CN211700320U - 具有复合缓冲层的led外延结构 - Google Patents

具有复合缓冲层的led外延结构 Download PDF

Info

Publication number
CN211700320U
CN211700320U CN202020748499.5U CN202020748499U CN211700320U CN 211700320 U CN211700320 U CN 211700320U CN 202020748499 U CN202020748499 U CN 202020748499U CN 211700320 U CN211700320 U CN 211700320U
Authority
CN
China
Prior art keywords
buffer layer
substrate
layer
composite
epitaxial structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202020748499.5U
Other languages
English (en)
Inventor
陈传国
唐宝坤
宋威姿
李昂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Focus Lightings Science & Technology Co ltd
Original Assignee
Focus Lightings Science & Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Focus Lightings Science & Technology Co ltd filed Critical Focus Lightings Science & Technology Co ltd
Priority to CN202020748499.5U priority Critical patent/CN211700320U/zh
Application granted granted Critical
Publication of CN211700320U publication Critical patent/CN211700320U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

本实用新型提供一种具有复合缓冲层的LED外延结构,从下向上依次包括衬底、复合缓冲层、以及半导体层,复合缓冲层包含至少一个双层组合单元,每个组合单元包括一层第一缓冲层和一层第二缓冲层,最下层第一缓冲层设于衬底之上,第二缓冲层设于第一缓冲层背离衬底的一侧,半导体层设于最上层第二缓冲层之上;第一缓冲层与衬底之间的晶格常数差值小于或等于45%,第二缓冲层与相邻于复合缓冲层的半导体层之间的晶格常数差值小于或等于5%。通过将两层晶格常数分别接近于衬底和半导体层的缓冲层叠加,使得衬底与半导体层之间的晶格匹配形成更好的过渡,改善外延长晶质量;并且周期性叠层,形成分布布拉格反射结构,提高轴向出光率。

Description

具有复合缓冲层的LED外延结构
技术领域
本实用新型涉及半导体发光器件领域,具体地涉及一种具有复合缓冲层的LED外延结构。
背景技术
发光二极管(英文:Light Emitting Diode,简称:LED)作为一种新型节能、环保固态照明光源,具有能效高、体积小、重量轻、响应速度快以及寿命长等优点,使其在很多领域得到了广泛应用。目前的主流半导体发光材料如氮化镓等,存在和衬底晶格失配和热失配等问题,从而影响器件的使用寿命和发光效率。为解决这个问题,通常在衬底上生长氮化铝缓冲层来作为过渡层以减小晶格失配等问题。
但是当前的氮化铝缓冲层通常为单层结构,依然与衬底及半导体层之间存在一定程度的晶格不匹配,使得在其上生长的半导体外延片位错密度较大,而且单层结构的薄氮化铝缓冲层也不利于提高LED的发光效率。
实用新型内容
本实用新型的目的在于提供一种具有复合缓冲层的LED外延结构。
本实用新型提供一种具有复合缓冲层的LED外延结构,所述外延结构从下向上依次包括衬底、复合缓冲层、以及半导体层;
所述复合缓冲层包含至少一个双层组合单元,每个组合单元包括一层第一缓冲层和一层第二缓冲层,当组合单元为多个时,所述第一缓冲层和所述第二缓冲层交替层叠,最下层所述第一缓冲层设于所述衬底之上,所述第二缓冲层设于所述第一缓冲层背离所述衬底的一侧,所述半导体层设于最上层所述第二缓冲层之上;
所述第一缓冲层与所述衬底之间的晶格常数差值小于或等于45%,所述第二缓冲层与相邻于所述复合缓冲层的半导体层之间的晶格常数差值小于或等于5%。
作为本实用新型的进一步改进,所述第一缓冲层和所述第二缓冲层为氮化物缓冲层。
作为本实用新型的进一步改进,所述第一缓冲层和所述第二缓冲层的组合单元数范围为1~20,所述复合缓冲层的厚度范围为2~500nm。
作为本实用新型的进一步改进,所述第一缓冲层的厚度范围为0.01~50nm。
作为本实用新型的进一步改进,所述第二缓冲层的厚度范围为2~200nm。
作为本实用新型的进一步改进,所述衬底为蓝宝石衬底、或硅基衬底、或碳化硅衬底或上述衬底的复合衬底。
作为本实用新型的进一步改进,相邻于所述复合缓冲层的所述半导体层为硅、或锗、或砷化镓、或宽禁带Ⅲ族氮化物半导体材料中的一种。
本实用新型的有益效果是:本实用新型将两层晶格常数分别接近于衬底和半导体层的缓冲层叠加形成复合缓冲层结构,使得衬底与半导体层之间的晶格匹配形成更好的过渡,改善外延长晶质量,减少底层的位错密度;并且通过形成周期性叠层的复合缓冲层结构,在进一步提高缓冲层的成膜质量的同时,形成具有分布布拉格反射(英文:DistributeBragg Reflection,简称:DBR)结构,提高轴向出光率。
附图说明
图1是本实用新型一实施方式中的具有复合缓冲层的LED外延结构的示意图。
图2是本实用新型一实施方式中的具有复合缓冲层的LED外延结构制备方法的流程示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施方式及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施方式仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
下面详细描述本实用新型的实施方式,实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本实用新型,而不能理解为对本实用新型的限制。
为方便说明,本文使用表示空间相对位置的术语来进行描述,例如“上”、“下”、“后”、“前”等,用来描述附图中所示的一个单元或者特征相对于另一个单元或特征的关系。空间相对位置的术语可以包括设备在使用或工作中除了图中所示方位以外的不同方位。例如,如果将图中的装置翻转,则被描述为位于其他单元或特征“下方”或“上方”的单元将位于其他单元或特征“下方”或“上方”。因此,示例性术语“下方”可以囊括下方和上方这两种空间方位。
如图1所示,为本实用新型一实施方式提供的一种具有复合缓冲层的LED外延结构,所述外延结构从下向上依次包括衬底1、复合缓冲层2、以及半导体层3。
所述复合缓冲层2包含至少一个双层组合单元,每个组合单元包括一层第一缓冲层21和一层第二缓冲层22,当组合单元为多个时,所述第一缓冲层21和所述第二缓冲层22交替层叠,最下层所述第一缓冲层21设于所述衬底1之上,所述第二缓冲层22设于所述第一缓冲层21背离所述衬底1的一侧,所述半导体层3设于最上层所述第二缓冲层22之上。
具体的,所述第一缓冲层21和所述第二缓冲层22为氮化物缓冲层,其具有平整的平面结构。在本实施方式中,所述第一缓冲层21和所述第二缓冲层22为氮化铝缓冲层。
进一步的,所述第一缓冲层21与所述衬底1之间的晶格常数差值小于或等于45%,所述第二缓冲层22与相邻于所述复合缓冲层2的半导体层3之间的晶格常数差值小于或等于5%。
更进一步的,所述衬底1为蓝宝石衬底、或硅基衬底、或碳化硅衬底或上述衬底的复合衬底,或其它常见LED衬底材料。
相邻于所述复合缓冲层2的所述半导体层3为硅、或锗、或砷化镓、或宽禁带Ⅲ族氮化物半导体材料中的一种。
具体的,在本实用新型中,所述半导体层3为GaN层,当所述衬底1为蓝宝石衬底时,所述第一缓冲层21的晶格常数为
Figure BDA0002482670350000041
所述第二缓冲层22的晶格常数为
Figure BDA0002482670350000044
当所述衬底1为Si基衬底时,所述第一缓冲层21的晶格常数为
Figure BDA0002482670350000045
所述第二缓冲层22的晶格常数为
Figure BDA0002482670350000042
当所述衬底1为SiC衬底时,所述第一缓冲层21的晶格常数为
Figure BDA0002482670350000043
所述第二缓冲层22的晶格常数为
Figure BDA0002482670350000046
这里,一方面,所述第一缓冲层21的晶格常数接近于所述衬底1,可以减小所述第一缓冲层21和所述衬底1之间的晶格失配及热失配,提高缓冲层自身的质量,减少缓冲层因晶格失配等而出现的位错密度增加、受大的应力而产生裂纹等缺陷,从而提高生长于缓冲层之上的所述半导体层3的质量。
另一方面,所述第二缓冲层22的晶格常数接近于与之相邻的所述半导体层3,可以减小所述半导体层3和所述第一缓冲层21之间的晶格失配及热失配,从而直接改善外延长晶质量,减少所述半导体层3的位错密度。
同时,所述第一缓冲层21和所述第二缓冲层22之间的晶格常数差异很小,两层之间的不匹配度可以忽略,从而相对于以往设计中单层氮化铝缓冲层的结构,本实用新型中经所述衬底1、所述第一缓冲层21、所述第二缓冲层22至所述半导体层3的各层之间的晶格常数、热导率等形成更平缓的过渡,使得所述复合缓冲层2的成膜质量稳定,降低表面粗糙度,进而能有效降低外延层的位错密度及改善外延层层间均匀性,提高LED发光效率。
所述第一缓冲层21和所述第二缓冲层22周期性层叠,其层叠的组合单元数量范围为1~20;所述复合缓冲层2的厚度范围为2~500nm。
具体的,在本实用新型中,所述半导体层3为GaN层,当所述衬底1为蓝宝石衬底时,所述第一缓冲层21和第二缓冲层22的层叠组数为2,其总厚度为31nm;当所述衬底1为Si基衬底时,所述第一缓冲层21和第二缓冲层22的层叠组数为3,其总厚度为22.8nm;当所述衬底1为SiC衬底时,所述第一缓冲层21和第二缓冲层22的层叠组数为4,其总厚度为44nm
进一步的,所述第一缓冲层21的厚度范围为0.01~50nm;所述第二缓冲层22的厚度范围为2~200nm。
具体的,在本实用新型中,所述半导体层3为GaN层,当所述衬底1为蓝宝石衬底时,所述第一缓冲层21厚2.5nm,所述第二缓冲层22厚13nm;当所述衬底1为Si基衬底时,所述第一缓冲层21厚4nm,所述第二缓冲层22厚3.6nm;当所述衬底1为SiC衬底时,所述第一缓冲层21厚8.4nm,所述第二缓冲层22厚2.6nm
这里,层叠的所述复合缓冲层2,一方面,可以通过多次循环匹配,使得所述复合缓冲层2内的晶格常数、热导率等形成更为平滑的过度,并进一步增加与所述衬底1和所述半导体层3之间的匹配;另一方面,两层交替堆叠可以在一定程度上形成DBR结构,当从发光层射出的光经由所述复合缓冲层2时,有利于对光形成多次折射,提高轴向处光率,从而提高LED的发光效率。
另外,对所述复合缓冲层2的最大厚度进行限制,可以在尽可能提高外延层生长质量的同时,简化生产工艺、降低成本,并避免LED芯片尺寸过大。
如图2所示,本实用新型还提供一种具有复合缓冲层的LED外延结构的制备方法,包括步骤:
S1:提供一衬底。
S2:在所述衬底1上生长第一缓冲层21,所述第一缓冲层21与所述衬底1之间的晶格常数差值小于或等于45%。
S3:在所述第一缓冲层21上生长第二缓冲层22;
S4:周期性重复生长所述第一缓冲层21和所述第二缓冲层22,形成复合缓冲层2;
S5:在所述第二缓冲层22上生长半导体层3,所述第二缓冲层22与相邻于所述复合缓冲层2的半导体层3之间的晶格常数差值小于或等于5%。
为清楚说明本实用新型实施例的制作方法,以下就几个具体实施例为例进行说明。
实施例一
S1:提供一衬底。
所述衬底1为蓝宝石衬底,对所述蓝宝石衬底进行超声清洗30min,将处理后的所述蓝宝石衬底放入金属有机物化学气相沉积设备的反应室。
S2:在所述蓝宝石衬底上生长第一缓冲层21。
所述第一缓冲层21为氮化铝层,其生长温度为300℃,其靶基距为60mm,维持溅射功率为3500W,溅射10s。
生长所述第一缓冲层21时通入80sccm的氮气,和30sccm的氩气,和4sccm的氧气。
S3:在所述第一缓冲层21上生长第二缓冲层22。
所述第二缓冲层22为氮化铝层,生长所述第二缓冲层22时先进行预溅射,在靶材和所述第二缓冲层22之间设置遮挡片(英文:Shutter Disk),调节靶基距为70mm,调节溅射功率至4000W,溅射30s,通过预溅射可对靶材表面的杂质进行清理。
移除所述遮挡片,溅射30s。
生长所述第二缓冲层22时通入180sccm的氮气,和30sccm的氩气,和1sccm的氧气。
S4:周期性步骤S2和步骤S3,循环2次,形成所述复合缓冲层2。
S5:在所述第二缓冲层22上生长GaN半导体层3。
实施例二
S1:提供一衬底。
所述衬底1为Si基衬底,对所述Si基衬底进行进行等离子体处理10min,将处理后的所述蓝宝石衬底放入金属有机物化学气相沉积设备的反应室。
S2:在所述衬底1上生长第一缓冲层21。
所述第一缓冲层21为氮化铝层,其生长温度为450℃,其靶基距为55mm,维持溅射功率为2000W,溅射20s。
生长所述第一缓冲层21时通入130sccm的氮气,和30sccm的氩气,和2sccm的氧气。
S3:在所述第一缓冲层21上生长第二缓冲层22。
所述第二缓冲层22为氮化铝层,生长所述第二缓冲层22时先进行预溅射,在靶材和所述第二缓冲层22之间设置遮挡片,调整生长温度至650℃,调节靶基距为65mm,调节溅射功率至3500W,预溅射30s。
移除所述遮挡片,溅射20s。
生长所述第二缓冲层22时通入150sccm的氮气,和3sccm的氩气。
S4:周期性步骤S2和步骤S3,循环3次,形成所述复合缓冲层2。
S5:在所述第二缓冲层22上生长GaN基半导体层3。
实施例三
S1:提供一衬底。
所述衬底1为SiC衬底,对所述SiC衬底进行高温预处理30min,将处理后的所述蓝宝石衬底放入金属有机物化学气相沉积设备的反应室。
S2:在所述SiC衬底上生长第一缓冲层21。
所述第一缓冲层21为氮化铝层,其生长温度为550℃,其靶基距为75mm,维持溅射功率为4500W,溅射30s。
生长所述第一缓冲层21时通入130sccm的氮气,和30sccm的氩气,和3sccm的氧气。
S3:在所述第一缓冲层21上生长第二缓冲层22。
所述第二缓冲层22为氮化铝层,生长所述第二缓冲层22时先进行预溅射,在靶材和所述第二缓冲层22之间设置遮挡片,调整生长温度至450℃,调节靶基距为65mm,调节溅射功率至3000W,预溅射30s。
移除所述遮挡片,溅射10s。
生长所述第二缓冲层22时通入150sccm的氮气,和30sccm的氩气,和2sccm的氧气。
S4:周期性步骤S2和步骤S3,循环4次,形成所述复合缓冲层2。
S5:在所述第二缓冲层22上生长GaN半导体层3。
上述的一种具有复合缓冲层的LED外延结构的制备方法,各步骤为连续式外延生长方式,量产可实现性强。
综上所述,本实用新型将两层晶格常数分别接近于衬底和半导体层的缓冲层叠加形成复合缓冲层结构,使得衬底与半导体层之间的晶格匹配形成更好的过渡,改善外延长晶质量,减少底层的位错密度;并且通过形成周期性叠层的复合缓冲层结构,在进一步提高缓冲层的成膜质量的同时,形成具有分布布拉格反射结构,提高轴向出光率。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本实用新型的可行性实施方式的具体说明,并非用以限制本实用新型的保护范围,凡未脱离本实用新型技艺精神所作的等效实施方式或变更均应包含在本实用新型的保护范围之内。

Claims (7)

1.一种具有复合缓冲层的LED外延结构,所述外延结构从下向上依次包括衬底、复合缓冲层、以及半导体层,其特征在于:
所述复合缓冲层包含至少一个双层组合单元,每个组合单元包括一层第一缓冲层和一层第二缓冲层,当组合单元为多个时,所述第一缓冲层和所述第二缓冲层交替层叠,最下层所述第一缓冲层设于所述衬底之上,所述第二缓冲层设于所述第一缓冲层背离所述衬底的一侧,所述半导体层设于最上层所述第二缓冲层之上;
所述第一缓冲层与所述衬底之间的晶格常数差值小于或等于45%,所述第二缓冲层与相邻于所述复合缓冲层的半导体层之间的晶格常数差值小于或等于5%。
2.根据权利要求1所述的具有复合缓冲层的LED外延结构,其特征在于:所述第一缓冲层和所述第二缓冲层为氮化物缓冲层。
3.根据权利要求2所述的具有复合缓冲层的LED外延结构,其特征在于:所述第一缓冲层和所述第二缓冲层的组合单元数范围为1~20,所述复合缓冲层的厚度范围为2~500nm。
4.根据权利要求3所述的具有复合缓冲层的LED外延结构,其特征在于:所述第一缓冲层的厚度范围为0.01~50nm。
5.根据权利要求3所述的具有复合缓冲层的LED外延结构,其特征在于:所述第二缓冲层的厚度范围为2~200nm。
6.根据权利要求1所述的具有复合缓冲层的LED外延结构,其特征在于:所述衬底为蓝宝石衬底、或硅基衬底、或碳化硅衬底或上述衬底的复合衬底。
7.根据权利要求1所述的具有复合缓冲层的LED外延结构,其特征在于:相邻于所述复合缓冲层的所述半导体层为硅、或锗、或砷化镓、或宽禁带Ⅲ族氮化物半导体材料中的一种。
CN202020748499.5U 2020-05-08 2020-05-08 具有复合缓冲层的led外延结构 Active CN211700320U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020748499.5U CN211700320U (zh) 2020-05-08 2020-05-08 具有复合缓冲层的led外延结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020748499.5U CN211700320U (zh) 2020-05-08 2020-05-08 具有复合缓冲层的led外延结构

Publications (1)

Publication Number Publication Date
CN211700320U true CN211700320U (zh) 2020-10-16

Family

ID=72783874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020748499.5U Active CN211700320U (zh) 2020-05-08 2020-05-08 具有复合缓冲层的led外延结构

Country Status (1)

Country Link
CN (1) CN211700320U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113629175A (zh) * 2020-05-08 2021-11-09 聚灿光电科技股份有限公司 具有复合缓冲层的led外延结构及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113629175A (zh) * 2020-05-08 2021-11-09 聚灿光电科技股份有限公司 具有复合缓冲层的led外延结构及其制备方法

Similar Documents

Publication Publication Date Title
US20100123118A1 (en) LED Epitaxial Wafer with Patterned GaN based Substrate and Manufacturing Method For the Same
CN102208337B (zh) 一种硅基复合衬底及其制造方法
US10014436B2 (en) Method for manufacturing a light emitting element
CN104393128B (zh) 一种使用SiC衬底的氮化物LED外延结构及其制备方法
US10096746B2 (en) Semiconductor element and fabrication method thereof
CN101267008A (zh) 具三族氮化合物半导体缓冲层的光电半导体组件和其制造方法
CN114059165B (zh) 发光器件、氮化铝制品、氮化铝单晶及其制作方法、应用
CN108807625A (zh) 一种AlN缓冲层结构及其制备方法
CN107293618A (zh) 一种发光二极管外延片及其制备方法
CN109980061A (zh) 采用2d材料磊晶去疵单晶基板及其制备方法和制作组件
CN211700320U (zh) 具有复合缓冲层的led外延结构
EP2634294B1 (en) Method for manufacturing optical element and optical element multilayer body
US20150035123A1 (en) Curvature compensated substrate and method of forming same
CN102208339B (zh) 碳化硅基复合衬底及其制造方法
CN204303857U (zh) 一种使用二维衍生膜的氮化物led外延片结构
JP5551131B2 (ja) 窒化物半導体積層構造体の製造方法
CN204167345U (zh) 一种使用 SiC 衬底的氮化物 LED 外延结构
CN103996611B (zh) 一种生长在金属Al衬底上的GaN薄膜及其制备方法和应用
CN106098874A (zh) 一种发光二极管的外延片及制备方法
CN113445004A (zh) 一种AlN薄膜及其制备方法和应用
CN106129201B (zh) 一种发光二极管的外延片及其制备方法
CN113629175A (zh) 具有复合缓冲层的led外延结构及其制备方法
CN210897327U (zh) 硅基应力协变衬底及垂直结构氮化镓led
CN106384761A (zh) 生长在铝酸锶钽镧衬底上的InGaN/GaN纳米柱多量子阱及其制备方法
CN201741713U (zh) 一种硅基复合衬底

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant