CN215869426U - Full-automatic photovoltaic panel magnetic energy laminating machine - Google Patents

Full-automatic photovoltaic panel magnetic energy laminating machine Download PDF

Info

Publication number
CN215869426U
CN215869426U CN202120451612.8U CN202120451612U CN215869426U CN 215869426 U CN215869426 U CN 215869426U CN 202120451612 U CN202120451612 U CN 202120451612U CN 215869426 U CN215869426 U CN 215869426U
Authority
CN
China
Prior art keywords
vacuum chamber
magnetic energy
heating plate
plate
lower vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202120451612.8U
Other languages
Chinese (zh)
Inventor
董伟兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weiyite Hebei Energy Saving Equipment Technology Co ltd
Original Assignee
Weiyite Hebei Energy Saving Equipment Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weiyite Hebei Energy Saving Equipment Technology Co ltd filed Critical Weiyite Hebei Energy Saving Equipment Technology Co ltd
Priority to CN202120451612.8U priority Critical patent/CN215869426U/en
Application granted granted Critical
Publication of CN215869426U publication Critical patent/CN215869426U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The utility model discloses a full-automatic photovoltaic panel magnetic energy laminating machine, which comprises: the front end and the rear end of the machine body are respectively provided with a feeding hole and a discharging hole; an upper cover is arranged above the machine body, and an upper vacuum chamber is arranged in the upper cover; the lower part of the machine body is provided with a lower vacuum chamber; the upper vacuum chamber and the lower vacuum chamber are respectively connected with a vacuum pipeline; a silica gel plate is arranged below the upper vacuum chamber; a magnetic energy heating plate is arranged above the lower vacuum chamber along the horizontal direction; the lifting mechanism comprises a lifting cylinder and a guide rail vertically arranged in the machine body; the upper cover is respectively connected with the guide rail and the lifting cylinder, the lifting cylinder drives the upper cover to move up and down along the guide rail, when the upper cover moves down to the bottom end of the guide rail, a closed working chamber is formed between the upper vacuum chamber and the lower vacuum chamber, and the silica gel plate is used for laminating the photovoltaic module placed in the working chamber by utilizing the pressure difference between the upper vacuum chamber and the lower vacuum chamber. The electromagnetic heater is used for replacing the existing heat conduction oil, so that the laminating machine is higher in heat efficiency, more accurate in temperature, safe and maintenance-free.

