
图1示出了本实用新型提供的低温贮槽液位高精度检测装置原理图,包括液位计L、低温贮槽(2)、气相阀V1、液相阀V4、密度上阀V2、密度下阀V3;
液位计L内部有第一差压传感器S1、第二差压传感器S2、第三差压传感器S3;
液位计L的第三差压传感器S3分别通过引压管与气相阀V1、液相阀V4连接,气相阀V1通过引压管连接到低温贮槽(2)的气相端(10),液相阀V4通过引压管连接到低温贮槽(2)的液相端(11),第三差压传感器S3的目的是测量液面到液封点c的差压来计算液位高度h3;
液位计L的第一差压传感器S1分别通过引压管与密度上阀V2、密度下阀V3连接,密度上阀V2通过引压管连接到低温贮槽(2)的密度上阀引压端(12),密度下阀V3通过引压管连接到低温贮槽(2)的密度下阀引压端(13),第一差压传感器S1的目的是测量液体a点与b点的差压来计算液体的实际密度;
液位计L的第二差压传感器S2分别通过引压管与密度上阀V2、液相阀V4连接,第二差压传感器S2的目的是测量液体a点与c点的差压来计算内胆底部d到液封点c的液位高度h5;
密度上阀引压端(12)连接的a点和密度下阀引压端(13)连接的b点的位置在允许的最大液位和内胆底部d之间,对于不同介质,低温贮槽液体的最大充满率为内胆几何容积的90%~95%;
其中a点是密度上阀引压端(12)对应到低温贮槽(2)的内胆引压点,b点是密度下阀引压端(13)对应到低温贮槽(2)的内胆引压点,c点是低温贮槽(2)液相液封点,c点到内胆之间的引压管内是液体,c点到液相端(11)之间的引压管内是气体,d点是低温贮槽(2)内胆底部。
所述的低温贮槽液位高精度检测装置,其特征在于:液位计包含三个差压变送器和数据采集装置。
所述的低温贮槽液位高精度检测装置,其特征在于:低温贮槽(2)的形状是带封头或不带封头的圆柱形、球形、方形。
所述的低温贮槽液位高精度检测装置,其特征在于:低温贮槽(2)的形式是卧式、立式。
所述的低温贮槽液位高精度检测装置的工作原理:
第一步:液位计L的第一差压传感器S1检测到低温贮槽(2)内液体的a、b两点的差压ΔP1,通过(1)式计算出低温液体的密度为ρ,h1是贮槽制造商出厂时提供的一个固定值,
ρ=ΔP1/h1………………(1)
式中
ρ表示低温液体的密度
ΔP1表示液体的a、b两点的差压值
h1表示a、b两点之间的高度;
第二步:液位计L的第二差压传感器S2检测到低温贮槽(2)内液体的a、c两点的差压ΔP2,通过(2)式计算出h2,再通过(3)式计算出低温贮槽(2)的内胆底部d到液封点c的高度h5,h4是贮槽制造商出厂时提供的一个固定值,
h2=ΔP2/ρ………………(2)
h5=h2-h4………………(3)
式中
ρ表示低温液体的密度
ΔP2表示液体的a、c两点的差压值
h2表示a、c两点之间的高度
h4表示a点与低温贮槽内胆底部d之间的高度
h5表示低温贮槽内胆底部d与c点之间的高度;
第三步:液位计L的第三差压传感器S3检测到低温贮槽(2)内液体的液面到液封点c的差压ΔP3,通过(4)式计算出h3,通过(5)式计算出低温贮槽(2)内胆盛装液体的实际液位H,
h3=ΔP3/ρ………………(4)
H=h3-h5…………………(5)
式中,
ρ表示低温液体的密度
ΔP3表示液体的液面与c点的差压值
h3表示液体的液面与c点之间的高度
h5表示低温贮槽内胆底部d与c点之间的高度
H表示低温贮槽内胆盛装液体的实际液位高度。
随着科学技术的进步和应用的场合不同,本实用新型可以有各种变化,比如液位计检测计算的低温液体密度信号可传输到加液流量计中提高流量计精度等。凡在本实用新型的构思和原则内所做的修改,都包含在本实用新型的保护范围内。

Claims (4)

