CN211293596U - 基于超大应用场景的超大柔性全息屏和硬质全息屏 - Google Patents

基于超大应用场景的超大柔性全息屏和硬质全息屏 Download PDF

Info

Publication number
CN211293596U
CN211293596U CN201922105733.2U CN201922105733U CN211293596U CN 211293596 U CN211293596 U CN 211293596U CN 201922105733 U CN201922105733 U CN 201922105733U CN 211293596 U CN211293596 U CN 211293596U
Authority
CN
China
Prior art keywords
film
flexible
transparent
layer
oversized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201922105733.2U
Other languages
English (en)
Inventor
王广军
余为伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingmen City Dream Exploring Technology Co ltd
Original Assignee
Jingmen City Dream Exploring Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingmen City Dream Exploring Technology Co ltd filed Critical Jingmen City Dream Exploring Technology Co ltd
Priority to CN201922105733.2U priority Critical patent/CN211293596U/zh
Application granted granted Critical
Publication of CN211293596U publication Critical patent/CN211293596U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本实用新型涉及3D显示领域,公开了基于超大应用场景的超大柔性全息屏,包括若干呈矩阵排列、粘接在一起的柔性全息投影单元,超大柔性全息屏以及柔性全息投影单元均为柔性可弯曲结构,柔性全息投影单元由两层柔性基元膜通过透明胶水粘接形成,单层柔性基元膜由若干相间平行排列的反射层和透明层组成,与现有高精度光学玻璃加工相比,一方面柔性基元膜的材料成本较低,另一方面在对其进行加工时,不容易碎,也不会出现玻璃加工过程中产生残余应力等问题,大大提高了良品率,适合大范围推广,同时柔性全息膜,可以做成卷轴式屏幕、曲面屏幕等,灵活度较高,不使用时方便收纳,占用空间较小。

Description

基于超大应用场景的超大柔性全息屏和硬质全息屏
技术领域
本实用新型涉及3D显示领域,尤其是涉及基于超大应用场景的超大柔性全息屏和硬质全息屏。
背景技术
3D显示技术能够在空间显示出立体画面,是下一代显示技术的主流方向。虽然已经有很多可以实现3D显示的方案,比如体显示技术、立体图像对技术、佩珀耳幻象等,但是目前还没有一种比较完美的3D 解决方案,其主要原因是缺乏对大面积光源操控的光学玻璃元件。
传统的光学玻璃加工工艺只能够在百微米尺度进行微结构加工,更高精度的大面积光学加工需要及其高昂的加工成本,而且光学玻璃本身为硬材质,加工过程中容易出现破碎以及产生残余应力等问题。
大一点的3D显示投影屏通常为十几英寸至几十英寸,但是超大的 3D显示投影屏一般为几十英寸到几百英寸(对角线),甚至更大,在类似于足球场或者其他超大露天场景进行实际应用时,由于制造工艺、安装、运输、机械等方面的原因,通常需要由若干个较小的投影单元拼接成超大的全息投影屏,加上构成每个投影单元的光学玻璃易碎的特性,还需要设置一些结构对每个投影单元的玻璃进行保护和支撑,使得全息投影屏整体更加繁重,不利于拆装和检修。
实用新型内容
本实用新型要解决的技术问题就在于:针对上述现有技术的不足,提供基于超大应用场景的超大柔性全息屏和硬质全息屏。
为解决上述技术问题,本实用新型提出的技术方案为:
基于超大应用场景的超大柔性全息屏,包括若干呈矩阵排列、粘接在一起的柔性全息投影单元,所述超大柔性全息屏以及柔性全息投影单元均为柔性可弯曲结构,所述柔性全息投影单元由两层柔性基元膜通过透明胶水粘接形成,单层所述柔性基元膜由若干相间平行排列的反射层和透明层组成;
所述反射层为具有反射光线功能的反射膜,用于反射光线;
所述透明层用于透射光线;
组成柔性全息投影单元的两层柔性基元膜之间的反射层以及透明层均以夹角θ交错并形成栅格(4),87°≤θ≤93°,优选90°;
所述柔性全息投影单元的水平夹持下垂长度为H(cm)、可对折次数为n,满足:
H≥5或n*H>9;
所述柔性全息屏的透明层厚度为d(μm)、最长边为L(cm),二者之间满足:
1<d/L<10。
进一步地,所述反射层厚度为0.1μm~25μm,所述透明层厚度为 1mm~10cm,所述透明层的厚度大于反射层的厚度。
进一步地,所述反射膜为铝箔、铁箔、锡箔、锌箔、铜箔、铬箔、镍箔和钛箔中的任意一种。
进一步地,所述透明层为透明胶水的固化层和/或通过透明胶水粘接的透射膜层。
进一步地,所述透明胶水为透明的环氧树脂AB胶、UV胶、无影胶、透明玻璃胶、透明木工胶和透明万能胶中的任意一种。
进一步地,所述透射膜为透明材质的塑料膜、PMMA膜、1PMMA膜、 PS膜、PC膜、苯乙烯丙烯腈膜、MS膜、PET膜、PETG膜、ABS膜、 PP膜、PA膜、SAN膜、MBS膜、PES膜、CR-39膜、TPX膜、HEMA膜、 F4膜、F3膜、EFP膜、PVF膜、PVDF膜、EP膜、PF膜、UP膜、醋酸纤维素膜、硝酸纤维素膜、EVA膜、PE膜、PVC膜、无定形环烯烃膜和改性双酚A环氧树脂膜中的任意一种。
进一步地,单层所述柔性基元膜通过透明胶水粘接有柔性透明保护膜。
进一步地,所述柔性透明保护膜为透明材质的PMMA膜、PMMA膜、 PS膜、PC膜、苯乙烯丙烯腈膜、MS膜、PET膜、PETG膜、ABS膜、 PP膜、PA膜、SAN膜、MBS膜、PES膜、CR-39膜、TPX膜、HEMA膜、 F4膜、F3膜、EFP膜、PVF膜、PVDF膜、EP膜、PF膜、UP膜、醋酸纤维素膜、硝酸纤维素膜、EVA膜、PE膜、PVC膜、无定形环烯烃膜和改性双酚A环氧树脂膜中的任意一种。
本实用新型还提供一种基于超大应用场景的超大硬质全息屏,包括超大的硬质透明平板以及粘附在硬质透明平板上的如上述的超大柔性全息屏。
基于超大应用场景的超大硬质全息屏,包括若干呈矩阵排列、粘接在一起的硬质全息投影单元,所述硬质全息投影单元由两层硬质基元膜通过透明胶水粘接形成,或者是由一层如上述的柔性基元膜与一层硬质基元膜通过透明胶水粘接形成,所述硬质基元膜为粘结了一层硬质透明保护膜的柔性基元膜。
进一步地,所述透明保护膜为透明材质的玻璃、亚克力和塑料中的任意一种。
与现有技术相比,本实用新型的优点在于:
1、本实用新型所述的超大柔性全息屏和超大硬质全息屏均包含了柔性基元膜,与现有高精度光学玻璃加工相比,一方面柔性基元膜的材料成本较低,另一方面在对其进行加工时,不容易碎,也不会出现玻璃加工过程中产生残余应力等问题,大大提高了良品率,适合大范围推广;
2、本实用新型所述的超大柔性全息屏本身为柔性,使得在具体应用时,可以做成卷轴式屏幕、曲面屏幕等,无需增加繁重的支撑和保护,灵活度较高,不使用时收纳方便,占用空间较小。
3、在柔性基元膜的基础上,通过增加了硬质透明保护膜使其应用在超大硬质全息屏上,使得超大硬质全息屏整体不容易碎,应用时可以减少对其繁重的保护,检修起来更加方便。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型所述超大柔性全息屏或超大硬质全息屏的正视图,
图2为将超大柔性全息屏粘附在超大硬质透明平板5上的超大硬质全息屏,
图3为柔性全息投影单元1的立体结构图,
图4为图3的正视图和俯视图,
图5为透明层22为透明胶水固化层的柔性基元膜2的正视图,
图6为透明层22为透明胶水和透射膜共同构成的另一种柔性基元膜2的正视图,
图7为图6中I的局部放大图,
图8为一层柔性基元膜2和一层硬质基元膜7构成的硬质全息投影单元6的结构图,
图9为两层硬质基元膜7或者一层带透明保护膜4的柔性基元膜 2和一层硬质基元膜7构成的硬质全息投影单元6的结构图,
图10为柔性全息投影单元2或者硬质全息投影单元6的成像原理图,
图11为图10的侧视图,
图12为图11中II的局部内部光线反射原理图,
图13为超大柔性全息屏或者超大硬质全息屏的成像效果图,
图14为本实用新型所述的超大柔性全息屏或者超大硬质全息屏成像光路仿真效果图,
附图标记如下:
柔性全息投影单元1,柔性基元膜2,反射层21,透明层22,栅格3,柔性透明保护膜4,透明平板5,硬质全息投影单元6,硬质基元膜7,硬质透明保护膜8。
具体实施方式
为了使本领域技术人员更好地理解本实用新型的技术方案,下面结合附图对本实用新型进行详细描述,本部分的描述仅是示范性和解释性,不应对本实用新型的保护范围有任何的限制作用。
基于超大应用场景的超大柔性全息屏,包括若干呈矩阵排列、粘接在一起的柔性全息投影单元1,超大柔性全息屏以及柔性全息投影单元1均为柔性可弯曲结构,柔性全息投影单元1由两层柔性基元膜2通过透明胶水粘接形成,单层柔性基元膜2由若干相间平行排列的反射层21和透明层22组成;
反射层21为具有反射光线功能的反射膜,用于反射光线,需要说明的是,如果反射膜过厚的话会遮挡过多光线,越薄越好,但是考虑到工艺制备难度和成本,反射膜厚度选用0.1μm~25μm的铝箔、铁箔、锡箔、锌箔、铜箔、铬箔、镍箔、钛箔或者其他能够反射光线的反射膜;
透明层22为透明胶水的固化层和/或通过透明胶水粘接的透射膜层,用于透射光线,且满足透明层22的厚度始终大于反射层21的厚度,透明层的厚度优选1mm~10cm;
透明胶水为透明的环氧树脂AB胶、UV胶、无影胶、透明玻璃胶、透明木工胶和透明万能胶中的任意一种;
透射膜为透明材质的塑料膜、PMMA膜、IPMMA膜、PS膜、PC膜、苯乙烯丙烯腈膜、MS膜、PET膜、PETG膜、ABS膜、PP膜、PA膜、 SAN膜、MBS膜、PES膜、CR-39膜、TPX膜、HEMA膜、F4膜、F3 膜、EFP膜、PVF膜、PVDF膜、EP膜、PF膜、UP膜、醋酸纤维素膜、硝酸纤维素膜、EVA膜、PE膜、PVC膜、无定形环烯烃膜和改性双酚 A环氧树脂膜中的任意一种;
反射层21和透明层22之间可以是通过透明胶水粘接在一起,也可以是将反射膜直接镀在透明层22上;
组成柔性全息投影单元1的两层柔性基元膜2之间的反射层21以及透明层22均以夹角θ交错并形成栅格3,其中87°≤θ≤93°,优选90°,组成柔性全息投影单元1的柔性基元膜2可以通过透明胶水粘接至少一层柔性透明保护膜4;
柔性透明保护膜4为透明材质的PMMA膜、IPMMA膜、PS膜、 PC膜、苯乙烯丙烯腈膜、MS膜、PET膜、PETG膜、ABS膜、PP膜、 PA膜、SAN膜、MBS膜、PES膜、CR-39膜、TPX膜、HEMA膜、F4膜、F3膜、EFP膜、PVF膜、PVDF膜、EP膜、PF膜、UP膜、醋酸纤维素膜、硝酸纤维素膜、EVA膜、PE膜、PVC膜、无定形环烯烃膜和改性双酚A环氧树脂膜中的任意一种;
透明层22是透明胶水的固化层和/或通过透明胶水粘接的透射膜层,基于以上透明胶水和透射膜的材质,固化后的透明层22具有较好的柔韧性,使得柔性基元膜1以及柔性全息屏都具有较好的柔韧性;
柔性全息投影单元1可以当作柔性3D显示全息膜单独使用,其水平夹持下垂长度为H(cm)、可对折次数为n,满足:H≥5或n*H> 9,实际应用时,为了尽可能保证可靠性,优选n≥2和H>9;
需要说明的是,其中n为可对折次数,测试时取面积为1O0cm2的正方形的柔性3D显示全息膜,将全息膜沿着正方形中间线位置(或者中线位置附近1cm范围内)对折成长方形,然后用两块平板将对折后的全息膜夹在中间,施加10~20N的力,加压3~5s,然后打开全息膜(此时完成一次对折测试),检查全息膜是否沿折痕断开成两截,如果没有断开,重复上述测试直到全息膜断开为两截,停止测试,测试过程总共折叠次数记为n;
其中H为水平夹持下垂长度,测试方法:取宽度5cm±0.5cm,长度约25cm的窄条全息膜,一端紧贴在水平基准桌面上,保证窄条伸出桌面长度为20cm±1cm,然后静置待窄条稳定后测量窄条伸出桌面一端的端点与水平基准桌面的垂直高度差记为水平下垂长度H;
上述的测试本身是一种加速测试手段,可以快速判断样品在长期使用过程中的可靠性,全息膜在应用时,需要承受多次的卷绕收纳和打开等操作,按照设计5年使用寿命计算,整个生命周期需要收纳、展开动作大约10000次,为了加速评估全息膜的寿命,本实用新型采用上述对折测试和水平夹持下垂长度测试。
当n*H>9时,n越大表明全息膜的极限弯折曲率半径越小,抗折断能力越强,同时L越大说明全息膜的柔性越好,越不容易因为卷绕破坏全息膜结构,实验发现n*H=9时基本等效10000次开合测试,满足最小设计寿命需求,过小的话,容易在产品的使用周期内出现质量问题,降低客户体验。
在实际应用时,也可以使用一些固化后相对较硬的透明胶水和透明薄膜,这样制备的全息膜对折时会断,但是卷绕起来却不会破坏结构,所以也适用卷绕屏。对于这类材料,只要满足了制备的柔性3D 显示全息膜可以卷绕成直径小于5cm的圆筒状,柔性3D显示全息膜整体比较柔顺,加工过程破裂损失也较小。H>5cm时,全息膜就可以比较容易卷绕成直径小于5cm的圆筒状。
本实用新型还提供一种基于超大应用场景的超大硬质全息屏,包括超大的硬质透明平板5以及粘附在硬质透明平板5上的如上述的超大柔性全息屏,基于一些露天的超大应用场景存在风的影响,可以将上述的超大柔性全息屏粘附在超大的硬质透明平板5上形成一张超大的硬质全息屏,从而提高其稳定性。
本实用新型还提供另一种超大硬质全息屏,包括若干呈矩阵排列、粘接在一起的硬质全息投影单元6,硬质全息投影单元6由两层硬质基元膜7通过透明胶水粘接形成,或者是由上述的柔性基元膜2与一层硬质基元膜7通过透明胶水粘接形成,硬质基元膜7是由柔性基元膜2上粘结了一层硬质透明保护膜8而形成的,其中硬质透明保护膜 8为透明材质的玻璃、亚克力和塑料膜中的任意一种,优选亚克力;
除了本身较硬的玻璃和亚克力等材料以外,透明保护膜为上述柔性透明保护膜4可采用的材料时,当透明保护膜的厚度较大时,本身也是较硬的透明保护膜,同样适用硬质全息投影单元6。
上述柔性全息屏或硬质全息屏的透明层22厚度为d(μm)、最长边为L(cm),满足:
1<d/L<10;
需要说明的是,实际成像时,如果全息屏分辨率越高,人眼所能识别的信息越多,观看的时候也越清晰舒适,但是人眼有一个极限角度分辨本领,大约是1′(1°的1/60),如果全息屏分辨率远高于人眼的分辨率极限,此时需要把全息屏的微结构做的非常精细,相应的制造成本也越高,同时过于精细的结构还会带来光的衍射问题,从而降低成像质量;
如果全息屏分辨率太差,远低于人眼的分辨率,那么画面清晰度就会非常差,观看体验也会大打折扣,因此,全息屏微结构设计需要跟人眼的特点相匹配;
当人眼观看通常观看远处的物体时,其细节分辨本领就会变差,太小的细节点,人眼就无法识别到,反之观看近处的物体时就可以很好的识别到细节信息;
通常全息屏越大,我们就可以离得越远来进行观看,如果全息屏较小,就必须离得近一点观看才比较舒适,因此,对于大的全息屏,可以放置在较远的地方观看,此时全息屏的微结构相应的就可以做的相对“粗糙”,全息屏上透明层22厚度为d(μm),投影屏的最长边为L(cm),当L超过0.6m,而d较小的话,加工难度随屏幕长度的增加呈幂函数形式急剧增加,此时为了平衡加工难度和显示效果,考虑人眼分辨率特点和制造工艺难度以及衍射等成像效果因素,d应当相应的增大,对于超大的全息屏来说,L长度至少要到达100m以上,那么d也应当根据实际增大到10cm左右,综上所述,d与L之间应满足:1<d/L<10,这样可以同时兼顾到各个方面,具体尺寸参考下表:
透明层厚度/μm 投影屏最长边/cm 公式
d L 1<d/L<10
100 34.4 2.91
100 100 1
300 100 3
1000 100 10
100000 10000 10
成像原理:投射光经由全息屏内部的反射层21反射,存在一次或多次反射,在相对于全息屏共轭的位置形成3D影像,该成像原理最终的成像效果与负折射率材料制成的平板透镜一致。
以上内容是结合具体的优选实施方式对本实用新型所作的进一步详细说明,不能认定本实用新型的具体实施只局限于这些说明。对于本实用新型所属技术领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本实用新型的保护范围。

Claims (10)

1.基于超大应用场景的超大柔性全息屏,其特征在于:包括若干呈矩阵排列、粘接在一起的柔性全息投影单元(1),所述超大柔性全息屏以及柔性全息投影单元(1)均为柔性可弯曲结构,所述柔性全息投影单元(1)由两层柔性基元膜(2)通过透明胶水粘接形成,单层所述柔性基元膜(2)由若干相间平行排列的反射层(21)和透明层(22)组成;
所述反射层(21)为具有反射光线功能的反射膜;
所述透明层(22)为透明胶水的固化层和/或通过透明胶水粘接的透射膜层;
组成柔性全息投影单元(1)的两层柔性基元膜(2)之间的反射层(21)以及透明层(22)均以夹角θ交错并形成栅格(3),87°≤θ≤93°;
所述柔性全息投影单元(1)的水平夹持下垂长度为H(cm)、可对折次数为n,满足:H≥5或n*H>9;
所述柔性全息屏的透明层(22)厚度为d(μm)、最长边为L(cm),二者之间满足:
1<d/L<10。
2.根据权利要求1所述的基于超大应用场景的超大柔性全息屏,其特征在于:所述反射层(21)厚度为0.1μm~25μm,所述透明层(22)厚度为1mm~10cm,所述透明层(22)的厚度大于反射层(21)的厚度。
3.根据权利要求1所述的基于超大应用场景的超大柔性全息屏,其特征在于:所述反射膜为铝箔、铁箔、锡箔、锌箔、铜箔、铬箔、镍箔和钛箔中的任意一种。
4.根据权利要求1所述的基于超大应用场景的超大柔性全息屏,其特征在于:所述透明胶水为透明的环氧树脂AB胶、UV胶、无影胶、透明玻璃胶、透明木工胶和透明万能胶中的任意一种。
5.根据权利要求1所述的基于超大应用场景的超大柔性全息屏,其特征在于:所述透射膜为透明材质的塑料膜、PMMA膜、IPMMA膜、PS膜、PC膜、苯乙烯丙烯腈膜、MS膜、PET膜、PETG膜、ABS膜、PP膜、PA膜、SAN膜、MBS膜、PES膜、CR-39膜、TPX膜、HEMA膜、F4膜、F3膜、EFP膜、PVF膜、PVDF膜、EP膜、PF膜、UP膜、醋酸纤维素膜、硝酸纤维素膜、EVA膜、PE膜、PVC膜、无定形环烯烃膜和改性双酚A环氧树脂膜中的任意一种。
6.根据权利要求1所述的基于超大应用场景的超大柔性全息屏,其特征在于:单层所述柔性基元膜(2)通过透明胶水粘接有柔性透明保护膜(4)。
7.根据权利要求6所述的基于超大应用场景的超大柔性全息屏,其特征在于:所述柔性透明保护膜(4)为透明材质的PMMA膜、IPMMA膜、PS膜、PC膜、苯乙烯丙烯腈膜、MS膜、PET膜、PETG膜、ABS膜、PP膜、PA膜、SAN膜、MBS膜、PES膜、CR-39膜、TPX膜、HEMA膜、F4膜、F3膜、EFP膜、PVF膜、PVDF膜、EP膜、PF膜、UP膜、醋酸纤维素膜、硝酸纤维素膜、EVA膜、PE膜、PVC膜、无定形环烯烃膜和改性双酚A环氧树脂膜中的任意一种。
8.基于超大应用场景的超大硬质全息屏,其特征在于:包括超大的透明平板(5)以及粘附在硬质透明平板(5)上的如权利要求1所述的超大柔性全息屏。
9.基于超大应用场景的超大硬质全息屏,其特征在于:包括若干呈矩阵排列、粘接在一起的硬质全息投影单元(6),所述硬质全息投影单元(6)由两层硬质基元膜(7)通过透明胶水粘接形成,或者是由一层如权利要求1所述的柔性基元膜(2)与一层硬质基元膜(7)通过透明胶水粘接形成,所述硬质基元膜(7)为粘结了一层硬质透明保护膜(8)的柔性基元膜(2)。
10.根据权利要求9所述的基于超大应用场景的超大硬质全息屏,其特征在于:所述硬质透明保护膜(8)为透明材质的玻璃、亚克力和塑料中的任意一种。
CN201922105733.2U 2019-11-29 2019-11-29 基于超大应用场景的超大柔性全息屏和硬质全息屏 Active CN211293596U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201922105733.2U CN211293596U (zh) 2019-11-29 2019-11-29 基于超大应用场景的超大柔性全息屏和硬质全息屏

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201922105733.2U CN211293596U (zh) 2019-11-29 2019-11-29 基于超大应用场景的超大柔性全息屏和硬质全息屏

Publications (1)

Publication Number Publication Date
CN211293596U true CN211293596U (zh) 2020-08-18

Family

ID=72020726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201922105733.2U Active CN211293596U (zh) 2019-11-29 2019-11-29 基于超大应用场景的超大柔性全息屏和硬质全息屏

Country Status (1)

Country Link
CN (1) CN211293596U (zh)

Similar Documents

Publication Publication Date Title
CN110888194B (zh) 一种柔性全息基元膜的制备方法和应用
CN102741713B (zh) 光学组件以及显示装置
US20140354920A1 (en) Multi-panel display apparatus and manufacturing method thereof
JP6104904B2 (ja) 反射型面対称結像素子の製造方法、反射型面対称結像素子、前記反射型面対称結像素子を備えた空間映像表示装置
CN110794504B (zh) 一种柔性全息基元膜及其制备方法和应用
RU2010154064A (ru) Оптическая сборка и автостереоскопическое устройство отображения на ее основе
CN106707377B (zh) 一种背光模组用多层复合膜的制备方法
JP5790169B2 (ja) 反射型スクリーン、反射型スクリーンの製造方法、及び反射型投射システム
JP2005313638A5 (zh)
JP2002523812A (ja) 超薄型光学パネル及び超薄型光学パネルの製造方法
CN110888296A (zh) 基于超大应用场景的超大柔性全息屏和硬质全息屏
CN107850698A (zh) 层叠片、液晶显示模块、背光单元及层叠片的制造方法
CN106814496A (zh) 光学膜和包括光学膜的液晶显示器
CN106908865A (zh) 一种复合增光膜及其制备方法
CN111338015B (zh) 基于二维特征的反射式几何全息膜及其制备方法和应用
CN211293596U (zh) 基于超大应用场景的超大柔性全息屏和硬质全息屏
CN210005798U (zh) 光学装置
CN110596906A (zh) 立式投影***
CN211293326U (zh) 柔性基元膜、柔性全息膜和硬质基元膜、硬质全息膜
US9864178B2 (en) Reflection imaging device and method of producing reflection imaging device
CN211293327U (zh) 柔性基元膜、柔性全息膜和硬质基元膜、硬质全息膜
CN207799124U (zh) 一种光学成像元件
CN211577471U (zh) 基于二维特征的反射式几何全息膜
CN110058334A (zh) 光学成像元件及其制造方法
CN111338016B (zh) 基于二维特征的反射式几何全息膜及其制备方法和应用

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 448000 building c2-b1, No.39 Jingnan Avenue, Duodao District, Jingmen City, Hubei Province

Patentee after: JINGMEN CITY DREAM EXPLORING TECHNOLOGY Co.,Ltd.

Address before: Shop 101, 201-111211118, 218-128, 228, 1f, 2f, building c5-5, Renmin Wanfu commercial city, 201 Peigong Avenue, Duodao District, Jingmen City, Hubei Province

Patentee before: JINGMEN CITY DREAM EXPLORING TECHNOLOGY Co.,Ltd.