Description

Full-automatic photovoltaic panel magnetic energy laminating machine
Technical Field
The utility model relates to the technical field of laminating machines, in particular to a full-automatic photovoltaic panel magnetic energy laminating machine.
Background
With the development of modern industry, global energy crisis and air pollution are increasingly prominent, and solar energy is regarded as an ideal renewable energy source by many countries. At present, the types of solar cells are continuously increased, the application range is increasingly wide, and the market scale is gradually enlarged. Solar power generation has two modes, one is a light-heat-electricity conversion mode, and the other is a light-electricity direct conversion mode. The light-heat-electricity conversion mode is to generate electricity by utilizing the heat energy generated by solar radiation, generally, a solar heat collector converts the absorbed heat energy into steam of a working medium and then drives a steam turbine to generate electricity. The former process is a light-to-heat conversion process; the latter process is a heat-electricity conversion process, and like ordinary thermal power generation, solar thermal power generation has the disadvantages of low efficiency and high cost, and the investment of the solar thermal power generation is estimated to be at least 5-10 times more expensive than that of an ordinary thermal power station; the direct photoelectric conversion mode is a mode of directly converting solar radiation energy into electric energy by using a photovoltaic effect, and a basic device for the photoelectric conversion is a solar cell. The solar cell is a device which directly converts solar energy into electric energy due to photovoltaic effect, and is a semiconductor photodiode. When a plurality of batteries are connected in series or in parallel, a solar battery matrix with larger output power can be formed. Solar cells are a promising new power source with three advantages of permanence, cleanliness and flexibility. The solar cell has long service life, and can be used for a long time by one-time investment as long as the sun exists; compared with thermal power generation and nuclear power generation, the solar cell does not cause environmental pollution.
Photovoltaic laminators are one of the important devices necessary to encapsulate solar modules. EVA, solar cell pieces, toughened glass and back films (TPT, PET and other materials) are pressed into a whole with certain rigidity under the condition of high temperature and vacuum by a laminator, and the solar cell panel has the advantages of single-glass solar cell panels (single-side light receiving) and double-glass solar cell panels (double-side light receiving). The laminating machine used in the prior production is an oil heating laminating machine, heat conducting oil is heated to a set temperature, and the heat conducting oil is circulated under a heating plate through a pipeline, so that the heating plate reaches the set temperature. However, the heat transfer oil heating system has the phenomena of coking and coking in the use process, the service cycle is short, the chemical characteristics of the heat transfer oil heating system have certain corrosion effect on the system, the oil leakage phenomenon and the pungent and peculiar smell often occur in the circulation process, the service cycle of the heat transfer oil is short, the heat transfer oil needs to be replaced periodically, the used waste liquid cannot be recovered, and the operation cost is increased.
SUMMERY OF THE UTILITY MODEL
An object of the present invention is to solve at least the above problems and to provide at least the advantages described later.
The utility model also aims to provide a full-automatic photovoltaic panel magnetic energy laminating machine, which utilizes an electromagnetic heater to replace the existing heat conducting oil, so that the laminating machine has higher thermal efficiency, more accurate temperature, safety and no maintenance.
To achieve these objects and other advantages in accordance with the utility model, there is provided a fully automatic magnetic energy lamination machine for photovoltaic panels, comprising:
the front end and the rear end of the machine body are respectively provided with a feeding hole and a discharging hole; an upper cover is arranged above the machine body, and an upper vacuum chamber is arranged in the upper cover; the lower part of the machine body is provided with a lower vacuum chamber; the upper vacuum chamber and the lower vacuum chamber are respectively connected with a vacuum pipeline; a silica gel plate is arranged below the upper vacuum chamber; a magnetic energy heating plate is arranged above the lower vacuum chamber along the horizontal direction;
the lifting mechanism comprises a lifting cylinder and a guide rail vertically arranged in the machine body; the upper cover is respectively connected with the guide rail and the lifting cylinder, the lifting cylinder drives the upper cover to move up and down along the guide rail, when the upper cover moves down to the bottom end of the guide rail, a closed working chamber is formed between the upper vacuum chamber and the lower vacuum chamber, and the silica gel plate is used for laminating the photovoltaic module placed in the working chamber by utilizing the pressure difference between the upper vacuum chamber and the lower vacuum chamber.
Preferably, in the full-automatic photovoltaic panel magnetic energy laminating machine, the magnetic energy heating plate consists of a steel heating plate, a tie bar, a magnetic energy module and a driving power supply; the tie bars are arranged on the lower surface of the steel heating plate in a transversely and longitudinally staggered manner so as to uniformly divide the lower surface of the steel heating plate into 20-36 subsections; the magnetic energy modules which are matched with the number of the subsections are respectively arranged in each subsection and are attached to the lower surface of the steel heating plate; the driving power supply is connected with each magnetic energy module.
