CN211627683U - 一种燃料电池双极板接触电阻曲线的自动测试*** - Google Patents

一种燃料电池双极板接触电阻曲线的自动测试*** Download PDF

Info

Publication number
CN211627683U
CN211627683U CN201922201520.XU CN201922201520U CN211627683U CN 211627683 U CN211627683 U CN 211627683U CN 201922201520 U CN201922201520 U CN 201922201520U CN 211627683 U CN211627683 U CN 211627683U
Authority
CN
China
Prior art keywords
electrode
test
contact resistance
bipolar plate
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201922201520.XU
Other languages
English (en)
Inventor
张存满
张若凡
杨代军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201922201520.XU priority Critical patent/CN211627683U/zh
Application granted granted Critical
Publication of CN211627683U publication Critical patent/CN211627683U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本实用新型涉及一种燃料电池双极板接触电阻曲线的自动测试***,该***包括:测试控制柜,包括测试台面和控制器;测试部件,包括向测试样品施加压力的电极、于测量电极与测试样品压力的压力传感器、测量电极与测试样品间电阻的数字万用表,电极固定在测试台面上并通过执行机构驱动其沿垂直方向运动,压力传感器设置在电极上,数字万用表正负极分别对应连接电极和测试样品;执行机构,连接电极,驱动电极沿垂直方向运动;可调节支架,固定所述执行机构,并调节电极和执行机构在测试台面上的初始位置,可调节支架固定在测试台面上。与现有技术相比,本实用新型可以简便、可靠、高效、精准、高可重现性地测得燃料电池双极板的接触电阻。

Description

一种燃料电池双极板接触电阻曲线的自动测试***
技术领域
本实用新型属于燃料电池技术领域,尤其是涉及一种燃料电池双极板接触电阻曲线的自动测试***。
背景技术
燃料电池是把化学能直接连续转化为电能的高效、环保的发电***,是继水电、火电和核电之后第四种发电装置。其中,质子交换膜燃料电池有着寿命长、比功率和比能量高、室温下启动速度快等优点,可作为移动式电源和固定式电源使用,且在军事、交通、通讯等领域有着广阔的应用前景,被认为是适应未来能源与环境要求的理想动力源之一。双极板是质子交换膜燃料电池核心部件之一,占据了电池组很大一部分的质量和成本,且承担着均匀分配反应气体、传导电流、串联各单电池等功能。为了满足这些功能需要,理想的双极板应具有高的热/电导率、耐蚀性、低密度、良好的力学性能以及低成本、易加工等特点。但目前生产的双极板存在耐蚀性和导电性匹配性差、生产成本高和寿命短等问题。实现双极板材料的导电性和耐蚀性的合理匹配,即在保证导电性合理的前提下,实现高的耐蚀性,保障整个体系的服役寿命,是燃料电池商业化的关键环节之一。对双极板导电性测试的需求越来越多,高效准确地用一种***测试得到双极板接触电阻参数非常重要。而且,针对不同的电堆设计,即使采用完全一样的材料和部件来组装电堆,其组装力也不可能是完全一样的;因此,双极板与气体扩散层之间的接触电阻随组装压强的变化曲线对于电堆设计非常重要,并对电堆的发电性能与寿命影响巨大。
目前关于燃料电池接触电阻测试的专利,如专利文献CN101236221A为测试电器连接件间的接触电阻的电工学的方法;其测试的是两个金属件之间的接触电阻,没有考虑碳纸存在情况下接触电阻的测试与数据处理方法;而且该方法只能手动地得到单个压强影响下的接触电阻数据,无法针对多个压强点进行连续的测试,不符合实际研究和表征燃料电池双极板接触电阻的要求。
专利文献CN109557375A是面向工厂生产筛选双极板产品所需,该专利可实现单一压力下自动加压测试,根据测试结果自动甄别产品质量,并进行筛选放置,但没有考虑碳纸存在情况下接触电阻的测试与数据处理方法,测试结果将偏离实际情况较远,无法针对多个压强点进行连续的测试,不能很好地满足研发中对试制样品的测试需求。
专利文献CN207502614U以电解、冶金等高能耗行业中的断路器和隔离开关为背景,以解决触头接触电阻测试问题,但并非面向燃料电池领域的双极板接触电阻测试,且需手动改变压力、操作繁琐。
专利文献CN105572474A,以精确测量大面积整片双极板的接触电阻为目的,无法满足研发中测量小面积试制样品接触电阻的需求,且此设备需配合外部压力机使用,较为繁琐,不能实现自动测量和记录。
实用新型内容
本实用新型的目的就是为了克服上述现有技术存在的缺陷而提供一种燃料电池双极板接触电阻曲线的自动测试***。
本实用新型的目的可以通过以下技术方案来实现:
一种燃料电池双极板接触电阻曲线的自动测试***,该***包括:
测试控制柜:包括用于承载测试样品的测试台面和控制***工作的控制器;
测试部件:包括向测试样品施加压力的电极、用于测量电极与测试样品压力的压力传感器、以及用于测量电极与测试样品间电阻的数字万用表,所述的电极固定在测试台面上并通过执行机构驱动其沿垂直方向运动,所述的压力传感器设置在电极上,所述的数字万用表正负极分别对应连接电极和测试样品;
执行机构:执行端连接电极,驱动电极沿垂直方向运动,所述的压力传感器串联于执行机构执行端与电极之间;
可调节支架:用于固定所述执行机构,并调节电极和执行机构在测试台面上的初始位置,所述的可调节支架固定在测试台面上;
所述的压力传感器、数字万用表和执行机构均连接至所述的控制器。
所述的测试台面包括绝缘台面本体和绝缘垫板,所述的绝缘垫板设置在绝缘台面本体上,所述的绝缘垫板用于放置所述的测试样品。
所述的电极和执行机构之间串联有用于缓冲的柔性绝缘体。
所述的电极包括电极本体、连接夹具和可调夹具,所述的连接夹具通过夹具紧固螺钉固定在执行机构执行端,所述的电极本体通过可调夹具可拆卸式固定在所述的连接夹具上。
所述的执行机构包括电机和电动缸,所述的电机连接所述的电动缸,所述的电动缸输出轴连接所述的电极,所述的电动缸固定在可调节支架上。
所述的可调节支架包括Z轴支撑杆和X轴支撑杆,所述的Z轴支撑杆通过Z 轴固定器垂直固定在测试台面上,所述的X轴支撑杆平行于测试台面设置,其中部通过第一可调连接器与Z轴支撑杆连接,所述的Z轴支撑杆可做水平和垂直方向的移动,所述的X轴支撑杆的一端部通过第二可调连接器固定所述的执行机构。