1.低温贮槽液位高精度检测装置,其特征是:包括液位计L、低温贮槽(2)、气相阀V1、液相阀V4、密度上阀V2、密度下阀V3;
液位计L内部有第一差压传感器S1、第二差压传感器S2、第三差压传感器S3;
液位计L的第三差压传感器S3分别通过引压管与气相阀V1、液相阀V4连接,气相阀V1通过引压管连接到低温贮槽(2)的气相端(10),液相阀V4通过引压管连接到低温贮槽(2)的液相端(11),第三差压传感器S3的目的是测量液面到液封点c的差压来计算液位高度h3;
液位计L的第一差压传感器S1分别通过引压管与密度上阀V2、密度下阀V3连接,密度上阀V2通过引压管连接到低温贮槽(2)的密度上阀引压端(12),密度下阀V3通过引压管连接到低温贮槽(2)的密度下阀引压端(13),第一差压传感器S1的目的是测量液体a点与b点的差压来计算液体的实际密度;
液位计L的第二差压传感器S2分别通过引压管与密度上阀V2、液相阀V4连接,第二差压传感器S2的目的是测量液体a点与c点的差压来计算内胆底部d到液封点c的液位高度h5;
密度上阀引压端(12)连接的a点和密度下阀引压端(13)连接的b点的位置在允许的最大液位和内胆底部d之间,对于不同介质,低温贮槽液体的最大充满率为内胆几何容积的90%~95%;
其中a点是密度上阀引压端(12)对应到低温贮槽(2)的内胆引压点,b点是密度下阀引压端(13)对应到低温贮槽(2)的内胆引压点,c点是低温贮槽(2)液相液封点,c点到内胆之间的引压管内是液体,c点到液相端(11)之间的引压管内是气体,d点是低温贮槽(2)内胆底部。
2.根据权利要求1所述的低温贮槽液位高精度检测装置,其特征在于:液位计包含三个差压变送器和数据采集装置。
3.根据权利要求1所述的低温贮槽液位高精度检测装置,其特征在于:低温贮槽(2)的形状是带封头或不带封头的圆柱形、球形、方形。
4.根据权利要求1所述的低温贮槽液位高精度检测装置,其特征在于:低温贮槽(2)的形式是卧式、立式。
CN202222169302.4U 2022-08-17 2022-08-17 低温贮槽液位高精度检测装置 Active CN218211510U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202222169302.4U CN218211510U (zh) 2022-08-17 2022-08-17 低温贮槽液位高精度检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202222169302.4U CN218211510U (zh) 2022-08-17 2022-08-17 低温贮槽液位高精度检测装置

Publications (1)

Publication Number Publication Date
CN218211510U true CN218211510U (zh) 2023-01-03

Family

ID=84657377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202222169302.4U Active CN218211510U (zh) 2022-08-17 2022-08-17 低温贮槽液位高精度检测装置

Country Status (1)

Country Link
CN (1) CN218211510U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116146892A (zh) * 2022-08-17 2023-05-23 成都中阳实业公司 低温贮槽液位高精度检测装置和方法
CN116626566A (zh) * 2023-07-25 2023-08-22 北京中科富海低温科技有限公司 低温实验***、低温实验***的液位测定方法和复温方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116146892A (zh) * 2022-08-17 2023-05-23 成都中阳实业公司 低温贮槽液位高精度检测装置和方法
CN116626566A (zh) * 2023-07-25 2023-08-22 北京中科富海低温科技有限公司 低温实验***、低温实验***的液位测定方法和复温方法
CN116626566B (zh) * 2023-07-25 2023-09-22 北京中科富海低温科技有限公司 低温实验***、低温实验***的液位测定方法和复温方法

Similar Documents

Publication Publication Date Title
CN218211510U (zh) 低温贮槽液位高精度检测装置
CN102252797B (zh) 一种u型管压力计及其压力测量方法
CN102288256A (zh) 一种密闭容器液位测量***
CN101512298A (zh) 带密度测量的过程设备
CN104020358B (zh) 一种测量lng气罐内介质介电常数及液位的方法
CN100470211C (zh) 浮力式深低温液位计
CN105004663A (zh) 一种气瓶体积膨胀精确测量装置
CN103528642A (zh) 一种实时修正介电常数的电容式液位计及其液位测量方法
CN203534673U (zh) 一种实时修正介电常数的电容式液位计
CN202284963U (zh) 一种密闭容器液位测量***
CN201539686U (zh) 一种可检测夹层真空度的杜瓦瓶
CN111912491A (zh) 一种压力容器液位测量装置
CN102455245A (zh) 一种采用滞后温度补偿的压力变化检漏方法
CN116146892A (zh) 低温贮槽液位高精度检测装置和方法
CN103148910A (zh) 卧式低温容器及其液位测量装置
CN216309135U (zh) 液位测量***
CN212409823U (zh) 一种压力容器液位测量装置
CN207215237U (zh) 差压式液位计液相装置改进结构
CN206593721U (zh) 一种用于lng车载瓶内液位测量的三电容式传感器
CN112697632B (zh) 一种煤岩、页岩大样量重量法等温吸附测量装置及方法
CN210089813U (zh) 一种气压式液位计简易校准装置
CN209513143U (zh) 一种测压表的不锈钢外壳
CN208043183U (zh) 一种氖氦分馏塔中低温液氮液位测量装置
CN207081460U (zh) 液体测量装置及储液装置
CN208012707U (zh) 一种高精度lng储罐电容式液位计

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant