CN210622880U - 多级热泵式双罐熔盐储能发电*** - Google Patents

多级热泵式双罐熔盐储能发电*** Download PDF

Info

Publication number
CN210622880U
CN210622880U CN201920901949.7U CN201920901949U CN210622880U CN 210622880 U CN210622880 U CN 210622880U CN 201920901949 U CN201920901949 U CN 201920901949U CN 210622880 U CN210622880 U CN 210622880U
Authority
CN
China
Prior art keywords
temperature
heat
molten salt
low
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201920901949.7U
Other languages
English (en)
Inventor
王含
张谨奕
李京浩
白宁
宗军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Power Investment Group Science and Technology Research Institute Co Ltd
Original Assignee
State Power Investment Group Science and Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Power Investment Group Science and Technology Research Institute Co Ltd filed Critical State Power Investment Group Science and Technology Research Institute Co Ltd
Priority to CN201920901949.7U priority Critical patent/CN210622880U/zh
Application granted granted Critical
Publication of CN210622880U publication Critical patent/CN210622880U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本实用新型提出一种多级热泵式双罐熔盐储能发电***,包括:高温熔盐罐、低温熔盐罐、高温防冻液罐、低温防冻液罐、压缩机、第一热泵、低温熔盐泵、高温熔盐泵、透平、第二热泵、高温防冻液泵、低温防冻液泵、第一换热器、第二换热器和发电机,通过选择性开启高温熔盐罐、低温熔盐罐、高温防冻液罐、低温防冻液罐、压缩机、第一热泵、低温熔盐泵、高温熔盐泵、透平、第二热泵、高温防冻液泵、低温防冻液泵、第一换热器、第二换热器和发电机中的一个或多个,将电能与热能相互转换。本实用新型能够实现风电或光伏发电等可再生能源电力的稳定输出,具有平衡电力供需作用,能够实现大规模储能,发挥储能调峰优势,解决可再生能源储能问题。