所述的测试控制柜上设有用于手动和自动模式切换的切换按钮以及手动控制执行机构运行的控制按钮,所述的切换按钮和控制按钮均连接至控制器。
所述的控制器包括PLC控制器。
与现有技术相比,本实用新型具有如下优点:
(1)本实用新型测试过程为全自动进行,有效减少测试过程中的人为误差,可重复性好;
(2)测量精度高:本实用新型利用高精度的压力传感器,并对测试压力进行闭环控制,压力进度非常高;同时利用数字万用表的高频采集数据的优势,实现每个压强点下的多个数据点采集,有效减少随机误差;
(3)多压强点连续测量:设置好测试序列后,***自动依照序列依次测试,保证每个测试点不重复不遗漏,且输出多压强点的测试结果,便于使用者比较分析不同压强点下的接触电阻大小。
附图说明
图1是本实用新型测试***装置轴视图;
图2是本实用新型测试***装置右视图;
图3是本实用新型测试***装置正视图;
图4是本实用新型测试***工作台面轴视图;
图5是本实用新型测试***工作台面左视图;
图6是本实用新型测试***电极部分左视图;
图7是本实用新型测试***电极部分正视图;
图8是本实用新型测试***装置后视图;
图9是本实用新型测试***设计结构框图;
图10是本实用新型测试***进行测试的接线图;
图11是本实用新型测试***用于未表面处理铝金属双极板的多压强点测试结果图;
图12是本实用新型测试***用于石墨双极板的多压强点测试结果图;
图13是本实用新型测试***用于表面涂覆TiN/Ag涂层不锈钢双极板的多压强点测试结果图。
图中,1为执行机构,2为测试部件,3为可调节支架,4为测试控制柜,5 为急停按钮,6为手动控制下移按钮,7为手动控制上移按钮,8为手动控制速度切换按钮,9为***错误指示灯,10为***正常指示灯,11为手动/自动模式切换按钮,12为电源总开关,13为控制与通讯模组,14为数字万用表,15为万向轮, 16为电机,17为电动缸,18为压力传感器,19为柔性绝缘体,20为电极,21为测试样品,22为绝缘垫板,23为绝缘台面,24为Z轴支撑杆,25为第一可调连接器,26为X轴支撑杆,27为第二可调连接器,28为Z轴固定器,29为连接夹具,30为夹具紧固螺钉,31为可调夹具,32为电极本体,33为导线紧固通孔,34 为电源接口,35为控制通讯接口,36为数据采集接口,37为柜体,41为镀金铜电极,42为碳纸,43为双极板。
具体实施方式
下面结合附图和具体实施例对本实用新型进行详细说明。注意,以下的实施方式的说明只是实质上的例示,本实用新型并不意在对其适用物或其用途进行限定,且本实用新型并不限定于以下的实施方式。
实施例1
如图1~8所示,一种燃料电池双极板接触电阻曲线的自动测试***,该***包括:
测试控制柜4:包括用于承载测试样品21的测试台面和控制***工作的控制器;
测试部件2:包括向测试样品21施加压力的电极20、用于测量电极20与测试样品21压力的压力传感器18、以及用于测量电极20与测试样品21间电阻的数字万用表14,电极20固定在测试台面上并通过执行机构1驱动其沿垂直方向运动,压力传感器18设置在电极20上,数字万用表14正负极分别对应连接电极20和测试样品21,本实施例中电极20采用镀金铜电极;
执行机构1:执行端连接电极20,驱动电极20沿垂直方向运动,压力传感器 18串联于执行机构1执行端与电极20之间;
可调节支架3:用于固定所述执行机构1,并调节电极20和执行机构1在测试台面上的初始位置,可调节支架3固定在测试台面上;
压力传感器18、数字万用表14和执行机构1均连接至控制器。
测试台面包括绝缘台面23本体和绝缘垫板22,绝缘垫板22设置在绝缘台面 23本体上,绝缘垫板22用于放置测试样品21,实现了将测试电极20和测试样品 21与外部环境隔离开,保证测试导线正负极间的通路只存在于电极20和测试样品 21之间。
电极20和执行机构1之间串联有用于缓冲的柔性绝缘体19,执行机构1对测试样品21加压时,柔性绝缘体19提供位移的缓冲空间,可有效的提高压强的闭环控制精度和稳定性。
电极20包括电极本体32、连接夹具29和可调夹具31,连接夹具29通过夹具紧固螺钉30固定在执行机构1执行端,电极本体32通过可调夹具31可拆卸式固定在连接夹具29上,可以依据实际需要,更换成所需的尺寸、形状和材料的电极本体32,电极本体32上预留有导线紧固通孔33,为测试导线和电极本体32的紧密连接提供了螺栓连接孔。
执行机构1包括电机16和电动缸17,电机16连接电动缸17,电动缸17输出轴连接电极20,电动缸17固定在可调节支架3上。
可调节支架包括Z轴支撑杆24和X轴支撑杆26,Z轴支撑杆通过Z轴固定器28垂直固定在测试台面上,X轴支撑杆26平行于测试台面设置,其中部通过第一可调连接器25与Z轴支撑杆24连接,Z轴支撑杆24可做水平和垂直方向的移动,X轴支撑杆26的一端部通过第二可调连接器27固定执行机构1。Z轴固定器 28、第一可调连接器25和第二可调连接器27均为现有的预制件,通过调整第一可调连接器25和第二可调连接器27可以改变电极20离Z轴支撑杆24的距离和测试台面的距离。
控制器包括PLC控制器,PLC控制器有如下功能:
可以以实现与上位机的通讯和被控制;
可以控制执行机构1的位移,执行机构1压力的闭环控制;
存在手动控制和自动控制两种模式;
存在快速和慢速两种控制模式;
可以同时采集压力传感器18压力数据、数字万用表14的电阻数据;
可以设置数字万用表14当前的测量模式、测试量程;
可以侦测当前测试***工作是否正常,并给出相应的指示。
测试控制柜4包括柜体37,柜体37底部设有万向轮15,柜体37上设有急停按钮5、手动控制下移按钮6、手动控制上移按钮7、手动控制速度切换按钮8、***错误指示灯9、***正常指示灯10、手动/自动模式切换按钮11、电源总开关12、控制与通讯模组13,上述均连接至控制器。
如图9所示,本实用新型测试***设计结构框图,该***包括3个部分,分别是上位机软件控制***、电气控制***和机械测试工装,其中机械测试工装包括电极20(本实施例中为镀金铜电极20),上位机软件控制***连接电气控制***,电气控制***包括PLC控制器和与之连接的伺服电缸及压力传感器18,PLC控制器控制伺服电缸的运动并采集压力传感器18反馈的压力数据,压力数据反馈至上位机软件控制***,同时上位机软件控制***获取数字万用表14测量的电阻值。
采用本实用新型燃料电池双极板接触电阻曲线的自动测试***进行测试的具体过程为如图10所示,具体包括下述(1)~(7)几个过程:
(1)将待测的燃料电池双极板放置于测试台面上,并将拟测试的位置对准电极20在绝缘平台上的投影点;
(2)数字万用表14的正负极导线通过鳄鱼夹对应连接在电极20和燃料电池双极板上;
(3)将裁剪好的碳纸搁置于燃料电池双极板的测试点上,碳纸面积大于电极 20在绝缘平台上的投影面积;
(4)启动控制器,控制器控制执行机构1驱动电极20下移,在每一个设置的压强点采集接触电阻值并保存,对于单个压力点,在该压力点下多次采集接触电阻,去除最大最小值后取平均得到该压力点下的接触电阻值并保存,本实施例中采集三十二个数据点,去除三十二个数据点中的最大最小值、对其余数据点求取平均值的功能,可有效减少测试产生的随机误差;
(5)完成所有压力点的数据采集后拟合得到第一压强-接触电阻曲线 fep-cp/cp-bp(x),其中,x为压强序列,fep-cp/cp-bp(x)为第一接触电阻值;
(6)调取预先拟合的碳纸压强-接触电阻曲线fep-cp(x),fep-cp(x)为碳纸与电极 20的接触电阻值;
(7)求取燃料电池双极板接触电阻曲线:
fcp-bp(x)=fep-cp/cp-bp(x)-fep-cp(x),
其中,fcp-bp(x)为燃料电池双极板与碳纸的接触电阻。
这里需要强调说明的是:在上述过程(5)获取第一压强-接触电阻曲线后,该曲线中对应压力点所对应的第一接触电阻值包括镀金铜电极41的体电阻Re、镀金铜电极41与碳纸42间的接触电阻Re-cp、碳纸42的体电阻Rcp、碳纸42与测试样品21(即图10中的双极板43)间的接触电阻Rcp-bp和测试样品21的体电阻Rbp,具体如图10所示,在实际测试中,由于Re、Rcp和Rbp的值通常远远小于Re-cp和 Rcp-bp的值,因此在计算中可以认为Re、Rcp和Rbp约等于0,而只需要消除Re-cp带来的测试误差。因此,通过上述(6)和(7)消除Re-cp带来的测试误差。具体的,获取测试数据:因本实施例中的电极20为镀金铜电极41,因此测试以镀金铜板为测试样品21进行测试,此时得到电阻数值应该为两倍的镀金铜电极41和碳纸42 间的接触电阻:2Re-cp,进而可以计算得到镀金铜电极41和碳纸42间的接触电阻 Re-cp,对该数据进行拟合,得到其拟合方程fep-cp(x)。
本实施例测试样品21为未表面处理铝金属双极板样品(样品面积不小于镀金铜电极20在绝缘平台上的投影面积),将测试样品21放置在绝缘平台上,将测试位点置于镀金铜电极20投影点下方,利用四端钮接线法将导线正负极分别接在镀金铜电极20和测试样品21上,并保证其接触良好。裁剪好略大于镀金铜电极20 顶端凸台的碳纸放置于双极板上,将其圆心置于镀金铜电极20投影点下方。在上位机打开测试软件,并保证测试***下位机与上位机的通讯接口良好连接。在电脑中打开测试***软件,输入当前测试的样品编号、涂层编号、碳纸型号、碳纸的电阻值拟合方程参数、测试电极20头的直径(单位:mm),设置测试区间和间隔步长,或者手动导入测试压强点表格,生成测试序列。点击“自动测试”按钮,设备将自动运行。镀金铜电极20在电动缸17的带动下向下移动,并且在每一个设置的压力点保持和采集电阻值,采集到的电阻值绘制在软件界面的图中,并记录数据。完成所有压力点的数据采集后,自动根据测试得到的数据,拟合出压强-接触电阻曲线,给出拟合方程的参数。便于在整个测试区间内选取任意压强点获得其对应的接触电阻值。测试结束,镀金铜电极20复位到初始位置,等待下一次测试。所有在测试项目中设置的参数、测试数据、拟合的方程都将记录在数据文件中,并且导出到格式为.csv的表格文件。该实施例中测试结果如图11所示。
实施例2
本实施例燃料电池双极板接触电阻曲线的自动测试***及方法与实施例1相同,本实施例中测试样品为石墨双极板,测试结果如图12所示,具体测试方法为:
将待测试的石墨双极板样品(样品面积不小于镀金铜电极在绝缘平台上的投影面积)放置在绝缘平台上,将测试位点置于镀金铜电极投影点下方,利用四端钮接线法将导线正负极分别接在镀金铜电极和测试样品上,并保证其接触良好。裁剪好略大于镀金铜电极顶端凸台的碳纸放置于双极板上,将其圆心置于镀金铜电极投影点下方。在上位机打开测试软件,并保证测试***下位机与上位机的通讯接口良好连接。在电脑中打开测试***软件,输入当前测试的样品编号、涂层编号、碳纸型号、碳纸的电阻值拟合方程参数、测试电极头的直径(单位:mm),设置测试区间和间隔步长,或者手动导入测试压强点表格,生成测试序列。点击“自动测试”按钮,设备将自动运行。镀金铜电极在电动缸的带动下向下移动,并且在每一个设置的压力点保持和采集电阻值,采集到的电阻值绘制在软件界面的图中,并记录数据。完成所有压力点的数据采集后,自动根据测试得到的数据,拟合出压强-接触电阻曲线,给出拟合方程的参数。便于在整个测试区间内选取任意压强点获得其对应的接触电阻值。测试结束,镀金铜电极复位到初始位置,等待下一次测试。所有在测试项目中设置的参数、测试数据、拟合的方程都将记录在数据文件中,并且导出到格式为.csv的表格文件。
实施例3
本实施例燃料电池双极板接触电阻曲线的自动测试***及方法与实施例1相同,本实施例中测试样品为表面涂覆TiN/Ag涂层不锈钢双极板,测试结果如图13 所示,具体测试方法为:将待测试的表面涂覆TiN/Ag涂层不锈钢双极板样品(样品面积不小于镀金铜电极在绝缘平台上的投影面积)放置在绝缘平台上,将测试位点置于镀金铜电极投影点下方,利用四端钮接线法将导线正负极分别接在镀金铜电极和测试样品上,并保证其接触良好。裁剪好略大于镀金铜电极顶端凸台的碳纸放置于双极板上,将其圆心置于镀金铜电极投影点下方。在上位机打开测试软件,并保证测试***下位机与上位机的通讯接口良好连接。在电脑中打开测试***软件,输入当前测试的样品编号、涂层编号、碳纸型号、碳纸的电阻值拟合方程参数、测试电极头的直径(单位:mm),设置测试区间和间隔步长,或者手动导入测试压强点表格,生成测试序列。点击“自动测试”按钮,设备将自动运行。镀金铜电极在电动缸的带动下向下移动,并且在每一个设置的压力点保持和采集电阻值,采集到的电阻值绘制在软件界面的图中,并记录数据。完成所有压力点的数据采集后,自动根据测试得到的数据,拟合出压强-接触电阻曲线,给出拟合方程的参数。便于在整个测试区间内选取任意压强点获得其对应的接触电阻值。测试结束,镀金铜电极复位到初始位置,等待下一次测试。所有在测试项目中设置的参数、测试数据、拟合的方程都将记录在数据文件中,并且导出到格式为.csv的表格文件。
综上,本实用新型可以简便、可靠、高效、精准、高可重现性地测得燃料电池双极板单侧的接触电阻。
上述实施方式仅为例举,不表示对本实用新型范围的限定。这些实施方式还能以其它各种方式来实施,且能在不脱离本实用新型技术思想的范围内作各种省略、置换、变更。

Claims (8)

1.一种燃料电池双极板接触电阻曲线的自动测试***,其特征在于,该***包括:
测试控制柜(4):包括用于承载测试样品(21)的测试台面和控制***工作的控制器;
测试部件(2):包括向测试样品(21)施加压力的电极(20)、用于测量电极(20)与测试样品(21)压力的压力传感器(18)、以及用于测量电极(20)与测试样品(21)间电阻的数字万用表(5),所述的电极(20)固定在测试台面上并通过执行机构(1)驱动其沿垂直方向运动,所述的压力传感器(18)设置在电极(20)上,所述的数字万用表(5)正负极分别对应连接电极(20)和测试样品(21);
执行机构(1):执行端连接电极(20),驱动电极(20)沿垂直方向运动,所述的压力传感器(18)串联于执行机构(1)执行端与电极(20)之间;
可调节支架(3):用于固定所述执行机构(1),并调节电极(20)和执行机构(1)在测试台面上的初始位置,所述的可调节支架(3)固定在测试台面上;
所述的压力传感器(18)、数字万用表(5)和执行机构(1)均连接至所述的控制器。
2.根据权利要求1所述的一种燃料电池双极板接触电阻曲线的自动测试***,其特征在于,所述的测试台面包括绝缘台面(23)本体和绝缘垫板(22),所述的绝缘垫板(22)设置在绝缘台面(23)本体上,所述的绝缘垫板(22)用于放置所述的测试样品(21)。
3.根据权利要求1所述的一种燃料电池双极板接触电阻曲线的自动测试***,其特征在于,所述的电极(20)和执行机构(1)之间串联有用于缓冲的柔性绝缘体(19)。
4.根据权利要求1所述的一种燃料电池双极板接触电阻曲线的自动测试***,其特征在于,所述的电极(20)包括电极本体(32)、连接夹具(29)和可调夹具(31),所述的连接夹具(29)通过夹具紧固螺钉(30)固定在执行机构(1)执行端,所述的电极本体(32)通过可调夹具(31)可拆卸式固定在所述的连接夹具(29)上。
5.根据权利要求1所述的一种燃料电池双极板接触电阻曲线的自动测试***,其特征在于,所述的执行机构(1)包括电机(16)和电动缸(17),所述的电机(16)连接所述的电动缸(17),所述的电动缸(17)输出轴连接所述的电极(20),所述的电动缸(17)固定在可调节支架(3)上。
6.根据权利要求1所述的一种燃料电池双极板接触电阻曲线的自动测试***,其特征在于,所述的可调节支架(3)包括Z轴支撑杆(24)和X轴支撑杆(26),所述的Z轴支撑杆通过Z轴固定器(28)垂直固定在测试台面上,所述的X轴支撑杆(26)平行于测试台面设置,其中部通过第一可调连接器(25)与Z轴支撑杆(24)连接,所述的Z轴支撑杆(24)可做水平和垂直方向的移动,所述的X轴支撑杆(26)的一端部通过第二可调连接器(27)固定所述的执行机构(1)。
7.根据权利要求1所述的一种燃料电池双极板接触电阻曲线的自动测试***,其特征在于,所述的测试控制柜(4)上设有用于手动和自动模式切换的切换按钮以及手动控制执行机构(1)运行的控制按钮,所述的切换按钮和控制按钮均连接至控制器。
8.根据权利要求1所述的一种燃料电池双极板接触电阻曲线的自动测试***,其特征在于,所述的控制器包括PLC控制器。
CN201922201520.XU 2019-12-10 2019-12-10 一种燃料电池双极板接触电阻曲线的自动测试*** Active CN211627683U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201922201520.XU CN211627683U (zh) 2019-12-10 2019-12-10 一种燃料电池双极板接触电阻曲线的自动测试***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201922201520.XU CN211627683U (zh) 2019-12-10 2019-12-10 一种燃料电池双极板接触电阻曲线的自动测试***

Publications (1)

Publication Number Publication Date
CN211627683U true CN211627683U (zh) 2020-10-02

Family

ID=72628615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201922201520.XU Active CN211627683U (zh) 2019-12-10 2019-12-10 一种燃料电池双极板接触电阻曲线的自动测试***

Country Status (1)

Country Link
CN (1) CN211627683U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630537A (zh) * 2021-01-15 2021-04-09 葛华林 一种电阻器批量检测***及其使用方法
CN113267730A (zh) * 2021-04-30 2021-08-17 广汽本田汽车有限公司 一种动力电池检测方法、***、装置及介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630537A (zh) * 2021-01-15 2021-04-09 葛华林 一种电阻器批量检测***及其使用方法
CN113267730A (zh) * 2021-04-30 2021-08-17 广汽本田汽车有限公司 一种动力电池检测方法、***、装置及介质

Similar Documents

Publication Publication Date Title
CN111141959A (zh) 一种燃料电池双极板接触电阻曲线的自动测试***及方法
CN211627683U (zh) 一种燃料电池双极板接触电阻曲线的自动测试***
CN201681119U (zh) 焊点电迁移电压的数据采集***
CN201344966Y (zh) 耐压测试装置
CN102565537B (zh) 一种滑动电接触模拟测试***
CN113701824B (zh) 一种燃料电池局部电流密度-温度分布测试装置及方法
CN106501109A (zh) 一种电‑化‑热氛围下储能材料的原位纳米压痕测试平台
CN102323454B (zh) 燃料电池测试夹具及其装配方法
CN212514783U (zh) 一种热电材料与金属电极之间接触电阻的自动化测试设备
EP1755188A1 (en) Fuel cell current distribution measuring equipment and fuel cell current distribution measuring method
CN201974482U (zh) 一种燃料电池用金属极板的电阻测量装置
CN108226789A (zh) 一种中低温固体氧化物燃料电池的性能测试方法
CN112904205A (zh) 一种燃料电池测量装置
CN107576711B (zh) 高通量电化学检测***及高通量电化学检测方法
CN215866477U (zh) 实验用土体电阻率测量装置的测量固定装置
CN213934014U (zh) 一种测试导电布表面阻抗的检测装置
KR20230120707A (ko) 연료전지의 이온전도도 측정 장치 및 방법
CN111272855B (zh) 用于燃料电池工作状态下单电极电化学测试的测试装置
CN209496127U (zh) 电缸压接机构及大电流一次载流导体电缸随动压接触装置
CN212031596U (zh) 一种简易的铁氧体磁心电阻测量装置
CN208207070U (zh) 一种自动探针测试装置及***
CN107664998A (zh) 一种电极极片的厚度控制装置及方法
CN109725257B (zh) 高通量纽扣式电池性能检测***及其方法
CN110285857A (zh) 一种燃料电池检测设备
CN221405857U (zh) 一种浆料低温固化导电性测试装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant