CN214824062U - 一种用于低速大攻角流动特性改善的栅格融合翼 - Google Patents

一种用于低速大攻角流动特性改善的栅格融合翼 Download PDF

Info

Publication number
CN214824062U
CN214824062U CN202023162520.2U CN202023162520U CN214824062U CN 214824062 U CN214824062 U CN 214824062U CN 202023162520 U CN202023162520 U CN 202023162520U CN 214824062 U CN214824062 U CN 214824062U
Authority
CN
China
Prior art keywords
grid
wing
angle
transverse
attack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202023162520.2U
Other languages
English (en)
Inventor
米百刚
詹浩
刘汉宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202023162520.2U priority Critical patent/CN214824062U/zh
Application granted granted Critical
Publication of CN214824062U publication Critical patent/CN214824062U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Wind Motors (AREA)

Abstract

本实用新型公开了一种用于低速大攻角流动特性改善的栅格融合翼,所述栅格融合翼包括基础单翼,栅格框架,布置于基础单翼上形成镂空机翼结构,横向栅格隔板和纵向栅格隔板,均布置于栅格框架内部,所述横向栅格隔板沿着与栅格框架的上板面和下板面平行方向布置,所述纵向栅格隔板沿着栅格框架的上板面和下板面垂直方向布置且与横向栅格隔板相交,将栅格框架分割成多个镂空栅格孔,栅格进气口,布置于基础单翼下表面前缘区域,通过横向栅格隔板上端面与栅格框架的上板面之间形成的空腔构成,栅格出气口,布置于布置于基础单翼上表面,通过横向栅格隔板下端面与栅格框架的下板面之间形成的空腔构成。本实用新型设计的栅格融合翼可以在不额外消耗能量、不产生附加阻力的情况下有效抑制机翼大攻角气流分离,增大机翼的失速攻角,提升机翼的最大升力系数。

Description

一种用于低速大攻角流动特性改善的栅格融合翼
技术领域
本实用新型涉及航空设备技术领域,具体涉及一种用于低速大攻角流动特性改善的栅格融合翼。
背景技术
当飞行器机翼攻角达到临界失速攻角后其升力随攻角增大而减小,在失速状态下飞行器会发生失控的俯冲颠簸运动以及非指令性的转动。产生失速的主要原因为机翼在大攻角状态下出现非对称的气流分离现象,很多航空事故都是由于机翼失速导致的,因而提升飞行器机翼的失速攻角对飞行器的安全性和机动性具有重要意义。
在当前阶段抑制机翼气流分离、延缓机翼失速的主要方法为流动控制技术,流动控制技术按控制方式又分为被动流动控制与主动流动控制。被动流动控制技术最典型的工程应用为涡流发生器,其主要控制机理为通过涡流发生器产生涡流向低能量的边界层传输能量,以达到克服逆压梯度、延缓气流分离的作用,进而可以增大机翼的失速攻角和最大升力系数,产生增升作用的代价为阻力的增大和升阻比的降低。除涡流发生器外开缝翼型、仿生结节及沟槽技术都属于被动流动控制的范畴。主动流动控制的控制方式为在流场内直接施加适当的扰动模式与流动的内在流动特性相互耦合来实现对流动的控制,其抑制气流分离的主要途径包括射流、吹气和吸气、释放等离子体等方式。
主动流动控制的主要缺点为需要额外消耗能量对机翼绕流进行控制,同时增设主动流动控制相关设备在一定程度上增大了飞行器的重量,对飞行器的经济性造成影响。涡流发生器等被动流动控制方式在抑制机翼气流分离的同时会在一定程度上增大飞行器的阻力,且由于被动流动控制的控制方式是预先设计的,在流场情况偏离设计状态时被动流动控制无法达到预期的控制效果,甚至对机翼绕流产生不利影响。
实用新型内容
本实用新型的目的在于提供一种用于低速大攻角流动特性改善的栅格融合翼,旨在提高航空飞行器低速大攻角抗分离和失速特性。
本实用新型采用的技术方案是:
一种用于低速大攻角流动特性改善的栅格融合翼,所述栅格融合翼包括
基础单翼,
栅格框架,布置于基础单翼上形成镂空机翼结构,
横向栅格隔板和纵向栅格隔板,均布置于栅格框架内部,所述横向栅格隔板沿着与栅格框架的上板面和下板面平行方向布置,所述纵向栅格隔板沿着栅格框架的上板面和下板面垂直方向布置且与横向栅格隔板相交,将栅格框架分割成多个镂空栅格孔,
栅格进气口,布置于基础单翼下表面前缘区域,通过横向栅格隔板上端面与栅格框架的上板面之间形成的空腔构成,
栅格出气口,布置于布置于基础单翼上表面,通过横向栅格隔板下端面与栅格框架的下板面之间形成的空腔构成。
优选的,所述栅格框架的导流角为-10°~-20°。
优选的,所述栅格框架整体格宽为基础单翼弦线的长度的10%。
优选的,所述横向栅格隔板和纵向栅格隔板的厚度为基础单翼弦线的长度的 1%~2%。
优选的,所述镂空栅格孔的格宽翼弦比为0.14。
优选的,所述横向栅格隔板布置数量为1,所述纵向栅格隔板布置数量为2。
本实用新型的有益效果:
本实用新型设计的改善机翼大攻角流动特性的栅格融合翼适用于低速及亚音速大攻角状态,由基础单翼、栅格框架、栅格隔板三部分组成,栅格的布置方式为镂空机翼(机翼开孔)形式,栅格进气口布置于基础单翼前缘下表现区域,栅格排气口布置于基础单翼上表面。本实用新型设计的栅格融合翼可以在不额外消耗能量、不产生附加阻力的情况下有效抑制机翼大攻角气流分离,增大机翼的失速攻角,提升机翼的最大升力系数。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型的一种用于低速大攻角流动特性改善的栅格融合翼的全局视图;
图2为本实用新型的一种用于低速大攻角流动特性改善的栅格融合翼的上表面视图;
图3为本实用新型的一种用于低速大攻角流动特性改善的栅格融合翼的下表面视图;
图4为栅格融合翼剖面视图;
图5为栅格融合翼导流角;
图6为单翼及栅格融合翼流场流线图;(a)单翼;(b)栅格融合翼;
图7为单翼及不同导流角栅格融合翼升力系数、阻力系数随攻角变化曲线 (Ma=0.6);(a)升力系数随攻角变化曲线;(b)阻力系数随攻角变化曲线。
其中,1-栅格框架;2-基础单翼;3-横向栅格隔板;4-纵向栅格隔板;5-栅格排气口;6-栅格进气口;7-导流角。
具体实施方式
为使本实用新型实施例的目的、技术方案和优点更加清楚,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。
因此,以下对在附图中提供的本实用新型的实施例的详细描述并非旨在限制要求保护的本实用新型的范围,而是仅仅表示本实用新型的选定实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
本实用新型具体提供了一种用于低速大攻角流动特性改善的栅格融合翼,如图1-5所示,所述栅格融合翼包括
基础单翼,
栅格框架,布置于基础单翼上形成镂空机翼结构,
横向栅格隔板和纵向栅格隔板,均布置于栅格框架内部,所述横向栅格隔板沿着与栅格框架的上板面和下板面平行方向布置,所述纵向栅格隔板沿着栅格框架的上板面和下板面垂直方向布置且与横向栅格隔板相交,将栅格框架分割成多个镂空栅格孔,
栅格进气口,布置于基础单翼下表面前缘区域,通过横向栅格隔板上端面与栅格框架的上板面之间形成的空腔构成,
栅格出气口,布置于布置于基础单翼上表面,通过横向栅格隔板下端面与栅格框架的下板面之间形成的空腔构成。
本实用新型的栅格融合翼装置几何特征描述如下:
1)栅格框架的导流角为-10°~-20°,可根据实际需要进行相应调整,导流角定义为栅格弦向与基础单翼弦线夹角,栅格结构进气口在基础单翼下表面时导流角角度为负值。
2)基础单翼翼型为NACA2214翼型,根据飞行器实际需要可选其他翼型。
3)栅格框架整体格宽为基础单翼弦线的长度的10%左右。
4)栅格隔板(包括横向栅格隔板和纵向栅格隔板)的厚度为基础单翼弦线的长度的1%~2%。
5)镂空栅格孔的格宽翼弦比为0.14左右,栅格数量的改变对该无量纲数值具有影响。这里的格宽翼弦比指每个镂空栅格孔的宽度(纵向长度)与栅格隔板的弦长的比值。
6)横向栅格隔板布置数量为1,纵向栅格隔板布置数量为2,根据结构强度要求可对栅格隔板布置数量进行调整。
上述几何参数中导流角、横向栅格隔板数量是经过数值实验对比得出的,表 1与表2为低速及亚音速状态下不同导流角的栅格融合翼气动特性数值实验数据,可以了解到在低速(Ma=0.3)状态下导流角为-10°至-20°范围内栅格融合翼的失速攻角均显著大于常规单翼,导流角为-10°情况下栅格融合翼具有相对更大的最大升力系数,导流角为-20°情况下栅格融合翼具有更大的失速攻角。在亚音速(Ma=0.6)状态下导流角为-20°时栅格融合翼同时具备更大的失速攻角及最大升力系数,故本实用新型设计的栅格融合翼的导流角选取范围取为-10°至-20°。
表1导流角对栅格融合翼大攻角气动特性影响(Ma=0.3)
Figure DEST_PATH_GDA0003202835170000061
表2导流角对栅格融合翼大攻角气动特性影响(Ma=0.6)
Figure DEST_PATH_GDA0003202835170000062
表3展示了亚音速(Ma=0.6)状态下横向栅格隔板数量不同的栅格融合翼气动特性数值实验数据,可以发现栅格融合翼失速攻角的大小与横向栅格隔板数量基本无关,无横向栅格隔板情况下栅格融合翼的最大升力系数相对小于具有横向栅格隔板的栅格融合翼,横向栅格隔板数量超过1后随着隔板数量的增大最大升力系数的变化并不明显,采用较多的横向栅格隔板会导致阻力的增大,故本实用新型设计的栅格融合翼的横向栅格隔板数量取为1。
栅格融合翼的纵向栅格隔板布置数量对本实用新型设计的栅格融合翼气动特性影响较小,布置纵向栅格隔板的主要原因为增强栅格融合翼的结构强度,其布置数量是据常规栅格翼隔板的布置经验来进行选取的。
表3横向栅格隔板数量对栅格融合翼大攻角气动特性影响(Ma=0.6)
Figure DEST_PATH_GDA0003202835170000063
其余几何参数主要包括纵向栅格隔板厚度、横向栅格隔板厚度、栅格总体格宽、格宽翼弦比,大部分参数是根据工程实践经验进行设置的。
从气动层面上来说,栅格纵向隔板厚度及栅格横向隔板厚度越小,栅格融合翼的气动特性越优,但为了保证纵向栅格隔板及横向栅格隔板的结构强度及栅格融合翼的可靠性、安全性,根据现有栅格翼的设计资料综合考量后设置其厚度为机翼弦长的1%-2%;
栅格框架的整体格宽受机翼最大厚度及栅格框架导流角影响,其宽度取为机翼弦长的10%左右可以在保证栅格融合翼的大攻角气动性能的基础上为其他导流角情况下的栅格融合翼预留设计空间;
由纵向栅格隔板与横向栅格隔板将栅格框架分割成的单个栅格孔的格宽翼弦比由栅格框架整体宽度、导流角、机翼翼型决定,上述任何参数发生变化都会导致格宽翼弦比的波动,由于本实用新型设计的栅格融合翼的栅格框架整体宽度、导流角、已经均为优选后的结果,由三者共同决定的格宽翼弦比与常规栅格翼差异较大,但更适用于本实用新型设计的栅格融合翼。
本实用新型设计的栅格融合翼可以在不额外消耗能量、不产生附加阻力的情况下有效抑制机翼大攻角气流分离,增大机翼的失速攻角,提升机翼的最大升力系数。栅格融合翼抑制气流分离、提升机翼大攻角升力性能的主要机理为栅格结构将机翼下表面的高能量气流导引到机翼上表面低能量分离区,抑制机翼上表面的气流分离。同时由于升力面后部驻点后移,栅格融合翼下表面的压强高于基础单翼,进而致使栅格融合翼具有更优的大攻角气动特性。
仿真例
本实施例使用基于三维雷诺平均Navier-Stokes方程的数值模拟方法对栅格融合翼的大攻角气动特性进行了数值仿真,验证了本实用新型的栅格融合翼在亚音速状态下抑制气流分离,增大机翼失速攻角及最大升力系数的能力,证明了本实用新型设计的栅格融合翼在大攻角状态的实用性。
仿真对象为基础单翼及栅格导流角为-10°、-20°的栅格融合翼,基础单翼翼型为NACA2214翼型,栅格框架整体格宽为基础单翼弦长的10%,横向栅格隔板和纵向栅格隔板的厚度为基础单翼弦长的1%,单个镂空栅格孔的格宽翼弦比为0.14,横向栅格隔板布置数量为1,纵向栅格隔板布置数量为2。仿真来流马赫数为0.6,机翼攻角为0~36°。
图6为单翼(a)及栅格融合翼(b)在马赫数为0.6,攻角为28°情况下的流线图,可以发现本实用新型设计的栅格融合翼可以有效抑制机翼上表面的气流分离,在栅格排出气流的作用下机翼上表面的流动死水区明显减小,这对于提升机翼的失速攻角及大攻角时的升力性能具有重要意义。
图7为单翼及不同导流角栅格融合翼升力系数、阻力系数随攻角变化曲线图,和单翼相比导流角为-10°的栅格融合翼的失速攻角提升了8°左右,最大升力系数提升了10%左右;导流角为-20°的栅格融合翼的失速攻角提升了16°左右,最大升力系数提升了20%左右。导流角为-20°的栅格融合翼在攻角较大情况下的阻力系数和单翼较为接近,导流角为-10°的栅格融合翼在攻角较大情况下的阻力系数略微小于单翼的阻力系数。
经数值模拟方法验证知,本实例中设计得到的栅格融合翼装置能够有效抑制机翼在大攻角状态下的气流分离,在不额外消耗能量、不产生附加阻力的情况下改善了机翼的大攻角流动特性,显著提升了机翼的失速攻角及最大升力系数。
以上所述,仅用以说明本实用新型的技术方案而非限制,本领域普通技术人员对本实用新型的技术方案所做的其它修改或者等同替换,只要不脱离本实用新型技术方案的精神和范围,均应涵盖在本实用新型的权利要求范围当中。

Claims (6)

1.一种用于低速大攻角流动特性改善的栅格融合翼,其特征在于,所述栅格融合翼包括
基础单翼,
栅格框架,布置于基础单翼上形成镂空机翼结构,
横向栅格隔板和纵向栅格隔板,均布置于栅格框架内部,所述横向栅格隔板沿着与栅格框架的上板面和下板面平行方向布置,所述纵向栅格隔板沿着栅格框架的上板面和下板面垂直方向布置且与横向栅格隔板相交,将栅格框架分割成多个镂空栅格孔,
栅格进气口,布置于基础单翼下表面前缘区域,通过横向栅格隔板上端面与栅格框架的上板面之间形成的空腔构成,
栅格出气口,布置于布置于基础单翼上表面,通过横向栅格隔板下端面与栅格框架的下板面之间形成的空腔构成。
2.根据权利要求1所述的一种用于低速大攻角流动特性改善的栅格融合翼,其特征在于,所述栅格框架的导流角为-10°~-20°。
3.根据权利要求1所述的一种用于低速大攻角流动特性改善的栅格融合翼,其特征在于,所述栅格框架整体格宽为基础单翼弦线的长度的10%。
4.根据权利要求1所述的一种用于低速大攻角流动特性改善的栅格融合翼,其特征在于,所述横向栅格隔板和纵向栅格隔板的厚度为基础单翼弦线的长度的1%~2%。
5.根据权利要求1所述的一种用于低速大攻角流动特性改善的栅格融合翼,其特征在于,所述镂空栅格孔的格宽翼弦比为0.14。
6.根据权利要求1所述的一种用于低速大攻角流动特性改善的栅格融合翼,其特征在于,所述横向栅格隔板布置数量为1,所述纵向栅格隔板布置数量为2。
CN202023162520.2U 2020-12-24 2020-12-24 一种用于低速大攻角流动特性改善的栅格融合翼 Expired - Fee Related CN214824062U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202023162520.2U CN214824062U (zh) 2020-12-24 2020-12-24 一种用于低速大攻角流动特性改善的栅格融合翼

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202023162520.2U CN214824062U (zh) 2020-12-24 2020-12-24 一种用于低速大攻角流动特性改善的栅格融合翼

Publications (1)

Publication Number Publication Date
CN214824062U true CN214824062U (zh) 2021-11-23

Family

ID=78869230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202023162520.2U Expired - Fee Related CN214824062U (zh) 2020-12-24 2020-12-24 一种用于低速大攻角流动特性改善的栅格融合翼

Country Status (1)

Country Link
CN (1) CN214824062U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114879718A (zh) * 2022-07-12 2022-08-09 南京理工大学 具有栅格舵的飞行器的控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114879718A (zh) * 2022-07-12 2022-08-09 南京理工大学 具有栅格舵的飞行器的控制方法
CN114879718B (zh) * 2022-07-12 2022-09-13 南京理工大学 具有栅格舵的飞行器的控制方法

Similar Documents

Publication Publication Date Title
CN112623195A (zh) 一种用于低速大攻角流动特性改善的栅格融合翼
CN107757879B (zh) 用于飞行器的机翼的翼尖装置、飞行器及用途
CN105752314B (zh) 一种高空低速自然层流高升力翼型
CN107336842B (zh) 一种高超声速乘波鸭翼气动布局方法
CN104176241B (zh) 一种高空螺旋桨协同射流高效气动布局构型
WO2018129768A1 (zh) 翼身融合飞机
CN104118556B (zh) 一种极低雷诺数高升阻比低速特殊勺型翼型
CN105840551A (zh) 多工况点高负荷压气机叶片的气动实现方法
CN111792022B (zh) 一种抑制旋翼桨-涡干扰噪声的尾缘气流控制方法
CN112231828A (zh) 一种控制翼面附着流动的前缘组合凸起结构及其流动控制方法
CN111120401A (zh) 一种基于naca翼型的多翼离心通风机叶片设计方法
CN214824062U (zh) 一种用于低速大攻角流动特性改善的栅格融合翼
CN111734577A (zh) 一种开缝式风力机叶片装置及开缝方法
CN113460284B (zh) 一种带有斜向沟槽的低雷诺数下机翼
CN107878728A (zh) 机翼结构及飞行器
CN105775159A (zh) 具有抑制机翼分离流功能的吹气口设计方法
SP et al. Stall behavior curved planform wing analysis with low reynolds number on aerodynamic performances of wing airfoil eppler 562
Hossain et al. Enhancement of aerodynamic properties of an airfoil by co flow jet (CFJ) flow
CN207902734U (zh) 一种气动布局的无人机
Schroeder et al. Using computational fluid dynamics for micro-Air vehicle airfoil validation and prediction
Belloc et al. Influence of the air inlet configuration on the performances of a paraglider open airfoil
CN113217462B (zh) 亚声速旋涡吹气式压气机叶片
Mishra et al. Numerical investigation of a finite wing section with a bleed hole allowing boundary layer suction
CN102167152A (zh) 前缘对齐的飞机翼尖装置
Matin et al. Numerical study of the effect of geometrical changes on the airfoil aerodynamic performance

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211123