Description

多级热泵式双罐熔盐储能发电***
技术领域
本实用新型涉及储能技术领域,特别涉及一种多级热泵式双罐熔盐储能发电***。
背景技术
熔盐储热技术是在储热阶段,通过电能、太阳能等能源加热熔盐,将热量储存在高温熔盐内。在供热阶段通过高温熔盐放热,高温熔盐通过换热向热用户释放热量,释放热量的形式为供应蒸汽、通过供应蒸汽来推动汽轮机发电、供热等多种形式,可适用于光热电站储热、火电厂调峰、弃风弃光等可再生能源电量消纳、低谷电利用等储能***,起到移峰填谷、平衡热能供求的作用。
目前的相关技术中提出了一种热泵式交替储能供电方法及装置,包括储能供热模式和供电供热模式。通过两套蓄热***分别在储能供热和供电供热模式下交替储能与释能达到储能与供电的作用。在采用储能供热模式时,常温工作介质通过第一蓄热***等压吸热后,经过压缩机绝热压缩,再通过第二蓄热***等压放热,后进入透平绝热膨胀对外做功,最后作为暖气源供应释放到外界;其装置则沿工作气体的走向依次串联有进气装置、第一换热器、第一蓄热***、压缩机、第二换热器、第二蓄热***、透平和出气装置。另一种模式则为供热供电模式,常温工作介质经过压缩机绝热压缩后,通过第二蓄热***进行等压吸热,然后进入透平绝热膨胀对外做功,然后通过第一蓄热***进行等压放热,最后作为暖气源供应释放到外界;在此过程中净输出的功用于供电。该方案解决了光伏发电以及风能发电中的弃风以及弃光问题以及峰谷电的削峰填谷问题,在储能和供电的同时供暖,并将废气的余热回收于另一蓄热***中,提高了热功转换效率。
然而,以上技术方案存在如下缺陷:通过常温工作介质在储能(储电)时的循环模式是:压缩-放热(通过第二蓄热体)-膨胀做功-供暖-吸热(通过第一蓄热体);供电时的循环模式是:压缩-吸热(通过第二蓄热体)-膨胀做功-放热(通过第一蓄热体)-供暖。在储能循环模式下,如果采用单罐储能则不能完全储满热量和冷量;如果采用双罐储能,可储满热量和冷量;在供电循环模式下,为了维持作为高温热源的第二蓄热体和作为低温热源的第一蓄热体的温差和能量转换效率,需提高第二蓄热体的温度,则***压缩比提高,***高温端的温度也提高、增加了***对耐高温材料的需求;***为开式循环,当循环工质为氦气、氩气等气体时不适用。
实用新型内容
本实用新型旨在至少解决上述技术问题之一。
为此,本实用新型的目的在于提出一种多级热泵式双罐熔盐储能发电***,该***能够实现风电或光伏发电等可再生能源电力的稳定输出,具有平衡电力供需作用,能够实现大规模储能,发挥储能调峰优势,解决可再生能源储能问题。
为了实现上述目的,本实用新型提出了一种多级热泵式双罐熔盐储能发电***,包括:储能装置,所述储能装置包括高温熔盐罐、低温熔盐罐、高温防冻液罐、低温防冻液罐,热能以高温熔盐热能的形式储存在高温熔盐罐,以低温防冻液热能的形式储存在低温防冻液罐;能量转换装置,包括:压缩机、第一热泵、与所述低温熔盐罐相连的低温熔盐泵、与所述高温熔盐罐相连的高温熔盐泵、透平、第二热泵、与所述高温防冻液罐相连的高温防冻液泵、与所述低温防冻液罐相连的低温防冻液泵、第一换热器、第二换热器和发电机,其中,通过选择性开启由所述高温熔盐罐、低温熔盐罐、高温防冻液罐、低温防冻液罐、压缩机、第一热泵、低温熔盐泵、高温熔盐泵、透平、第二热泵、高温防冻液泵、低温防冻液泵、第一换热器、第二换热器和发电机中的一个或多个构成的回路,以将电能转换为热能,或将热能转换为电能。
另外,根据本实用新型上述的多级热泵式双罐熔盐储能发电***还可以具有如下附加的技术特征:
在一些示例中,在将电能转换为热能时,开启由所述压缩机、第一热泵、透平、第二热泵构成的回路,通过电力驱动所述压缩机,将电能转化成热气态工质,通过电力驱动所述第一热泵,热气态工质加热熔盐,熔盐温度升高,低温熔盐泵驱动熔盐从低温熔盐罐流出,流经第一热泵,熔盐被加热后流向高温熔盐罐,完成***高温端的储热。
在一些示例中,所述热气态工质流过所述透平后,温度降低,通过电力驱动所述第二热泵,冷气态工质从防冻液吸热,防冻液温度降低,高温防冻液泵驱动防冻液,从高温防冻液罐流出,流经第二热泵,防冻液放热后流向低温防冻液罐,完成***低温端的储热。
在一些示例中,其中,所述第一热泵将热气态工质的热量转移到熔盐中,在第一热泵的低温端,制热工质通过蒸发从热气态工质吸热,在第一热泵的高温端,制热工质通过冷凝向低温熔盐放热,低温熔盐转换为高温熔盐,流向高温熔盐罐。
在一些示例中,其中,所述第二热泵将低温防冻液的热量转移到冷气态工质中,在第二热泵的高温端,制冷工质通过冷凝向冷气态工质放热,在第二热泵的低温端,制冷工质通过蒸发从高温防冻液吸热,高温防冻液转换为低温防冻液,流向低温防冻液罐。
在一些示例中,当储热完成时,所述高温熔盐罐满罐,所述低温熔盐罐排空,所述低温防冻液罐满罐,所述高温防冻液罐排空。
在一些示例中,在将热能转换为电能时,关闭所述第一热泵和第二热泵,开启第一换热器和第二换热器,开启由所述压缩机、第一换热器、透平、第二换热器构成的回路。
在一些示例中,其中,通过所述压缩机做功压缩气态工质,高温熔盐被高温熔盐泵驱动,从高温熔盐罐流出,高温熔盐流过第一换热器时加热气态工质,换热后流向低温熔盐罐,使热气态工质膨胀做功,推动透平转动以带动发电机发电,热气态工质做功后,流过第二换热器,向低温防冻液放热,低温防冻液被低温防冻液泵驱动,从低温防冻液罐流出,换热后流向高温防冻液罐。
在一些示例中,当放电完成时,所述高温熔盐罐排空,低温熔盐罐满罐,低温防冻液罐排空,高温防冻液罐满罐。
在一些示例中,所述防冻液的冰点低于0℃,工作温度为-70℃~0℃。
根据本实用新型的多级热泵式双罐熔盐储能发电***,采用闭式循环,具有能量转换效率高、采用熔盐储热和防冻液储冷、两级热泵制热/冷、***高温端和低温端温度的温差稳定、安全可靠、清洁低碳的优点,利用同一套***实现储能和发电;利用两级热泵提高热功循环的温差、提高***总能量转换效率、降低各热泵压缩比、降低了设备成本;通过降低***低温端的温度,在确保***总能量转换效率的同时,降低了***高温端温度和对耐高温设备的要求;该***能够平抑风电或光伏发电等可再生能源发电的不稳定性、实现可再生能源电力稳定输出、缓解弃风弃光问题、火电厂调峰、低谷电利用等;该***为闭式循环,实现零排放、且工质选择范围广。
本实用新型的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本实用新型的实践了解到。
附图说明
本实用新型的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本实用新型一个实施例的多级热泵式双罐熔盐储能发电***的结构示意图。
图2是根据本实用新型一个具体实施例的多级热泵式双罐熔盐储能发电***在压缩空气储能循环时的结构及运行参数示意图;
图3是根据本实用新型一个具体实施例的多级热泵式双罐熔盐储能发电***在压缩空气储能循环时的运行参数曲线图;
图4是根据本实用新型一个具体实施例的多级热泵式双罐熔盐储能发电***在透平做功循环时的结构及运行参数示意图;
图5是根据本实用新型一个具体实施例的多级热泵式双罐熔盐储能发电***在透平做功循环时的运行参数曲线图;
图6是根据本实用新型一个具体实施例的多级热泵式双罐熔盐储能发电***在第一热泵循环时的结构及运行参数示意图;
图7是根据本实用新型一个具体实施例的多级热泵式双罐熔盐储能发电***在第一热泵循环时的运行参数曲线图;
图8是根据本实用新型一个具体实施例的多级热泵式双罐熔盐储能发电***在第二热泵循环时的结构及运行参数示意图;
图9是根据本实用新型一个具体实施例的多级热泵式双罐熔盐储能发电***在第二热泵循环时的运行参数曲线图。
具体实施方式
下面详细描述本实用新型的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本实用新型,而不能理解为对本实用新型的限制。
在本实用新型的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本实用新型的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实用新型中的具体含义。
以下结合附图描述根据本实用新型实施例的多级热泵式双罐熔盐储能发电***。
图1是根据本实用新型一个实施例的多级热泵式双罐熔盐储能发电***的结构示意图。该多级热泵式双罐熔盐储能发电***包括储能装置(图中未示出)和能量转换装置(图中未示出)。
其中,如图1所示,储能装置包括4个保温性能高的绝热罐,具体包括高温熔盐罐5、低温熔盐罐3、高温防冻液罐9、低温防冻液罐11,热能以高温熔盐热能的形式储存在高温熔盐罐5,以低温防冻液热能的形式储存在低温防冻液罐11。当储热完成(即将电能转换为热能完成)时,高温熔盐罐5满罐,低温熔盐罐3排空,低温防冻液罐11满罐,高温防冻液罐9排空。
在本实用新型的一个实施例中,采用冰点低于0℃的防冻液作为低温端储冷介质,防冻液工作温度-70℃~0℃,防冻液可为但不限于乙醇水溶液、乙二醇水溶液、丙三醇水溶液、盐水溶液(氯化钙、氯化镁、硝酸钠、亚硝酸钠);采用低熔点盐(硝酸盐、氯盐)作为高温端储热介质,降低了熔盐凝固的风险以及***对于熔盐防凝的要求。由于降低了防冻液的工作温度,因此在保证***能量转换效率的同时降低了***高温端的温度,降低***对于昂贵的耐高温材料需求。
能量转换装置利用电能驱动气态工质循环和两套热泵,将电能转化成热能形式储存。能量转换装置具体包括:压缩机1、第一热泵2、与低温熔盐罐3相连的低温熔盐泵4、与高温熔盐罐5相连的高温熔盐泵6、透平7、第二热泵8、与高温防冻液罐9相连的高温防冻液泵10、与低温防冻液罐11相连的低温防冻液泵12、第一换热器13、第二换热器14和发电机15。
具体地,通过选择性开启由高温熔盐罐5、低温熔盐罐3、高温防冻液罐9、低温防冻液罐11、压缩机1、第一热泵2、低温熔盐泵4、高温熔盐泵6、透平7、第二热泵8、高温防冻液泵10、低温防冻液泵12、第一换热器13、第二换热器14和发电机15中的一个或多个构成的回路,以将电能转换为热能,或将热能转换为电能。
储热阶段(即将电能转换为热能的阶段),气态工质进行布雷顿循环的逆循环。气态工质可为空气、氮气、氦气、氩气、氢气。在将电能转换为热能时,开启由压缩机1、第一热泵2、透平7、第二热泵8构成的回路,通过电力驱动压缩机1,将电能转化成热气态工质的能量;通过电力驱动第一热泵2,热气态工质加热熔盐,熔盐温度升高,低温熔盐泵4驱动熔盐从低温熔盐罐3流出,流经第一热泵2,熔盐被加热后流向高温熔盐罐5,完成***高温端的储热。
进一步地,热气态工质流过透平7后,温度降低,通过电力驱动第二热泵8,冷气态工质从防冻液吸热,防冻液温度降低,高温防冻液泵10驱动防冻液,从高温防冻液罐9流出,流经第二热泵8,防冻液放热后流向低温防冻液罐11,完成***低温端的储热。
其中,第一热泵2将热气态工质的热量转移到熔盐中,在第一热泵2的低温端,制热工质通过蒸发从热气态工质吸热,在第一热泵2的高温端,制热工质通过冷凝向低温熔盐放热,低温熔盐转换为高温熔盐,流向高温熔盐罐5。
其中,第二热泵8将低温防冻液的热量转移到冷气态工质中,在第二热泵8的高温端,制冷工质通过冷凝向冷气态工质放热,在第二热泵8的低温端,制冷工质通过蒸发从高温防冻液吸热,高温防冻液转换为低温防冻液,流向低温防冻液罐11。
在将热能转换为电能时(即发电阶段),通过相应阀门关闭第一热泵2和第二热泵8,开启第一换热器13和第二换热器14,开启由压缩机1、第一换热器13、透平7、第二换热器14构成的回路,以启动热-电转换的动力循环,该过程为电-热转换的逆过程,可简化为定压加热做功循环。
其中,通过压缩机1做功压缩气态工质,高温熔盐被高温熔盐泵6驱动,从高温熔盐罐5流出,高温熔盐流过第一换热器13时加热气态工质,换热后流向低温熔盐罐3,使热气态工质膨胀做功,推动透平7转动以带动发电机15发电,热气态工质做功后,流过第二换热器14,向低温防冻液放热,低温防冻液被低温防冻液泵12驱动,从低温防冻液罐11流出,换热后流向高温防冻液罐9。
当放电完成(即将热能转换为电能完成)时,高温熔盐罐5排空,低温熔盐罐3满罐,低温防冻液罐11排空,高温防冻液罐9满罐。进一步地,***可开始下一次储能发电循环。
作为具体的实施例,图2示例性展示了多级热泵式双罐熔盐储能发电***在压缩空气储能循环时的结构及运行参数。图3示例性展示了多级热泵式双罐熔盐储能发电***在压缩空气储能循环时的运行参数曲线。图4示例性展示了多级热泵式双罐熔盐储能发电***在透平做功循环时的结构及运行参数。图5示例性展示了多级热泵式双罐熔盐储能发电***在透平做功循环时的运行参数曲线。图6示例性展示了多级热泵式双罐熔盐储能发电***在第一热泵循环时的结构及运行参数。图7示例性展示了多级热泵式双罐熔盐储能发电***在第一热泵循环时的运行参数曲线。图8多级热泵式双罐熔盐储能发电***在第二热泵循环时的结构及运行参数。图9示例性展示了多级热泵式双罐熔盐储能发电***在第二热泵循环时的运行参数曲线。
作为具体的实施例,表1展示了主要运行参数的示例数值。
Figure BDA0002094587220000061
Figure BDA0002094587220000071
表1
综上,本实用新型上述的多级热泵式双罐熔盐储能发电***,在储热阶段,气态工质进行压缩-放热-膨胀做功-吸热的循环,外界向***净输入电能,气态工质通过热泵从防冻液吸热、向熔盐放热,热气态工质作为低品位热源通过第一热泵加热熔盐;冷气态工质通过第二热泵为防冻液制冷。通过气态工质循环和两套热泵的联合运行,降低了热泵压缩比,实现了热泵式双罐熔盐储能发电***在高温熔盐罐储热、在低温防冻液罐储冷,将热量从***的低温热源传递到高温热源,有效提升了整个***高温端和低温端的温差,从而提升了***储热发电的效率。在发电阶段,气态工质进行定压加热做功循环过程:压缩-吸热-膨胀做功-放热,***向外界净输出电能,气态工质通过换热器从熔盐吸热、向防冻液放热,透平做功大于压缩机做功,驱动发电机发电,***向外界净输出的功用于供电。由于在储能阶段整个***高温端和低温端的温差提高,***储热发电的效率提升。
该***采用压缩机-热泵/换热器-透平-热泵/换热器组成气态工质循环的主要装置,利用同一***,通过互逆的电-热转换循环和热-电转换循环,实现了利用同一***储热和发电,简化***、降低了成本。
该***采用低熔点熔盐作为高温端储热介质,采用较低冰点的防冻液作为低温端储热介质,采用气态工质作为储热和发电循环的工质。熔盐为一种低熔点盐,降低了熔盐凝固的风险及***对于熔盐防凝的要求。防冻液的工作温度降低,因此在保证***能量转换效率的同时,实现了降低热泵式双罐熔盐储能发电***的高温端温度,降低***对于昂贵的耐高温设备和材料的需求,降低了***成本。进一步地,气态工质在储热和发电阶段均为闭式循环,无排放无污染,实现了清洁低碳、高效节能的储能方式。
该***采用高温熔盐罐、低温熔盐罐、高温防冻液罐、低温防冻液罐分别储热、储冷的方式,避免了高温储能介质和低温储能介质的掺混,有效地维持了高温端和低温端温度的恒定、维持了***高温端和低温端的温差,确保了***储热发电的效率。该***提供了一种普遍适用于火电调峰、平抑风电或光伏发电等可再生能源发电的不稳定性、移峰填谷、缓解弃风弃光等问题的储能方式。
换言之,该***是一种以熔盐储热和防冻液储冷为基础、利用两级热泵为熔盐加热和防冻液制冷、采用透平和压缩机做功发电的闭式循环储能发电***,适用于火电厂调峰、风电和光伏等可再生能源储能、低谷电利用等领域。针对可再生能源不稳定和间歇性的特征,该储能发电***能够平抑风电或光伏发电等可再生能源发电的不稳定性、实现可再生能源电力稳定输出,具有平衡电力供需作用,能够实现大规模储能,发挥储能调峰优势,解决可再生能源储能问题。该***采用两级热泵提升***高温端的温度、降低***低温端的温度,降低了每一级热泵的压缩比;采用降低***低温端温度的方式,在保证能量转换效率的同时,实现了较低的***高温端温度,降低了***对耐高温材料的需求;***为闭式循环,实现零排放、且工质选择范围广。
该***的工作原理可概述为:采用熔盐作为高温端储热介质,采用防冻液作为低温端储热介质,采用气态工质作为储热和发电循环的工质。在储热阶段,气态工质进行压缩-放热(通过第一热泵)-膨胀做功-吸热(通过第二热泵)的循环过程,气态工质从防冻液吸热、向熔盐放热,热气态工质作为低品位热源通过第一热泵加热熔盐,低温熔盐换热后流向高温熔盐罐储存;冷气态工质通过第二热泵冷却防冻液,为防冻液制冷,高温防冻液换热后流向低温防冻液罐储存。高温热量储存在高温熔盐罐内;低温热量储存在低温防冻液罐内。此阶段,压缩机做功和热泵做功的总功大于透平做功,外界向***净输入电能;在发电阶段,气态工质进行定压加热做功循环过程:压缩-吸热(通过第一换热器)-膨胀做功-放热(通过第二换热器),气态工质从熔盐吸热、向防冻液放热,此时透平做功大于压缩机做功,驱动发电机发电,***向外界净输出的功用于供电。
根据本实用新型实施例的多级热泵式双罐熔盐储能发电***,采用闭式循环,具有能量转换效率高、采用熔盐储热和防冻液储冷、两级热泵制热/冷、***高温端和低温端温度和温差稳定、安全可靠、清洁低碳的优点,利用同一套***实现储能和发电;利用两级热泵提高热功循环的温差、提高***总能量转换效率、降低各热泵压缩比、降低了设备成本;通过降低***低温端的温度,在确保***总能量转换效率的同时,降低了***高温端温度和对耐高温设备的要求;该***能够平抑风电或光伏发电等可再生能源发电的不稳定性、实现可再生能源电力稳定输出、缓解弃风弃光问题、火电厂调峰、低谷电利用等;该***为闭式循环,实现零排放、且工质选择范围广。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本实用新型的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本实用新型的实施例,本领域的普通技术人员可以理解:在不脱离本实用新型的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本实用新型的范围由权利要求及其等同限定。

Claims (2)

1.一种多级热泵式双罐熔盐储能发电***,其特征在于,包括:
储能装置,所述储能装置包括高温熔盐罐、低温熔盐罐、高温防冻液罐、低温防冻液罐,热能以高温熔盐热能的形式储存在高温熔盐罐,以低温防冻液热能的形式储存在低温防冻液罐;
能量转换装置,包括:压缩机、第一热泵、与所述低温熔盐罐相连的低温熔盐泵、与所述高温熔盐罐相连的高温熔盐泵、透平、第二热泵、与所述高温防冻液罐相连的高温防冻液泵、与所述低温防冻液罐相连的低温防冻液泵、第一换热器、第二换热器和发电机,其中,
通过选择性开启由所述高温熔盐罐、低温熔盐罐、高温防冻液罐、低温防冻液罐、压缩机、第一热泵、低温熔盐泵、高温熔盐泵、透平、第二热泵、高温防冻液泵、低温防冻液泵、第一换热器、第二换热器和发电机中的一个或多个构成的回路,以将电能转换为热能,或将热能转换为电能。
2.根据权利要求1所述的多级热泵式双罐熔盐储能发电***,其特征在于,防冻液的冰点低于0℃,工作温度为-70℃~0℃。
CN201920901949.7U 2019-06-14 2019-06-14 多级热泵式双罐熔盐储能发电*** Active CN210622880U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920901949.7U CN210622880U (zh) 2019-06-14 2019-06-14 多级热泵式双罐熔盐储能发电***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920901949.7U CN210622880U (zh) 2019-06-14 2019-06-14 多级热泵式双罐熔盐储能发电***

Publications (1)

Publication Number Publication Date
CN210622880U true CN210622880U (zh) 2020-05-26

Family

ID=70750852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920901949.7U Active CN210622880U (zh) 2019-06-14 2019-06-14 多级热泵式双罐熔盐储能发电***

Country Status (1)

Country Link
CN (1) CN210622880U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159379A (zh) * 2019-06-14 2019-08-23 国家电投集团科学技术研究院有限公司 多级热泵式双罐熔盐储能发电***
CN112524841A (zh) * 2020-11-30 2021-03-19 上海发电设备成套设计研究院有限责任公司 一种热泵储能***

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159379A (zh) * 2019-06-14 2019-08-23 国家电投集团科学技术研究院有限公司 多级热泵式双罐熔盐储能发电***
CN110159379B (zh) * 2019-06-14 2024-01-09 国家电投集团科学技术研究院有限公司 多级热泵式双罐熔盐储能发电***
CN112524841A (zh) * 2020-11-30 2021-03-19 上海发电设备成套设计研究院有限责任公司 一种热泵储能***
CN112524841B (zh) * 2020-11-30 2022-08-30 上海发电设备成套设计研究院有限责任公司 一种热泵储能***

Similar Documents

Publication Publication Date Title
CN110159379B (zh) 多级热泵式双罐熔盐储能发电***
CN112325497B (zh) 一种液化二氧化碳储能***及其应用
CN108151364B (zh) 热泵式储能供电供热方法及装置
CN114198170B (zh) 一种基于双蓄热回路的二氧化碳储能***及其工作方法
CN108731303B (zh) 热泵式交替储能供电方法及装置
CN105715518A (zh) 一种夏供冷冬供热冷热电三联供装置及方法
CN110159380B (zh) 单罐闭式循环储能发电***
CN210622880U (zh) 多级热泵式双罐熔盐储能发电***
CN113464406A (zh) 压缩空气储能***及可再生能源***
CN114622960A (zh) 一种跨临界二氧化碳储能***
CN210622879U (zh) 单罐闭式循环储能发电***
CN112253269A (zh) 结合液态空气储能的双向调峰输电***及方法
CN115111804B (zh) 冷热电联供***
CN116576398A (zh) 基于液化天然气的冷能利用的二氧化碳捕集储能调峰***
CN115306507B (zh) 移动式车载电源***
CN116105386A (zh) 光热复合氨吸收式多能联供***
CN210122925U (zh) 储能发电循环***
CN213631046U (zh) 一种液化二氧化碳储能装置
CN114483230A (zh) 耦合有太阳能蓄热和火电余热的二氧化碳储能调峰***
CN111981686A (zh) 一种基于自发电技术的空调型热水器
CN114234479A (zh) 热泵储电的冷热电联供***
CN116816636B (zh) 液态空气储能与空气分离耦合的储能储气***和方法
CN220890276U (zh) 多工质压缩气体储能发电***
CN218511226U (zh) 热泵储电***
CN221427790U (zh) 一种氨作为工作介质的水储热型热力电池***

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant