CN214974127U - 一种1k温度的无液氦超低温测试装置 - Google Patents

一种1k温度的无液氦超低温测试装置 Download PDF

Info

Publication number
CN214974127U
CN214974127U CN202023199985.5U CN202023199985U CN214974127U CN 214974127 U CN214974127 U CN 214974127U CN 202023199985 U CN202023199985 U CN 202023199985U CN 214974127 U CN214974127 U CN 214974127U
Authority
CN
China
Prior art keywords
helium
temperature
vacuum
needle valve
cold joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202023199985.5U
Other languages
English (en)
Inventor
王凡
黄社松
万斌
冯长沙
刘云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Physike Technology Co ltd
Original Assignee
Beijing Physike Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Physike Technology Co ltd filed Critical Beijing Physike Technology Co ltd
Priority to CN202023199985.5U priority Critical patent/CN214974127U/zh
Application granted granted Critical
Publication of CN214974127U publication Critical patent/CN214974127U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种1K温度的无液氦超低温测试装置,包括制冷机、仪表裙、真空外壳,其特征在于:制冷机、仪表裙和真空外壳自上而下依次连接;真空外壳上设置有氦气进口、氦气出口和针阀旋钮,针阀旋钮贯穿真空外壳的上表面并与真空外壳内部的针阀连接,其中,针阀对已预冷的常压氦气进行节流降温;真空外壳内部设置有换热器、针阀、1K罐、热锚和气路,用于将来自氦气进口的氦气进行制冷和节流降温,以使氦气降温至1K,1K的超低温氦气、由氦气降温生成的液氦聚集于1K罐内以稳定测试环境的1K温度,随后从氦气出口排出。基于本发明的技术方案,能够实现低至1K温度的超低温液氦测试环境,用于样品测试或校准温度计,节约成本、简单便捷。

Description

一种1K温度的无液氦超低温测试装置
技术领域
本发明涉及低温物理实验装置领域,更具体地,涉及一种1K温度的无液氦超低温测试装置。
背景技术
目前,随着低温技术的发展,无液氦二级制冷机技术已经发展的十分成熟,能够在不消耗液氦的情况下,获得4K左右的液氦温度,并保持制冷机长时间的正常运行。然而,商业化的二级制冷机通常只能够获得最低3K左右的极限温度,如果需要实现1K级别或更低的温度则需要配合使用稀释制冷机或绝热去磁制冷机。这就使得超低温测试环境的获取成本大大增加。
另外,使用真空泵抽取液氦并降低液氦的饱和蒸汽压也能够实现液氦的超低温,但这种方式需要消耗大量液氦,且难以持续,消耗的液氦需要重新灌装,步骤繁琐。并且,由于液氦价格昂贵,使用这种方法获取超低温成本也很高。
节流膨胀技术也称焦耳-汤姆逊(J-T,Joule-Thomson)膨胀,即较高压力下的流体经节流阀向较低压力方向绝热膨胀的过程。根据热力学原理,压力会造成温度的变化,也被称为J-T效应。氦气在环境温度高于焦耳-汤姆逊的转化温度时,表现为正J-T效应,即随着压力下降气体温度升高;氦气在环境温度低于焦耳-汤姆逊的转化温度时,表现为负J-T效应,即随着压力下降气体温度降低。使用节流膨胀技术能够在不消耗大量液氦的情况下利用现有技术中常用的4K制冷机获取1K左右的超低温条件,然而,现有技术中尚未出现利用节流膨胀技术实现超低温的方法及装置。
因此,亟需一种节约成本、简单便捷的1K超低温测试环境获取装置。
发明内容
为解决现有技术中存在的不足,本发明的目的在于,提供一种1K温度的无液氦超低温测试装置,基于节流膨胀技术,通过普通的二级制冷机实现1K温度的超低温测试环境。
本发明采用如下的技术方案。一种1K温度的无液氦超低温测试装置,包括制冷机1、仪表裙2、真空外壳6,制冷机1、仪表裙2和真空外壳6自上而下依次连接;真空外壳6上设置有氦气进口3、氦气出口4和针阀旋钮5,针阀旋钮 5贯穿真空外壳6的上表面并与真空外壳6内部的针阀17连接,其中,针阀17 对已预冷的常压氦气进行节流降温;真空外壳6内部设置有换热器、针阀17、 1K罐18、热锚16和气路21,用于将来自氦气进口3的氦气进行制冷和节流降温,以使氦气降温至1K,1K的超低温氦气、由氦气降温生成的液氦聚集于1K 罐18内以稳定测试环境的1K温度,随后从氦气出口4排出。
优选地,制冷机1为G-M制冷机或脉管制冷机。
优选地,制冷机1的主体部分经过仪表裙2设置于真空外壳6内,其主体部分包括一级冷头9和二级冷头13。
优选地,一级冷头9上设置有一级冷头转接10,二级冷头13上设置有二级冷头转接14,一级冷头9和二级冷头13自上而下连接;并且,一级冷头转接10 上设置有活性炭罐22和40K换热器11,二级冷头转接14上设置有4K换热器 15,一级冷头转接10和二级冷头转接14之间设置有10K换热器12。
优选地,一级冷头转接10上设置有冷屏19,冷屏为无氧铜或铝构成的腔体。
优选地,仪表裙2上设置有安全阀7、真空贯穿电学接头8以及真空阀23。
优选地,冷屏9、二级冷头转接14和1K罐18上分别设置有温度计25,1K 罐18上设置有加热器24。
优选地,1K罐18、针阀17依次穿过二级冷头转接14与一级冷头转接10 分别连接于真空外壳6外部的氦气出口4、针阀旋钮5上,且在穿过二级冷头转接14与一级冷头转接10时均用热锚16进行固定。
优选地,热锚16为无氧铜夹块,用于减少超低温区域的热辐射。
优选地,1K罐18用于固定待测样品;1K罐18为铟封可拆卸结构或外接样品托,铟封可拆卸结构用于在低温交换气体环境中测试样品,外接样品托用于在低温真空环境中测试样品或校准温度计。
本发明的有益效果在于,与现有技术相比,本发明中一种1K温度的无液氦超低温测试装置,可以基于节流膨胀技术,通过普通的二级制冷机实现1K温度的超低温测试环境的获取。因此,本发明只需要在现有技术中成熟的二级制冷机的基础上进行设备改造即可。因此,本发明实现简单、成本低、效果稳定并且节能环保。
附图说明
图1为本发明一种1K温度的无液氦超低温测试装置的立体示意图;
图2为本发明一种1K温度的无液氦超低温测试装置的俯视图;
图3为本发明一种1K温度的无液氦超低温测试装置的剖视图。
附图标记:
1-制冷机
2-仪表裙
3-氦气进口
4-氦气出口
5-针阀旋钮
6-真空外壳
7-安全阀
8-真空贯穿电学接头
9-一级冷头
10-一级冷头转接
11-40K换热器
12-10K换热器
13-二级冷头
14-二级冷头转接
15-4K换热器
16-热锚
17-针阀
18-1K罐
19-冷屏
20-冷屏支撑板
21-内部气路
22-活性炭罐
