CN212407410U - 一种多层级的吸能管 - Google Patents

一种多层级的吸能管 Download PDF

Info

Publication number
CN212407410U
CN212407410U CN202020595000.1U CN202020595000U CN212407410U CN 212407410 U CN212407410 U CN 212407410U CN 202020595000 U CN202020595000 U CN 202020595000U CN 212407410 U CN212407410 U CN 212407410U
Authority
CN
China
Prior art keywords
energy
pipe
layer
sine
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN202020595000.1U
Other languages
English (en)
Inventor
姚曙光
杨紫
许平
彭勇
鲁寨军
姚松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202020595000.1U priority Critical patent/CN212407410U/zh
Application granted granted Critical
Publication of CN212407410U publication Critical patent/CN212407410U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

本实用新型公开了一种多层级的吸能管,所述吸能管至少由两层管道壁拼接构成,所述吸能管包括由内层管道壁围成的一级中空管道以及相邻两层管道壁拼接形成的若干二级中空管道,所述二级中空管道排布在所述一级中空管道四周。尤其提供一种吸能管的横截面为n个正弦波纹拼接形状,具体的一种结构是吸能管横截面上拼接的每两个正弦波纹中外层正弦波纹的波谷与内层正弦波纹的波峰相切;另一种结构是双层吸能管,其横截面上拼接的两个正弦波纹的波峰与波谷一一正对。利用改进的吸能管结构使得内外层管在变形过程中的相互作用起到稳定作用,改善变形,提升吸能效果。

Description

一种多层级的吸能管
技术领域
本实用新型属于汽车碰撞技术领域,具体涉及一种多层级的吸能管。
背景技术
薄壁结构由于其低成本和高能量吸收特性而被广泛应用。其中薄壁圆管是应用最广泛的能量吸收结构之一。传统圆管在受到轴向冲击载荷作用时,往往表现出较高的初始峰值力并且力的波动幅度较大。在较大的初始峰值力作用下会使得撞击时产生较大的加速度,增加对乘员的伤害。许多研究者通过在轴向引入波纹来起到降低初始峰值力的效果,但同时也会使结构比吸能SEA降低,减弱结构的吸能效果。
Xiaolin Deng等人提出了单层横向正弦波纹管吸能结构,与普通圆管相比,单层横向正弦波纹管吸能结构结构达到了提高结构吸能特性的效果,但仍然存在着变形模式不稳定的问题。
实用新型内容
本实用新型的目的是针对单层横向正弦波纹管吸能结构存在变形模式不稳定的问题,提供了一种多层级的吸能管,其通过内外层管在变形过程中的相互作用起到稳定作用,改善变形,相较于单层结构拥有更加的吸能效果。
本实用新型提供的一种多层级的吸能管,所述吸能管至少由两层管道壁拼接构成,所述吸能管包括由内层管道壁围成的一级中空管道以及相邻两层管道壁拼接形成的若干二级中空管道,所述二级中空管道排布在所述一级中空管道四周,所述吸能管的横截面为n个正弦波纹拼接形状,n为所述吸能管的层级数。
进一步优选,所述横截面上拼接的每两个正弦波纹中外层正弦波纹的波谷与内层正弦波纹的波峰相切,且所述两个正弦波纹对应正弦函数的振幅、波纹数分别相同,基本公称半径不同。
该结构可以在发生碰撞的过程中有效地提高能量吸收并提高变形的稳定性。在此类结构当中,当两个正弦波纹中外层正弦波纹的波谷与内层正弦波纹的波峰相切时,会产生孔隙结构,由于孔隙结构在变形过程中内外层壁相互制约,使得变形过程更加稳定,并且所采用的正弦结构构建的层次结构有效的避免了在顶端产生尖角;在相切处内外层管壁交汇形成角点,角点的增加提高了结构在压缩过程中膜能的耗散。
进一步优选,所述吸能管为双层吸能管,所述横截面上拼接的两个正弦波纹的波峰与波谷一一正对,且所述两个正弦波纹对应的正弦函数的振幅、波纹数、基本公称半径分别相同。
在此类结构当中,两个正弦波纹的波峰与波谷一一正对,孔隙数目和角点的数目均进一步增加,变形的稳定性得到增强,并且压缩过程中膜能的耗散也进一步增加。
进一步优选,所述正弦波纹对应的正弦函数r如下:
r=R0+A×sin(N×θ),θ∈[0°,360°]
式中,R0为正弦波纹的基本公称半径,A为正弦波纹的振幅,N为波纹数,波纹数N为正偶数。
进一步优选,正弦波纹的振幅A的取值范围为0到8的自然数。
进一步优选,所述吸能管的层级数n为2。
进一步优选,所述吸能管的最外层管道壁上设有开孔或在所述最外层管道壁的顶端向下开设切槽,所述开孔和所述切槽的位置与所述最外层管道壁与相邻内层管道壁的衔接位置错开。
有益效果
1、本实用新型提出的多层级吸能管,其层级结构对结构整体的刚度有着显著的提高,能够使压缩过程的平台力显著提高,从而达到提高结构能量吸收的效果。本实用新型通过研究发现,在不增加结构重量的情况下,层次化网格拓扑结构相较单层简单结构能够显著提高管状结构的吸能能力。层级结构总是包含几个层次的子结构,而子结构的加入可以增强原始结构的局部刚度,并且层次化网络拓扑结构的思想可以看作合成新的微观结构的基础,从而产生增强的或者有益的物理特性。这种结构形式可以达到提高机械性能和减轻结构重量的要求,进而提高结构的吸能特性,节约制造成本。因此,本实用新型的吸能管中设有一级中空管道和二级中空管道且二为级中空管道排布在一级中空管道的四周,进而形成网格拓扑结构,解决了结构达不到吸能效果而需增加质量带来的不便,同时实现结构的吸能高效率和轻量化。其次,本实用新型提出的层级管由正弦函数控制,相较其他类型的多层级吸能管更容易控制截面形状的演变,并且较易于加工。
2、进一步的,本实用新型利用现有的正弦波纹截面进行改进,提供了一种横截面是拼接的每两个正弦波纹中外层正弦波纹的波谷与内层正弦波纹的波峰相切,该结构可以在发生碰撞的过程中有效地提高能量吸收并提高变形的稳定性。在此类结构当中,当两个正弦波纹中外层正弦波纹的波谷与内层正弦波纹的波峰相切时,会产生孔隙结构,由于孔隙结构在变形过程中内外层壁相互制约,使得变形过程更加稳定,并且所采用的正弦结构构建的层次结构有效的避免了在顶端产生尖角,尖角的存在会使结构在压缩过程中产生撕裂,不利于作为吸能结构的实际应用;其次,采用正弦结构能够更容易的通过函数控制截面的演变,增大管的横截面积,从而增大整体结构的体积,在压缩过程中吸收更多的能量。在相切处内外层管壁交汇形成角点,而在能量的耗散中,膜能量主要耗散在组成元素的交点区域,因此相较单层管来说,角点的增加提高了结构在压缩过程中膜能的耗散。
3、进一步的,本实用新型利用现有的正弦波纹截面进行改进,提供了另一种横截面是拼接的两个正弦波纹的波峰与波谷一一正对,此类结构能够进一步的提高能量吸收,并且能够提高结构在变形过程中的稳定性和可控性。在此类结构当中,两个正弦波纹的波峰与波谷一一正对,孔隙数目和角点的数目均进一步增加,变形的稳定性得到增强,并且压缩过程中膜能的耗散也进一步增加。
4.在轨道交通领域的实际碰撞过程中,乘员的安全为首要考虑的因素。因此,本实用新型结构在实际应用中,初始阶段会产生一个较大的峰值力,而当初始峰值力过大时会产生较大的加速度,使得对结构和乘员的损伤增加,在原有结构的基础上,增加诱导结构来达到降低初始峰值力的效果,如表面开孔或者顶端切槽。通过开孔或切槽,可以在一定程度上降低结构的刚度,使得初始峰值力有所下降,但对整体的吸能特性影响较小。针对本实用新型提出的层级结构的特点,可以通过在最外层管的波峰处,即未与内层管相交处沿轴向切方形槽,切槽的个数可以凭经验取为波纹数目N;或在最外层管未与内层管相交处的外表面沿轴向均匀的开方形孔、圆形孔等来降低初始峰值力,若假定开方形孔边长为10mm或圆形孔直径为10mm,则轴向开孔数目取值[1,5]。通过对轴向、横向开孔数目的调节或对顶端切槽几何参数(如槽深、槽宽等)的选取进行数值仿真,最终可以实现最优组合。
附图说明
图1为单层横向正弦波纹管结构示意图,其中,1a图为单层横向正弦波纹管立体图,1b图为单层横向正弦波纹管的截面图;
图2为一类双层横向正弦波纹管结构示意图,其中,2a图为一类双层横向正弦波纹管立体图,2b图为一类双层横向正弦波纹管的截面图;
图3为二类双层横向正弦波纹管结构示意图,其中,3a图为二类双层横向正弦波纹管立体图,3b图为二类双层横向正弦波纹管的截面图;
图4为单层管与两类双层薄壁管力-位移曲线比较图;
图5为单层管与两类双层薄壁管比吸能SEA比较图;
图6为单层横向正弦波纹管变形模式图;
图7为双层横向正弦波纹管变形模式图;
图8为层级结构增加诱导结构示意图,其中,8a图为增设切槽,8b图为增设开孔。
具体实施方式
下面将结合实施例对本实用新型做进一步的说明。
本实用新型提供了一种多层级的吸能管,其至少由两层管道壁拼接构成,吸能管包括由内层管道壁围成的一级中空管道以及相邻两层管道壁拼接形成的若干二级中空管道,二级中空管道排布在一级中空管道四周。进一步优选,吸能管的横截面为n个正弦波纹拼接形状,如图1所示为薄壁横向波纹管结构示意图,其横截面为正弦波纹,本实用新型的吸能管的横截面则由至少两个图1中所示的正弦波纹拼接而成。其中,正弦波纹对应的正弦函数r如下:
r=R0+A×sin(N×θ),θ∈[0°,360°]
式中,R0为正弦波纹的基本公称半径,A为正弦波纹的振幅,N为波纹数,其中,正弦波纹的振幅A的取值范围为从0到8的自然数;另外,由于波纹数目N取值为正奇数时结构不能满足中心对称,为了更利于变形过程的稳定,有限波纹数目N的取值为正偶数。本实用新型通过改变各项几何参数来得到不同的横截面形状,再将其进行组合得到多层级的吸能管。
本实用新型将用以下两类吸能管为例进行说明:
实施例1:
如图2所示的一类2层的吸能管(本实用新型中称为一类吸能管),其横截面上拼接的两个正弦波纹中外层正弦波纹的波谷与内层正弦波纹的波峰相切,且两个正弦波纹对应正弦函数的振幅A、波纹数N分别相同,基本公称半径R0不同,本实施例中,保持外层管的基本公称半径R0为定值25mm,改变内层管基本公称半径的值使得外层管截面正弦波纹的波谷与内层管截面正弦波纹的波峰相切。其中,本实施例中管长L为100mm。
实施例2:
如图3所示为另一类2层的吸能管结构(本实用新型中称为二类吸能管),其横截面上拼接的两个正弦波纹的波峰与波谷一一正对,且两个正弦波纹对应的正弦函数的振幅A、波纹数N、基本公称半径R0分别相同。
仿真实验:
以振幅A=1mm、波纹数N=6为例,薄壁管底端固定约束,顶端受到匀速3m/s的刚性板轴向压缩。如图4所示,为单层横向正弦波纹管与两类双层横向正弦波纹管的力—位移曲线,从图中可以看出,双层横向正弦波纹管的撞击力整体有所提高,这使得其平均力提高。并且与单层管撞击力的两倍相比,两类双层横向正弦波纹管的初始峰值力并没有大幅度上升。因此如图5所示,双层横向正弦波纹管结构的比吸能SEA明显高于单层横向正弦波纹管,并且可以看出,二类双层横向正弦波纹管具有最高的比吸能。
如图6、7所示分别为压缩过程中单层管和双层管的变形模式,从图中可以看出,层级管和单层管均产生较为稳定的轴对称变形模式,层级管在压缩过程中产生更多褶皱,且由于层级结构刚度的提高以及管壁之间的相互作用,使其在变形过程中能够吸收更多能量。
如图8中的8a图和8b图所示,为了解决本结构在实际应用中,初始阶段会产生一个较大的峰值力的问题,本实用新型在上述结构的基础上增加诱导结构来降低初始峰值力的危害。如图8中8a图所示,在最外层管道壁的顶端向下开设切槽,本实施例中,切槽位置处于最外层管道壁的波峰位置,未在与内层管相交处沿轴向切方形槽,切槽的个数可以凭经验取为波纹数目N。其他可行的实施例中,要求切槽的位置与所述最外层管道壁与相邻内层管道壁的衔接位置错开。如图8中8b图所示,在吸能管的最外层管道壁上设有开孔,本实施例中,开孔位置处于最外层管道壁的波峰位置,即在最外层管上未与内层管相交处沿轴向均匀的开方形孔、圆形孔等,若假定开方形孔边长为10mm或圆形孔直径为10mm,则轴向开孔数目取值[1,5]。其他可行的实施例中,要求开孔位置与所述最外层管道壁与相邻内层管道壁的衔接位置错开。
需要强调的是,本实用新型所述的实例是说明性的,而不是限定性的,因此本实用新型不限于具体实施方式中所述的实例,凡是由本领域技术人员根据本实用新型的技术方案得出的其他实施方式,不脱离本实用新型宗旨和范围的,不论是修改还是替换,同样属于本实用新型的保护范围。

Claims (7)

1.一种多层级的吸能管,其特征在于:所述吸能管至少由两层管道壁拼接构成,所述吸能管包括由内层管道壁围成的一级中空管道以及相邻两层管道壁拼接形成的若干二级中空管道,所述二级中空管道排布在所述一级中空管道四周。
2.根据权利要求1所述的吸能管,其特征在于:所述吸能管的横截面为n个正弦波纹拼接形状,n为所述吸能管的层级数。
3.根据权利要求2所述的吸能管,其特征在于:所述横截面上拼接的每两个正弦波纹中外层正弦波纹的波谷与内层正弦波纹的波峰相切,且所述两个正弦波纹对应正弦函数的振幅、波纹数分别相同,基本公称半径不同。
4.根据权利要求2所述的吸能管,其特征在于:所述吸能管为双层吸能管,所述横截面上拼接的两个正弦波纹的波峰与波谷一一正对,且所述两个正弦波纹对应的正弦函数的振幅、波纹数、基本公称半径分别相同。
5.根据权利要求2所述的吸能管,其特征在于:所述正弦波纹对应的正弦函数r如下:
r=R0+A×sin(N×θ),θ∈[0°,360°]
式中,R0为正弦波纹的基本公称半径,A为正弦波纹的振幅,且正弦波纹的振幅A的取值范围为0到8的自然数,N为波纹数,波纹数N为正偶数。
6.根据权利要求1所述的吸能管,其特征在于:所述吸能管的层级数n为2。
7.根据权利要求1所述的吸能管,其特征在于:所述吸能管的最外层管道壁上设有开孔或在所述最外层管道壁的顶端向下开设切槽,所述开孔和所述切槽的位置与所述最外层管道壁与相邻内层管道壁的衔接位置错开。
CN202020595000.1U 2020-04-20 2020-04-20 一种多层级的吸能管 Withdrawn - After Issue CN212407410U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020595000.1U CN212407410U (zh) 2020-04-20 2020-04-20 一种多层级的吸能管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020595000.1U CN212407410U (zh) 2020-04-20 2020-04-20 一种多层级的吸能管

Publications (1)

Publication Number Publication Date
CN212407410U true CN212407410U (zh) 2021-01-26

Family

ID=74370742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020595000.1U Withdrawn - After Issue CN212407410U (zh) 2020-04-20 2020-04-20 一种多层级的吸能管

Country Status (1)

Country Link
CN (1) CN212407410U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111891169A (zh) * 2020-08-12 2020-11-06 中车株洲电力机车有限公司 一种轨道交通车辆车钩缓冲吸能装置
CN113775682A (zh) * 2021-11-12 2021-12-10 太原理工大学 一种基于剪纸结构的可调控圆管吸能/储能机构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111891169A (zh) * 2020-08-12 2020-11-06 中车株洲电力机车有限公司 一种轨道交通车辆车钩缓冲吸能装置
CN113775682A (zh) * 2021-11-12 2021-12-10 太原理工大学 一种基于剪纸结构的可调控圆管吸能/储能机构

Similar Documents

Publication Publication Date Title
CN212407410U (zh) 一种多层级的吸能管
CN108773111A (zh) 功能梯度蜂窝夹芯板及其制造方法
US20070147956A1 (en) Energy absorbing padding for automotive applications
CN207916770U (zh) 基于内凹六边形单元的负泊松比结构部件
EP1855000A1 (en) Liquid sloshing damper
CN111022538B (zh) 多功能梯度吸能盒
CN106884919A (zh) 一种嵌入式多级高效吸能装置
CN111232010A (zh) 一种梯度强度缓冲吸能装置
CN110696760B (zh) 一种折纸肋板吸能结构的实现方法及结构
CN110497656A (zh) 一种芯体胞元结构、多孔结构芯体及三明治吸能结构
CN111503204B (zh) 一种多层级的吸能管
CN113339440A (zh) 一种仿足球烯结构的多向承载蜂窝缓冲组合吸能结构
CN112172721A (zh) 一种仿玉莲叶脉分布的薄壁吸能装置
CN112124351B (zh) 一种开孔多管组合式吸能装置
CN218477486U (zh) 一种多级波纹吸能盒
CN115275478B (zh) 一种吸能电池箱
CN212766082U (zh) 吸能盒
KR102094961B1 (ko) 흡음보드
CN113362793A (zh) 一种双向粗糙平行排布微通道多孔吸声结构
CN116066496B (zh) 一种具有曲面预折痕的吸能管
CN111828517B (zh) 一种分形式梯度帽形复合结构
CN114000603A (zh) 一种建筑减震结构及其多维消能阻尼器
CN116279247A (zh) 一种组合式汽车碰撞吸能盒
CN219428316U (zh) 一种可拆卸的三维负刚度蜂窝复合阻波装置
CN112984768A (zh) 降噪结构

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20210126

Effective date of abandoning: 20240611

AV01 Patent right actively abandoned

Granted publication date: 20210126

Effective date of abandoning: 20240611

AV01 Patent right actively abandoned
AV01 Patent right actively abandoned