Preferably, in the fully automatic magnetic energy laminator for photovoltaic panels, the lower surface of the steel heating plate is uniformly divided into 28 subsections by the tie bars, and the 28 magnetic energy modules are respectively arranged in the subsections.
Preferably, the fully automatic magnetic energy laminator for photovoltaic panels further comprises:
the resin cloth mechanism comprises resin cloth, a rotating shaft and a chain; the rotating shafts are uniformly arranged around the upper vacuum chamber and the lower vacuum chamber respectively; the two pieces of resin cloth are respectively sleeved on rotating shafts distributed outside the upper vacuum chamber and the lower vacuum chamber; the speed reducer arranged in the machine body is connected to the rotating shaft through a chain, and the rotating shaft is driven by the speed reducer to rotate so as to drive the resin cloth to rotate around the upper vacuum chamber or the lower vacuum chamber.
Preferably, in the full-automatic photovoltaic panel magnetic energy laminating machine, an outer-coated metal plate is arranged outside the magnetic energy heating plate, and the steel heating plate is connected with the upper surface of the lower vacuum chamber through a bracket arranged at the edge of the outer-coated metal plate; and a plurality of vacuum holes connected with the lower vacuum chamber are formed in the steel heating plate between the outer-coated metal plate and the magnetic energy module.
Preferably, in the full-automatic photovoltaic panel magnetic energy laminating machine, the magnetic energy module comprises an insulating plate, a high-frequency coil and a shielding case; the high-frequency coils are uniformly arranged and fixed on the insulating plate through fixing bolts; a first magnetic material is coated inside each high-frequency coil, and a second magnetic material is coated on the insulating plate between the high-frequency coils; the shielding cover is covered outside the insulating plate and the high-frequency coil, and the shielding cover is filled with heat insulating materials.
Preferably, the fully automatic magnetic energy laminator for photovoltaic panels further comprises:
and the temperature control system comprises a PID closed-loop control system and a time relay which are respectively connected with the magnetic energy heating plate, and the time relay is also connected with the vacuum pipeline so as to realize the temperature control of the magnetic energy heating plate, the heating time and the air pressure control of the upper vacuum chamber or the lower vacuum chamber.
The utility model at least comprises the following beneficial effects:
according to the full-automatic photovoltaic panel magnetic energy laminating machine, the magnetic energy heating plate is arranged above the lower vacuum chamber of the laminating machine along the horizontal direction, the magnetic energy heating plate can generate heat under the action of high-frequency electromagnetic force, heat is fully utilized and basically does not dissipate, meanwhile, the heat is gathered in the heating plate, the surface temperature of the electromagnetic coil is only slightly higher than the room temperature, the full-automatic photovoltaic panel magnetic energy laminating machine can be safely touched, high-temperature protection is not needed, and the full-automatic photovoltaic panel magnetic energy laminating machine is safe and reliable.
The laminator utilizing magnetic energy to heat realizes an internal heating mode, namely, a part of molecules in a heating body directly induces the magnetic energy to generate heat, the hot start is fast, the average preheating time is shortened by more than 50 percent compared with a heat conduction oil heating mode, meanwhile, the heat efficiency is as high as more than 98 percent, under the same condition, the electricity is saved by 30 to 70 percent compared with the heat conduction oil heating, and the production efficiency is greatly improved.
The coil of the magnetic energy heating plate does not generate heat, the thermal hysteresis is small, the thermal inertia is low, the temperature of the magnetic energy heating plate is consistent, the temperature control is real-time and accurate, the product quality can be effectively improved, and the production efficiency is higher.
The electromagnetic coil is wound by a special customized high-temperature and high-voltage resistant cable, has good insulating property, does not need to be in direct contact with the outer wall of the plate body, and has no electric leakage, short circuit fault, safety and no worry.
The internal heat mode of adoption, the heat gathers inside the heating member, and outside heat dissipation does not hardly have, simultaneously, what adopt is that inside non-contact heating does not need heating cycle pipeline's setting, has saved the host computer space greatly, and does not have liquid discharge, and the peculiar smell has not been had during the heating, has improved the operational environment of production site greatly, is favorable to improving production workman's enthusiasm, reduces use cost expense, can create an environmental protection, safety, comfortable production environment for mill and a ray of producers promptly.
Additional advantages, objects, and features of the utility model will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the utility model.
Drawings
FIG. 1 is a perspective structural diagram of a full-automatic photovoltaic panel magnetic energy laminator according to the present invention;
FIG. 2 is a flow chart of the work of the fully automatic magnetic energy laminator for photovoltaic panels according to the present invention;
fig. 3 is a structural view of a magnetic energy heating plate according to the present invention;
fig. 4 is a top view structural diagram of a magnetic energy module according to the present invention;
fig. 5 is a side view structural diagram of a magnetic energy module according to the present invention.
Detailed Description
The present invention is further described in detail below with reference to the attached drawings so that those skilled in the art can implement the utility model by referring to the description text.
It will be understood that terms such as "having," "including," and "comprising," as used herein, do not preclude the presence or addition of one or more other elements or groups thereof.
As shown in fig. 1 to 5, the present invention provides a fully automatic magnetic energy laminator for photovoltaic panels, comprising:
a machine body 1, the front end and the rear end of which are respectively provided with a feed inlet 2 and a discharge outlet 3; an upper cover is arranged above the machine body 1, and an upper vacuum chamber 4 is arranged in the upper cover; the lower part of the machine body 1 is provided with a lower vacuum chamber 5; the upper vacuum chamber 4 and the lower vacuum chamber 5 are respectively connected with a vacuum pipeline 6; a silica gel plate 7 is arranged below the upper vacuum chamber 4; a magnetic energy heating plate 8 is arranged above the lower vacuum chamber 5 along the horizontal direction;
the lifting mechanism comprises a lifting cylinder 9 and a guide rail 10 vertically arranged in the machine body 1; the upper cover is respectively connected with the guide rail 10 and the lifting cylinder 9, the lifting cylinder 9 drives the upper cover to move up and down along the guide rail 10, when the upper cover moves down to the bottom end of the guide rail 10, a closed working chamber is formed between the upper vacuum chamber 4 and the lower vacuum chamber 5, and the silica gel plate 7 is used for laminating the photovoltaic module placed in the working chamber by utilizing the pressure difference between the upper vacuum chamber 4 and the lower vacuum chamber 5.
In the above scheme, the work flow of the full-automatic photovoltaic magnetic energy laminator is as follows: when the laminator is in a working state, firstly, the vacuum valves of the upper vacuum chamber and the lower vacuum chamber are all opened, all the electromagnetic valves are closed, namely, vacuumizing is performed, then when a heating program is performed, the vacuum valve of the upper chamber is closed, meanwhile, the inflation valve of the upper chamber is opened, and the outside atmosphere enters the upper chamber through a pipeline; after the preset temperature is reached, the photovoltaic module is sent into the machine body to carry out a lamination procedure, the upper chamber inflation valve is closed at the moment, other valves are kept unchanged, after the lamination is finished, the cover opening procedure is carried out, the upper chamber vacuum valve is opened, the lower vacuum valve is closed, meanwhile, the lower chamber inflation valve is used, external atmosphere enters the lower chamber, and after the lower chamber is inflated, the upper cover of the laminating machine is opened.
In the full-automatic photovoltaic panel magnetic energy laminating machine, electric energy is converted into heat energy by utilizing an electromagnetic induction principle, a magnetic energy driving power supply converts 380v 50/60Hz three-phase alternating current into direct current, then converts the direct current into 10-30KHz high-frequency low-voltage large-current electricity for heating a magnetic energy heating plate, a magnetic energy module is utilized to heat a specially customized steel heating plate, iron-containing molecules in the steel heating plate directly induce the magnetic energy to generate heat, the heat starting is very quick, the average preheating time is shortened by more than 50 percent compared with a heat conduction oil heating mode, and meanwhile, the heat efficiency is as high as more than 98 percent, under the same condition, the heat conduction oil heating power is saved by 30-70% compared with the heat conduction oil heating power, the production efficiency is greatly improved, the heat conduction oil heating power-saving device has the advantages of environmental protection, safety, reliability, high efficiency, energy conservation and the like, provides stable output for the automatic production of enterprises, and can meet the national requirements for saving energy, reducing emission and protecting environment.
In a preferred scheme, the magnetic energy heating plate 8 consists of a steel heating plate 11, a tie bar 12, a magnetic energy module 13 and a driving power supply; the tie bars 12 are arranged on the lower surface of the steel heating plate 11 in a transversely and longitudinally staggered manner so as to uniformly divide the lower surface of the steel heating plate 11 into 20-36 subsections; the magnetic energy modules 13 which are suitable for the number of the subsections are respectively arranged in each subsection and are attached to the lower surface of the steel heating plate 11; the driving power supply is connected with each magnetic energy module 13.
In the scheme, 20-36 subsections are arranged, and 1 magnetic energy module is arranged in each subsection, so that the temperatures of the plurality of magnetic energy modules can be controlled respectively, and further, components which need to be laminated at different temperatures can be laminated synchronously, and the working efficiency of the laminating machine is further improved.
In a preferred embodiment, the lower surface of the steel heating plate 11 is uniformly divided into 28 subsections by the tie bars 12, and 28 magnetic energy modules 13 are respectively arranged in each subsection.
In the scheme, repeated tests show that the magnetic energy heating plate formed by preferably 28 magnetic energy modules in the laminating machine can meet the requirement of simultaneously laminating a plurality of assemblies, so that the laminating quality of the assemblies is ensured, and waste caused by arrangement of more magnetic energy modules is avoided.
In a preferred embodiment, the method further comprises:
a resin cloth mechanism including a resin cloth 14, a rotating shaft 15, and a chain 16; the rotating shafts 15 are uniformly arranged around the upper vacuum chamber 4 and the lower vacuum chamber 5 respectively; the two pieces of resin cloth 14 are respectively sleeved on rotating shafts 15 distributed outside the upper vacuum chamber 4 and the lower vacuum chamber 5; a speed reducer 17 arranged in the machine body 1 is connected to the rotating shaft 15 through a chain 16, and the rotating shaft 15 is driven by the speed reducer 17 to rotate so as to drive the resin cloth 14 to rotate around the upper vacuum chamber 4 or the lower vacuum chamber 5.
In the above scheme, through the setting of resin cloth, can avoid silica gel board and magnetic energy hot plate to be infected with EVA, guarantee the cleanliness factor on photovoltaic module surface.
In a preferable scheme, an outer-coated metal plate 18 is arranged outside the magnetic energy heating plate 8, and the steel heating plate 11 is connected with the upper surface of the lower vacuum chamber 5 through a bracket 19 arranged at the edge of the outer-coated metal plate 18; a plurality of vacuum holes 20 connected with the lower vacuum chamber 5 are arranged on the steel heating plate 11 between the outer-coated metal plate 18 and the magnetic energy module 13.
In the above scheme, through the setting of outsourcing panel beating for the installation of magnetic energy hot plate is more firm, through the setting of support, is convenient for the installation of magnetic energy hot plate.
In a preferred scheme, the magnetic energy module 13 comprises an insulating plate 21, a high-frequency coil 22 and a shielding cover 23; a plurality of high-frequency coils 22 are uniformly arranged and fixed on the insulating plate 21 through fixing bolts 24; a first magnetic material 25 is coated inside each of the high-frequency coils 22, and a second magnetic material 26 is coated on the insulating plate 21 between the high-frequency coils 22; the shield cover 23 is provided outside the insulating plate 21 and the high-frequency coil 22, and the shield cover 23 is filled with a heat insulating material 27.
In a preferred embodiment, the method further comprises:
and the temperature control system comprises a PID closed-loop control system and a time relay which are respectively connected with the magnetic energy heating plate 8, and the time relay is also connected with the vacuum pipeline 6 so as to realize the temperature control of the magnetic energy heating plate 8, the heating time and the air pressure control of the upper vacuum chamber 4 or the lower vacuum chamber 5.
In the above scheme, the closed-loop control system (closed-loop control system) is characterized in that the output (controlled quantity) of the controlled object of the system is fed back to influence the output of the controller to form one or more closed loops. The closed-loop control system has positive Feedback and Negative Feedback, if the Feedback signal is opposite to the system set value signal, it is called Negative Feedback (Negative Feedback), if the polarity is the same, it is called positive Feedback, and the general closed-loop control systems all adopt Negative Feedback, also called Negative Feedback control systems. Therefore, through the setting of the PID closed-loop control system, when the magnetic energy heating plate reaches the preset temperature, the laminator can automatically regulate and control the output power of the magnetic energy module through PID, so that the heating plate can maintain constant temperature, and the temperature deviation of the laminator in the working process is within 3 ℃; in addition, the time of evacuation directly determines whether the air in the gap between the packaging materials and the gas generated during the evacuation time of lamination can be removed to eliminate air bubbles in the assembly, and at the same time, a pressure difference can be generated in the laminating machine to generate the pressure required in the lamination process. Thus, by setting the time relay, when different lamination times are needed when lamination is carried out at different temperatures, the vacuumizing and lamination time can be changed by adjusting the time setting on the time relay. Meanwhile, because the temperature of the EVA is 80 ℃ when the EVA is completely melted, the silica gel plate can be pressed down only after the EVA is completely melted and the optimal melting state is reached, which is most beneficial to removing gas in the assembly, namely reducing the generation of bubbles, according to the data analysis of the test temperature, when the laminator is adopted, the temperature on the assembly can reach 80 ℃ when the assembly is vacuumized for about 5 minutes, and at the moment, the flowability of the EVA is larger, the silica gel plate is pressed down at the moment, the assembly is easy to shift, so that the vacuumizing time can be prolonged to 6 minutes to avoid shifting. While the pressing time corresponds to the pressure exerted on the module during lamination, the longer the inflation time, the greater the pressure. Because the macromolecule formed after EVA crosslinking is loose in general structure, the adhesive film can be more compact after being cured due to the existence of pressure, and meanwhile, the adhesive force of EVA and other materials can also be enhanced, through test data analysis, when the laminating machine is adopted, the laminating time is generally 9 minutes, and the temperature is set to be about 140 ℃, so that a good laminating effect can be achieved.
While embodiments of the utility model have been described above, it is not limited to the applications set forth in the description and the embodiments, which are fully applicable in various fields of endeavor to which the utility model pertains, and further modifications may readily be made by those skilled in the art, it being understood that the utility model is not limited to the details shown and described herein without departing from the general concept defined by the appended claims and their equivalents.

Claims (7)

1. A full-automatic photovoltaic panel magnetic energy laminating machine is characterized by comprising:
the front end and the rear end of the machine body are respectively provided with a feeding hole and a discharging hole; an upper cover is arranged above the machine body, and an upper vacuum chamber is arranged in the upper cover; the lower part of the machine body is provided with a lower vacuum chamber; the upper vacuum chamber and the lower vacuum chamber are respectively connected with a vacuum pipeline; a silica gel plate is arranged below the upper vacuum chamber; a magnetic energy heating plate is arranged above the lower vacuum chamber along the horizontal direction;
the lifting mechanism comprises a lifting cylinder and a guide rail vertically arranged in the machine body; the upper cover is respectively connected with the guide rail and the lifting cylinder, the lifting cylinder drives the upper cover to move up and down along the guide rail, when the upper cover moves down to the bottom end of the guide rail, a closed working chamber is formed between the upper vacuum chamber and the lower vacuum chamber, and the silica gel plate is used for laminating the photovoltaic module placed in the working chamber by utilizing the pressure difference between the upper vacuum chamber and the lower vacuum chamber.
2. The fully automatic magnetic energy laminator for photovoltaic panels as claimed in claim 1 wherein said magnetic energy heating plate is comprised of steel heating plates, tie bars, magnetic energy modules and a driving power supply; the tie bars are arranged on the lower surface of the steel heating plate in a transversely and longitudinally staggered manner so as to uniformly divide the lower surface of the steel heating plate into 20-36 subsections; the magnetic energy modules which are matched with the number of the subsections are respectively arranged in each subsection and are attached to the lower surface of the steel heating plate; the driving power supply is connected with each magnetic energy module.
3. The fully automatic magnetic energy laminator for photovoltaic panels according to claim 2, wherein the lower surface of said steel heater plate is divided evenly into 28 sections by said tie bars, 28 of said magnetic energy modules being arranged in each of said sections, respectively.
4. The fully automatic magnetic energy lamination machine for photovoltaic panels as claimed in claim 1, further comprising:
the resin cloth mechanism comprises resin cloth, a rotating shaft and a chain; the rotating shafts are uniformly arranged around the upper vacuum chamber and the lower vacuum chamber respectively; the two pieces of resin cloth are respectively sleeved on rotating shafts distributed outside the upper vacuum chamber and the lower vacuum chamber; the speed reducer arranged in the machine body is connected to the rotating shaft through a chain, and the rotating shaft is driven by the speed reducer to rotate so as to drive the resin cloth to rotate around the upper vacuum chamber or the lower vacuum chamber.
5. The full-automatic photovoltaic panel magnetic energy laminating machine as claimed in claim 2, wherein an outer-wrapped metal plate is arranged outside the magnetic energy heating plate, and the steel heating plate is connected with the upper surface of the lower vacuum chamber through a bracket arranged at the edge of the outer-wrapped metal plate; and a plurality of vacuum holes connected with the lower vacuum chamber are formed in the steel heating plate between the outer-coated metal plate and the magnetic energy module.
6. The fully automatic photovoltaic panel magnetic energy laminator according to claim 2, wherein said magnetic energy module comprises an insulating plate, a high frequency coil and a shield; the high-frequency coils are uniformly arranged and fixed on the insulating plate through fixing bolts; a first magnetic material is coated inside each high-frequency coil, and a second magnetic material is coated on the insulating plate between the high-frequency coils; the shielding cover is covered outside the insulating plate and the high-frequency coil, and the shielding cover is filled with heat insulating materials.
7. The fully automatic magnetic energy lamination machine for photovoltaic panels as claimed in claim 1, further comprising:
and the temperature control system comprises a PID closed-loop control system and a time relay which are respectively connected with the magnetic energy heating plate, and the time relay is also connected with the vacuum pipeline so as to realize the temperature control of the magnetic energy heating plate, the heating time and the air pressure control of the upper vacuum chamber or the lower vacuum chamber.
CN202120451612.8U 2021-03-02 2021-03-02 Full-automatic photovoltaic panel magnetic energy laminating machine Expired - Fee Related CN215869426U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202120451612.8U CN215869426U (en) 2021-03-02 2021-03-02 Full-automatic photovoltaic panel magnetic energy laminating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202120451612.8U CN215869426U (en) 2021-03-02 2021-03-02 Full-automatic photovoltaic panel magnetic energy laminating machine

Publications (1)

Publication Number Publication Date
CN215869426U true CN215869426U (en) 2022-02-18

Family

ID=80317688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202120451612.8U Expired - Fee Related CN215869426U (en) 2021-03-02 2021-03-02 Full-automatic photovoltaic panel magnetic energy laminating machine

Country Status (1)

Country Link
CN (1) CN215869426U (en)

Similar Documents

Publication Publication Date Title
CN113036001A (en) Full-automatic photovoltaic panel magnetic energy laminating machine
CN100523686C (en) Efficient energy-saving drying process and apparatus
CN205692648U (en) A kind of transformator of safety heat radiation
CN201513205U (en) Power generating set comprehensively using wind energy, solar energy and biomass energy
CN103023034A (en) Active power filter with water cooling technology
CN201838609U (en) Photovoltaic component with temperature-display effect
CN201516712U (en) Solar cell assembly laminating machine
CN104807205A (en) Photovoltaic, photo-thermal and medium heat storage combined energy supply system
CN204854005U (en) Energy supply system is united to photovoltaic, light and heat and medium heat -retaining
CN101127498A (en) Merged network residential fully automatic solar power and heat supply device
CN215869426U (en) Full-automatic photovoltaic panel magnetic energy laminating machine
CN201616447U (en) Solar electricity-heating integrated component
CN201113835Y (en) Grid-connected dwelling full-automatic solar energy power supply heating apparatus
CN102085740A (en) Short circuit-proof electric heating laminating machine
CN107990567A (en) A kind of solar generating heat collecting system and its control method
CN102092167A (en) Laminating machine convenient to install and maintain
CN207166455U (en) A kind of high conversion can cool solar power system
CN204854009U (en) A solar water heating system for high -rise building
CN211363830U (en) Novel solar cell module laminating machine
CN113270890A (en) Combined power generation system
CN103944488B (en) The light collecting photovoltaic and photothermal generation comprehensive of a kind of solar cooker utilizes device
CN105490639B (en) A kind of heating integrated device of intelligent photovoltaic
CN203518276U (en) Solar and wind power generation water heating device
CN220892591U (en) Power generation heat collector for photovoltaic solar energy
CN203085611U (en) Solar photovoltaic and photo-thermal device with heat storage function

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220218