23-真空阀
24-加热器
25-温度计
具体实施方式
下面结合附图对本申请作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本申请的保护范围。
图1为本发明一种1K温度的无液氦超低温测试装置的立体示意图;图2为本发明一种1K温度的无液氦超低温测试装置的俯视图;图3为本发明一种1K 温度的无液氦超低温测试装置的剖视图。如图1-3所示,一种1K温度的无液氦超低温测试装置,包括制冷机1、仪表裙2、真空外壳6。制冷机1、仪表裙2 和真空外壳6自上而下依次连接;真空外壳6上设置有氦气进口3、氦气出口4 和针阀旋钮5,针阀旋钮5贯穿真空外壳6的上表面并与真空外壳6内部的针阀 17连接,其中,针阀17对已预冷的常压氦气进行节流降温;真空外壳6内部设置有换热器、针阀17、1K罐18、热锚16和气路21,用于将来自氦气进口3的氦气制冷和节流降温,以使氦气降温至1K,1K的超低温氦气、由氦气降温生成的液氦聚集于1K罐18内以稳定测试环境的1K温度,随后从氦气出口4排出。
需要说明的是,通常,当氦气进入测试装置内部后可以依次经过多个换热器进行逐级的充分预冷。经过最后一个4K换热器后,降温至4K。此时氦气在经过针阀产生J-T效应后进一步降温至1K。此时,部分氦气液化成为液氦,并落入1K罐底部。与此同时,1K罐上部还聚集着大量的氦气。这样,1K罐内部的温度可以在一段时间内保持相对的恒定。此时,可以使用1K罐的内部或周边作为测试环境对相关样品进行测试,以及对超低温的温度计进行校准。由于完成测试需要一定的时间,在这段时间内,由于样品及其导线带入的热负载、真空罐内其他温度较高元件的热辐射等,使得1K罐内的氦气及液氦的温度会逐渐升高,并且随着升温,液氦也进一步转换为氦气。由此,氦气逐渐进入与氦气出口4 连接的气路21,并从氦气出口4中排出。另外,与氦气出口4连接的这一条气路21可以为波纹管。该波纹管穿过一级冷头转接10和二级冷头转接14时,可以通过热锚16固定。因此,在氦气逐渐经过波纹管到达氦气出口4前,与热锚16进行了热交换,并逐渐升温至常温后从氦气出口4中排出。
本发明一实施例中,制冷机1连接在仪表裙2上,而后固定于真空外壳6 上。真空外壳6上有氦气进口3、氦气出口4和针阀旋钮5。
优选地,制冷机1可以为现有技术中常用的G-M(Giffod/McMahon,吉福特-麦克马洪)制冷机或脉管(Pulse tuble refrigerator)制冷机。并且,制冷机可以为二级4K制冷机。本发明一实施例中,制冷机1的主体部分经过仪表裙2设置于真空外壳6内,其主体部分包括一级冷头9和二级冷头13。
优选地,一级冷头9上设置有一级冷头转接10,二级冷头13上设置有二级冷头转接14,一级冷头9和二级冷头13自上而下连接;并且,一级冷头转接10 上设置有活性炭罐22和40K换热器11,二级冷头转接14上设置有4K换热器 15,一级冷头转接10和二级冷头转接14之间设置有10K换热器12。
本发明中的40K换热器11、10K换热器12和4K换热器15均为无氧铜细管密集盘绕,并在缝隙中填充焊锡制成的。常温氦气可以依次流经各个换热器并进行逐级预冷从而将温度降低到J-T转变温度以下。
优选地,一级冷头转接10上设置有冷屏19,冷屏19为无氧铜或铝构成的腔体。冷屏19固定在一级冷头转接10上,外部包裹有多层的Mylar膜能够用于隔绝热辐射,内部包括有用于制冷的各级设备,例如活性炭罐22、40K换热器 11、10K换热器12、4K换热器15、针阀17和1K罐18等。
优选地,仪表裙2上设置有安全阀7、真空贯穿电学接头8以及真空阀23。通常,真空阀23可以与分子泵和真空规进行连接,分别对装置进行抽真空操作和对装置内的真空度进行检测操作。真空贯穿电学接头8可以与温控仪进行连接,对装置内的温度进行精确控制。另外,还可以根据具体的测试需求在仪表裙2 上增加各种能够与仪器设备相匹配的接口。
优选地,冷屏19、二级冷头转接14和1K罐18上分别设置有温度计25, 1K罐18上设置有加热器24。温度计25可以分别用于测量不同元件的温度,加热器24可以用于控制装置内部的温度。本发明一实施例中,1K罐上还可以装置有控温块,该控温块包括温度计25和加热器24两个部分。同时,测试装置外部设置有控温仪,并通过仪表裙2与装置连接。可以理解的是,外接的控温仪可以通过温度计25和加热器24对装置内部的温度进行控制,从而实现波动小于±50mK的精确控温。
优选地,针阀17依次穿过二级冷头转接14与一级冷头转接10分别连接于真空外壳6外部的氦气出口4、针阀旋钮5上,且在穿过二级冷头转接14与一级冷头转接10时均用热锚16进行固定。其中,1K罐18还可以通过气路21与氦气出口4进行连接。需要说明的是,位于氦气出口4和1K罐18之间的这一气路21可以为波形管,且该波形管依次穿过二级冷头转接14与一级冷头转接 10,并用热锚16进行固定。另外,热锚16为无氧铜夹块,可以用于隔绝超低温区域的热辐射,减少区域内由于热漏造成的热辐射。
当装置开始工作时,可以首先通过仪表裙2上的真空阀23接入分子泵并对装置进行抽真空,然后利用真空规对装置内部的真空度进行监测。通常,若真空度达不到要求时,对氦气的降温也可以实现,但是降温效率可能较低,并且真空外壳6的外部可能出现结霜现象,以及温度无法降到最低的情况。因此,可以设置当真空度满足条件时,例如当真空度达到10~4mbar以上的时候,打开制冷机对设备进行降温。
当通过温度计监测到冷屏温度降至40K,二级冷头温度降至4K后,向位于真空外壳6上的氦气进口3通入高纯氦气,此时氦气进口3和氦气出口4的接口气压之间有一定的差异。氦气进口3处的气压高于氦气出口4处的气压。因此,氦气可以通过氦气进口3进入真空外壳6,并依次通过活性炭罐22、40K换热器 11、10K换热器12、4K换热器15、针阀17和1K罐后从氦气出口4排出。
上述各个元件之间通过气路21进行连接。氦气在气路21内流动,先被逐级降温并经过针阀节流降温至1K,完成制冷测试后再经过气路21的逐级升温至室温附近,并从氦气出口4离开。其中,气路21为不锈钢材质以及无氧铜材质,优选地,气路21与换热器、活性炭罐、针阀和1K罐等相连接的部分为无氧铜的中空细管或波形管,以使得氦气流经该部件时能更好的进行热交换。其余的管线部分一般可以选用不锈钢的中空细管或波纹管,以避免各不同温度的部件之间的热交换。
其中,活性炭罐22固定在一级冷头转接10底面,其外壳为无氧铜材质,内部可以填塞活性炭的颗粒,罐子顶部和底部分别有氦气入口和出口,主要用于吸附氦气中的杂质气体。氦气经过活性炭罐22后,再分别经过40K换热器11、10K 换热器12和4K换热器15被降低至4K左右的温度上。
其后氦气进入针阀17,由于氦气进口3处的气压高于氦气出口4处的气压,会导致针阀17两侧的压力也不同,相对较高压力的氦气经过针阀的节流后流出并到达低压区域,从而产生J-T效应,由于4K的温度低于氦气的转变温度,因而通过适当调节针阀17的流量大小,使得已经充分预冷的低温氦气节流膨胀,进一步地降低氦气的温度。一般来说,氦气进口3的气压可以保持在一个大气压左右,氦气出口4则可以使用真空泵来维持低压环境。如此就可以通过节流效应将氦气温度降至1K左右。此时,部分超低温氦气会液化变为液氦,超低温的氦气以及液氦然后流入1K罐中,用来给样品降温制冷。随后,完成制冷作用的氦气经由气路,温度逐渐上升,并从氦气出口4处排出。
高纯氦气(99.999%纯度以上)可以在装置外分别通过氦气进口3和氦气出口4连接至气泵,这使得高纯氦气具有闭环循环气路,可以通过泵抽维持氦气出口4的低气压从而使氦气进入内部气路21并流动起来,同时形成的闭循环的气路可以重复使用氦气制冷而不会消耗额外的氦气。通过更换更大抽速及更高真空度的真空泵,就可以在适当范围内进一步加大氦气进口3的压力或减小氦气出口 4的压力,这样能够进一步的降低温度。
优选地,1K罐18用于提供样品测试所需的低至1K温度的低温恒温环境。通过在1K罐外接样品托,可以实现在真空状态下样品的各种测试,应用领域包括材料研究、电子输运测试、超导等等。通过温控仪控制1K罐18上的加热器 24输出功率可以精确控制样品所处的环境温度,实现真空条件下1K至500K的各类样品测试。此外,对于热传导性不好粉末或液态等样品,可以将1K罐设置为铟封可拆卸结构,并且罐壁上有铟封的真空贯穿电学接头,这样待测样品可以放入1K罐内,并在流动氦气的氛围中实现1K到350K温度范围的测试。
优选地,待测样品可以为待校准的温度计。由于温控仪可以准确地控制装置内的超低温环境的环境温度,因此,可以用于对未进行校准的高精度超低温温度计进行校准测试。
本发明的有益效果在于,与现有技术相比,本发明中一种1K温度的无液氦超低温测试装置,可以基于节流膨胀技术,通过普通的二级制冷机实现低至1K 温度的超低温测试环境。因此,本发明只需要在现有技术中成熟的二级制冷机的基础上进行设备改造即可。因此,本发明实现简单、成本低、效果稳定并且节能环保。
本发明申请人结合说明书附图对本发明的实施示例做了详细的说明与描述,但是本领域技术人员应该理解,以上实施示例仅为本发明的优选实施方案,详尽的说明只是为了帮助读者更好地理解本发明精神,而并非对本发明保护范围的限制,相反,任何基于本发明的发明精神所作的任何改进或修饰都应当落在本发明的保护范围之内。

Claims (10)

1.一种1K温度的无液氦超低温测试装置,包括制冷机(1)、仪表裙(2)、真空外壳(6),其特征在于:
所述制冷机(1)、仪表裙(2)和真空外壳(6)自上而下依次连接;
所述真空外壳(6)上设置有氦气进口(3)、氦气出口(4)和针阀旋钮(5),所述针阀旋钮(5)贯穿真空外壳(6)的上表面并与真空外壳(6)内部的针阀(17)连接,其中,所述针阀(17)对已预冷的常压氦气进行节流降温;
所述真空外壳(6)内部设置有换热器、针阀(17)、1K罐(18)、热锚(16)和气路(21),用于将来自氦气进口(3)的氦气进行制冷和节流降温,以使所述氦气降温至1K,1K的超低温氦气、由所述氦气降温生成的液氦聚集于1K罐(18)内以稳定测试环境的1K温度,随后从氦气出口(4)排出。
2.根据权利要求1中所述的一种1K温度的无液氦超低温测试装置,其特征在于:
所述制冷机(1)为G-M制冷机或脉管制冷机。
3.根据权利要求2中所述的一种1K温度的无液氦超低温测试装置,其特征在于:
所述制冷机(1)的主体部分经过仪表裙(2)设置于真空外壳(6)内,其主体部分包括一级冷头(9)和二级冷头(13)。
4.根据权利要求3中所述的一种1K温度的无液氦超低温测试装置,其特征在于:
所述一级冷头(9)上设置有一级冷头转接(10),所述二级冷头(13)上设置有二级冷头转接(14),所述一级冷头(9)和二级冷头(13)自上而下连接;并且,
所述一级冷头转接(10)上设置有活性炭罐(22)和40K换热器(11),所述二级冷头转接(14)上设置有4K换热器(15),所述一级冷头转接(10)和二级冷头转接(14)之间设置有10K换热器(12)。
5.根据权利要求4中所述的一种1K温度的无液氦超低温测试装置,其特征在于:
所述一级冷头转接(10)上设置有冷屏(19),所述冷屏为无氧铜或铝构成的腔体。
6.根据权利要求1中所述的一种1K温度的无液氦超低温测试装置,其特征在于:
所述仪表裙(2)上设置有安全阀(7)、真空贯穿电学接头(8)以及真空阀(23)。
7.根据权利要求5中所述的一种1K温度的无液氦超低温测试装置,其特征在于:
所述冷屏(19)、二级冷头转接(14)和1K罐(18)上分别设置有温度计(25),所述1K罐(18)上设置有加热器(24)。
8.根据权利要求1中所述的一种1K温度的无液氦超低温测试装置,其特征在于:
所述针阀(17)依次穿过二级冷头转接(14)与一级冷头转接(10)分别连接于真空外壳(6)外部的氦气出口(4)、针阀旋钮(5)上,且在穿过二级冷头转接(14)与一级冷头转接(10)时均用热锚(16)进行固定;
所述1K罐(18)通过气路(21)与氦气出口(4)连接,且这一气路(21)依次穿过二级冷头转接(14)与一级冷头转接(10),并用热锚(16)进行固定。
9.根据权利要求8中所述的一种1K温度的无液氦超低温测试装置,其特征在于:
所述气路(21)为中空细管或波纹管,与其他元件连接的部分为无氧铜材质,非连接部分为不锈钢材质,其中,连接1K罐(18)与氦气出口(4)的气路(21)为波纹管;
所述热锚(16)为无氧铜夹块,用于减少超低温区域的热辐射。
10.根据权利要求8中所述的一种1K温度的无液氦超低温测试装置,其特征在于:
所述1K罐(18)用于固定待测样品;
所述1K罐(18)为铟封可拆卸结构或外接样品托,所述铟封可拆卸结构用于在低温交换气体环境中测试样品,所述外接样品托用于在低温真空环境中测试样品或校准温度计。
CN202023199985.5U 2020-12-24 2020-12-24 一种1k温度的无液氦超低温测试装置 Active CN214974127U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202023199985.5U CN214974127U (zh) 2020-12-24 2020-12-24 一种1k温度的无液氦超低温测试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202023199985.5U CN214974127U (zh) 2020-12-24 2020-12-24 一种1k温度的无液氦超低温测试装置

Publications (1)

Publication Number Publication Date
CN214974127U true CN214974127U (zh) 2021-12-03

Family

ID=79085064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202023199985.5U Active CN214974127U (zh) 2020-12-24 2020-12-24 一种1k温度的无液氦超低温测试装置

Country Status (1)

Country Link
CN (1) CN214974127U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114909818A (zh) * 2022-07-18 2022-08-16 南方科技大学 一种用于核绝热去磁制冷***中的锡制分合装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114909818A (zh) * 2022-07-18 2022-08-16 南方科技大学 一种用于核绝热去磁制冷***中的锡制分合装置

Similar Documents

Publication Publication Date Title
CN112547153A (zh) 一种1k温度的无液氦超低温测试装置
CN106568794B (zh) 基于低温制冷机的流体受控液化及凝固过程可视化实验观测装置
US10859293B2 (en) Mechanical vibration-isolated, liquid helium consumption-free and extremely low temperature refrigerating system
CN108870821A (zh) 一种以制冷机为冷源的低温冷却设备
CN113030367B (zh) 一种正仲氢反应催化剂催化性能测试装置
CN103063699A (zh) 以制冷机做冷源的材料低温热膨胀系数测试装置
CN115585606A (zh) 无液氦闭式循环样品测试用低温***
CN214974127U (zh) 一种1k温度的无液氦超低温测试装置
CN110118451A (zh) 热容热阻双效耦合的深低温高精度控温装置
CN116699079B (zh) 一种超低温气体实验平台及其工作方法
CN110749115B (zh) 一种多功能低温涡旋盘管预冷换热器
CN203274962U (zh) 一种温度计分度装置
CN103245434A (zh) 一种温度计分度装置
Garaway et al. Measured and calculated performance of a high frequency, 4 K stage, He-3 regenerator
CN112881462B (zh) 一种高压环境下高通量换热管的性能测试装置及其方法
CN205174920U (zh) 冷镜式露点仪制冷***
CN110762876B (zh) 一种液氦温区节流蒸发一体化装置
CN110319991B (zh) 基于gm制冷机的弹簧测试装置
CN211204483U (zh) 多功能低温涡旋盘管预冷换热器
CN211204482U (zh) 液氦温区节流蒸发一体化装置
Trollier et al. 30 K to subK vibration free remote cooling systems
Shimazaki et al. Realization of the 3 He Vapor-Pressure Temperature Scale and Development of a Liquid-He-Free Calibration Apparatus
Wang et al. High capacity closed-cycle 1 K cryocooler
Li et al. Design and construction of a 1.8 K superfluid 4He system with a GM cryocooler
CN111879539A (zh) 可视化低温脉动热管实验装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant