CN210071392U - 基于rov的深海多通道原位流体取样过滤装置 - Google Patents

基于rov的深海多通道原位流体取样过滤装置 Download PDF

Info

Publication number
CN210071392U
CN210071392U CN201920492024.1U CN201920492024U CN210071392U CN 210071392 U CN210071392 U CN 210071392U CN 201920492024 U CN201920492024 U CN 201920492024U CN 210071392 U CN210071392 U CN 210071392U
Authority
CN
China
Prior art keywords
fluid
valve
storage mechanism
rov
way
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201920492024.1U
Other languages
English (en)
Inventor
连超
杜增丰
宋永东
杨振英
王敏晓
李超伦
王冰
张鑫
栾振东
阎军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Oceanology of CAS
Original Assignee
Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Oceanology of CAS filed Critical Institute of Oceanology of CAS
Priority to CN201920492024.1U priority Critical patent/CN210071392U/zh
Application granted granted Critical
Publication of CN210071392U publication Critical patent/CN210071392U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Multiple-Way Valves (AREA)

Abstract

本实用新型涉及深海大洋原位流体过滤装置,具体地说是一种基于ROV的深海多通道原位流体取样过滤装置,包括流体取样机构、流体转换通道、流体过滤装置和流体存储机构,流体取样机构包括驱动机构和流体临时保存机构,流体临时保存机构内部装有滑动机构,可以完成样品的临时保存和密封,ROV供应油路使驱动机构进行往返运动完成流体获取和临时保存,之后通过各种阀门(电磁阀或者机械阀)的通断和流体转换通道中阀门通断的变化,使得流体通过过滤器完成流体过滤,最终利用采水袋存储过滤后的流体样品。本实用新型受取样深度影响小,采取过滤通道多,取样容积大,且耐腐蚀性能强,工作灵活稳定,并可快速、有效地获取过滤膜和流体样品。

Description

基于ROV的深海多通道原位流体取样过滤装置
技术领域
本实用新型涉及深海大洋原位流体过滤装置,具体地说是一种基于ROV的深海多通道原位流体过滤装置。
背景技术
目前,在悬浮颗粒物的获取方面,海水原位流体过滤装置得到很大的发展;但由于大部分是单通道测量,其优势在于大体积过滤(单次抽滤水量100L以上)。国内外各单位研制了大量的设备和产品,也取得了不错的效果。例如:中国科学院海洋所完成了深海海水原位采样及分级过滤***的研制(可通过时间控制完成深海泵分级过滤的功能)、美国Mclane(麦克莱恩)公司的大体积水样抽滤采样***、深海热液喷口微生物过滤采样装置、多级膜过滤保压取样器等。虽然各个厂家的种类繁多,设备通用特点依然是高通量滤水完成富集过滤功能,但绝大部分设备为单通道过滤,且过滤装置的滤膜在水下无法更换或面积原因,容易造成滤膜堵塞或者破裂。其次,缺失过滤后的流体存储功能,并且无法配合ROV(Remotely Operated Vehicle,水下缆控潜水器)使用,应用到深海微生物、DNA、RNA获取和检测方面无法真实反映极端环境下的真实状况。
同时,传统采样器无法***生物层内部,不能获取生物层多层序原位流体样品,对深海海底特殊工作站位的流体过滤和采集的影响就比较大,特别是冷泉热液区域尤为明显。以上情况特性决定了在深海压力复杂变化环境下,保证获得多通道的流体过滤膜以及流体样品,需要开发一种全新的基于ROV的深海多通道原位流体过滤装置以克服以上困难。
实用新型内容
针对上述传统深流体过滤器所存在的不足之处,本实用新型的目的在于提供一种基于ROV的深海多通道原位流体取样过滤装置。该深海多通道原位流体过滤装置能够保障获得多通道的流体过滤膜以及流体样品,可以在深海压力复杂变化环境下使用。
本实用新型的目的是通过以下技术方案来实现的:
本实用新型包括流体取样机构、流体转换通道、液体过滤装置及流体存储机构,其中流体取样机构包括驱动机构、往返刚体、滑动机构、流体临时保存机构、进水单向阀、出水单向阀及前置过滤器,该驱动机构安装于流体临时保存机构的一端、由ROV提供动力,所述滑动机构可相对滑动地容置于流体临时保存机构内,一侧通过所述往返刚体与驱动机构连接,另一侧为可变容积的流体暂存空间,所述流体临时保存机构的另一端分别连接有进水单向阀及出水单向阀,该进水单向阀通过胶管A与前置过滤器相连,所述前置过滤器上直连有进水口,所述出水单向阀通过胶管B与流体转换通道相连;所述流体存储机构为多个,每个流体存储机构均通过独立的流体过滤装置与流体转换通道连接,该流体过滤装置包括截止阀及过滤器,所述截止阀的一端与流体转换通道相连,另一端通过所述过滤器连接于流体存储机构,该过滤器内部装有过滤膜;
其中:所述流体转换通道包括三通接头、胶管C及弯头,位于与流体转换通道两端连接的流体存储机构之间的各流体存储机构均对应一个三通接头,该三通接头的一个接头与所对应的流体存储机构连接的所述截止阀的一端相连,另外两个接头分别与相邻的三通接头通过所述胶管C连通;与所述流体转换通道两端连接的流体存储机构所连接的截止阀的一端连接有弯头,该弯头通过胶管C与相邻的三通接头连通;
所述流体转换通道包括三通接头、胶管C、清洗截止阀、清洗口及弯头,与所述流体转换通道一端连接的流体存储机构所连接的截止阀的一端连接有弯头,其余的流体存储机构均对应一个三通接头,该三通接头的一个接头与所对应的流体存储机构连接的所述截止阀的一端相连,与所述流体转换通道另一端连接的流体存储机构对应的三通接头的第二个接头与相邻的三通接头通过所述胶管C连通、第三个接头通过胶管C连接有清洗截止阀,该清洗截止阀直连有清洗口,其余各三通接头的另外两个接头分别与相邻的三通接头或弯头通过所述胶管C连通;
所述清洗截止阀包括阀体、球杆、球体、驱动转向杆及驱动直杆,该阀体上分别安装有与阀体内部连通的进口和出口,所述进口通过胶管C与三通接头的第三个接头相连,出口直连所述清洗口;所述球杆转动安装在阀体上,一端与位于阀体内部的球体相连,该球体上贯穿开设有用于控制所述进口与出口连通或断开的通孔,所述球杆的另一端与驱动转向杆的一端连接,该驱动转向杆的另一端与所述驱动直杆的一端铰接,该驱动直杆的另一端为按压端;
所述往返刚体的长度与滑动机构在流体临时保存机构内的移动距离相等;
所述滑动机构为形状与流体临时保存机构内部形状相同的活塞头,该滑动机构的外表面与所述流体临时保存机构的内壁滑动密封抵接;
所述流体临时保存机构包括本体及封盖,该本体为内部中空结构,所述本体的两端分别螺纹连接有封盖,所述驱动机构安装于一端的封盖上,另一端的所述封盖上分别连接有进水单向阀及出水单向阀;
所述截止阀包括阀体、球杆、球体、驱动转向杆及驱动直杆,该阀体上分别安装有与阀体内部连通的进口和出口,所述进口与流体转换通道相连,出口通过所述过滤器连接于流体存储机构;所述球杆转动安装在阀体上,一端与位于阀体内部的球体相连,该球体上贯穿开设有用于控制所述进口与出口连通或断开的通孔,所述球杆的另一端与驱动转向杆的一端连接,该驱动转向杆的另一端与所述驱动直杆的一端铰接,该驱动直杆的另一端为按压端。
本实用新型的优点与积极效果为:
1.本实用新型受取样深度影响小,采取通道多,取样容积大,且耐腐蚀性能强,工作灵活稳定,并可快速、有效地获取过滤膜和流体样品。
2.本实用新型结构小巧紧凑,耐腐蚀性能强,转动平稳运行误差小,并可适用于多种深度、温度及洋流环境下的复杂海底环境,可广泛应用于需要严格保真的大洋深海多通道原位过滤和取样。
附图说明
图1为本实用新型实施例一的结构示意图;
图2为本实用新型实施例二的结构示意图;
图3为本实用新型截止阀或清洗截止阀的内部结构示意图;
图4为本实用新型截止阀或清洗截止阀与驱动转向杆、驱动转向轴、驱动直杆连接后的结构示意图;
其中:1为驱动油缸,2为封盖,3为往返刚体,4为滑动机构, 5为流体临时保存机构,6为进水单向阀,7为出水单向阀,8为胶管 A,9为前置过滤器,10为进水口,11为胶管B,12为三通接头,13 为胶管C,14为截止阀,15为清洗截止阀,16为清洗口,17为过滤器,18为过滤膜,19为采水袋,20为弯头,21为进口,22为出口, 23为阀体,24为球杆,25为球体,26为驱动转向杆,27为驱动转向轴,28为驱动直杆,29为机械手压板。
具体实施方式
下面结合附图对本实用新型作进一步详述。
实施例一
如图1所示,本实施例包括流体取样机构、流体转换通道、液体过滤装置及流体存储机构,其中流体取样机构包括驱动机构、往返刚体3、滑动机构4、流体临时保存机构5、进水单向阀6、出水单向阀7及前置过滤器9,该流体临时保存机构5包括本体及封盖2,本体为内部中空结构,本体的两端分别螺纹连接有封盖2,驱动机构安装于一端的封盖2上,另一端的封盖2上分别连接有进水单向阀6及出水单向阀7;本实施例的驱动机构为驱动油缸1,该驱动油缸1与一端的封盖2通过固定螺栓连接,利用ROV为驱动油缸1提供动力。滑动机构4可相对滑动地容置于流体临时保存机构5内,一侧通过往返刚体3与驱动油缸1连接,另一侧为可变容积的流体暂存空间;本实施例的滑动机构4为形状与流体临时保存机构5的本体内部形状相同的活塞头(形状可为圆形或方形),该滑动机构4的外表面与流体临时保存机构5的本体内壁滑动密封抵接。往返刚体3的长度与滑动机构4在流体临时保存机构5内的移动距离相等,用于保障流体临时保存机构5内部获取的流体样品为观测点的原位真实样品。进水单向阀 6通过胶管A8与前置过滤器9相连,前置过滤器9上直连有进水口1、与外界海水相连,保障流体临时保存机构5为已经过滤大颗粒杂质后的液体;出水单向阀7通过胶管B11与流体转换通道相连。进水单向阀6和出水单向阀7保证了获取的流体流向。
流体存储机构为多个,每个流体存储机构均通过独立的流体过滤装置与流体转换通道连接;本实施例的流体存储机构为采水袋19。流体过滤装置包括截止阀14及过滤器17,截止阀14的一端与流体转换通道相连,另一端通过过滤器17连接于采水袋19、完成流体保存,该过滤器17内部装有过滤膜18,过滤膜18根据需要进行不同种类的更换。
流体转换通道包括三通接头12、胶管C13及弯头20,位于与流体转换通道两端连接的采水袋19之间的各采水袋19均对应一个三通接头12,该三通接头12的一个接头与所对应的采水袋19连接的截止阀14的一端相连,另外两个接头分别与相邻的三通接头12通过胶管C13连通;与流体转换通道两端连接的采水袋19所连接的截止阀 14的一端连接有弯头20,该弯头20通过胶管C13与相邻的三通接头 12连通。本实施例的采水袋19、过滤器17及截止阀14各为十五个,位于第二个至第十四个的截止阀14的一端分别与一个三通接头12的一个接头连接,另一端通过过滤器17连接一个采水袋19。位于第一个和第十五个的采水袋19分别连接于流体转换通道的两端,这两个采水袋19连接的截止阀14的一端分别连接一个弯头20,弯头20再通过胶管C13与相邻的三通接头12相连。
如图3、图4所示,本实施例的截止阀14包括阀体23、球杆24、球体25、驱动转向杆26、驱动转向轴27、驱动直杆28及机械手压板29,该阀体23上分别安装有与阀体23内部连通的进口21和出口 22,进口21与三通接头12的一个接头或弯头20相连,出口22通过过滤器17连接于流体存储机构(即采水袋19)。球杆24转动安装在阀体23上,一端位于阀体23内、并与位于阀体23内部的球体25相连,该球体25上贯穿开设有用于控制进口21与出口22连通或断开的通孔30;球杆24的另一端位于阀体23外、并与驱动转向杆26的一端连接,该驱动转向杆26的另一端通过驱动转向轴27与驱动直杆 28的一端铰接,该驱动直杆28的另一端为按压端。为了按压方便,在驱动直杆28的另一端设有机械手压板。截止阀14通过ROV机械手上下按压,采用机械运动完成阀体23的开断,适用于ROV深海作业。工作时,通过ROV的T4机械手按压机械手压板29,依次联动驱动直杆28、驱动转向轴27、驱动转向杆26、球杆24,带动球体25转动,当通孔30转至分别与进口21和出口22连通时,截止阀14打开;当球体25随球杆24转至通孔30与进口21和出口22不连通时,截止阀14关闭。
本实施例的胶管A8、胶管B11及胶管C13均为法国saint-gobain (圣戈班)公司生产。采水袋19的材料为DEHP(聚氯乙烯邻苯二甲酸乙酯)。
本实施例的整体使用非金属材料(例如特氟龙)或者拥有非金属镀层的金属材料(例如Ti合金)加工完成,避免样品的污染。
本实施例基于ROV的深海多通道原位流体取样过滤装置的取样过滤方法,包括如下步骤:
步骤一,岸基端整体拆解清洗工作;对深海多通道原位流体取样过滤装置整体进行分解拆卸,然后进行清洗;
步骤二,深海取样、过滤、保存工作;清洗后进行组装,初始状态利用ROV对驱动油缸1提供液压油路,通过往返刚体3驱动滑动机构4,将流体临时保存机构5内的流体排空;使用ROV机械手抓取进水口10***到观察点进行取样,利用ROV对驱动油缸1提供液压油路,驱动滑动机构4向一侧移动,流体临时保存机构5内部形成负压使得流体通过进水单向阀6流入到流体暂存空间;然后,驱动油缸1 反向驱动滑动机构4运动,该流体临时保存机构5排出流体,通过出水单向阀7进入流体转换通道中的各个三通接头12;再然后,依次打开各采水袋19连接的十五个截止阀14,使流体进入过滤器17,悬浮颗粒物保留在过滤膜18上,完成十五个通道的流体过滤,余下的流体存储在各采水袋19中,如此就获得了深海流体样品;
步骤三,岸基端取膜和取样工作;回收到岸基端,拆卸过滤器 17和采水袋19,取出过滤膜18和流体样品,完成整体作业。
实施例二
如图2所示,本实施例与实施例一的区别在于:
流体转换通道包括三通接头12、胶管C13、清洗截止阀15、清洗口16及弯头20,与流体转换通道一端连接的采水袋19所连接的截止阀14的一端连接有弯头20,其余的采水袋19均对应一个三通接头12,该三通接头12的一个接头与所对应的采水袋19连接连接的截止阀14的一端相连,与流体转换通道另一端连接的采水袋19对应的三通接头12的第二个接头与相邻的三通接头12通过胶管C13连通、第三个接头通过胶管C13连接有清洗截止阀15,该清洗截止阀 15直连有清洗口16,其余各三通接头12的另外两个接头分别与相邻的三通接头12或弯头20通过胶管C13连通。本实施例的采水袋19、过滤器17及截止阀14各为十五个,位于第一个至第十四个的截止阀 14的一端分别与一个三通接头12的一个接头连接,另一端通过过滤器17连接一个采水袋19;位于第十五个的截止阀14的一端与弯头 20连接,弯头20再通过胶管C13与相邻的三通接头12相连。位于第一个的截止阀14连接的三通接头12的第二个接头通过胶管C13与相邻的三通接头12连接,第三个接头通过胶管C13与清洗截止阀15连接。
如图3、图4所示,本实施例的清洗截止阀15包括阀体23、球杆24、球体25、驱动转向杆26、驱动转向轴27、驱动直杆28及机械手压板29,该阀体23上分别安装有与阀体23内部连通的进口21 和出口22,进口21通过胶管C13与三通接头12的第三个接头相连,出口22直连清洗口16。球杆24转动安装在阀体23上,一端位于阀体23内、并与位于阀体23内部的球体25相连,该球体25上贯穿开设有用于控制进口21与出口22连通或断开的通孔30;球杆24的另一端位于阀体23外、并与驱动转向杆26的一端连接,该驱动转向杆 26的另一端通过驱动转向轴27与驱动直杆28的一端铰接,该驱动直杆28的另一端为按压端。为了按压方便,在驱动直杆28的另一端设有机械手压板。清洗截止阀15通过ROV机械手上下按压,采用机械运动完成阀体23的开断,适用于ROV深海作业。工作时,通过ROV 的T4机械手按压机械手压板29,依次联动驱动直杆28、驱动转向轴27、驱动转向杆26、球杆24,带动球体25转动,当通孔30转至分别与进口21和出口22连通时,清洗截止阀15打开;当球体25随球杆24转至通孔30与进口21和出口22不连通时,清洗截止阀15关闭。
本实施例基于ROV的深海多通道原位流体取样过滤装置的取样过滤方法为:利用ROV对驱动油缸1提供液压油路,变换截止阀14 和清洗截止阀15之间的开关通断,完成管路内部和流体临时保存机构5中流体的重复冲洗和置换。利用ROV机械手的精确作业的特点,完成特定站点的精确取样。关闭清洗截止阀15后,利用截止阀14通断完成十五通道的流体样品过滤和保存。具体步骤如下:
步骤一,岸基端整体拆解清洗工作;对深海多通道原位流体取样过滤装置整体进行分解拆卸,然后进行清洗;
步骤二,深海取样、过滤、保存工作;清洗后进行组装,在作业范围内使用ROV对驱动油缸1提供液压油路,在所有截止阀14关闭和清洗截止阀15开启的情况下,进行至少三次的驱动滑动机构4进行往返运动,完成管路内部和流体临时保存机构5的重复冲洗和置换,减少误差;初始状态利用ROV对驱动油缸1提供液压油路,通过往返刚体3驱动滑动机构4,将流体临时保存机构5内的流体排空;使用ROV机械手抓取进水口10***到观察点进行取样,利用ROV对驱动油缸1提供液压油路,驱动滑动机构4向一侧移动,流体临时保存机构5内部形成负压使得流体通过进水单向阀6流入到流体暂存空间;然后,驱动油缸1反向驱动滑动机构4运动,该流体临时保存机构5排出流体,通过出水单向阀7进入流体转换通道中的各个三通接头12;再然后,关闭清洗截止阀15、依次打开各采水袋19连接的十五个截止阀14,使流体进入过滤器17,悬浮颗粒物保留在过滤膜18 上,完成十五个通道的流体过滤,余下的流体存储在各采水袋19中,如此就获得了深海流体样品;
步骤三,岸基端取膜和取样工作;回收到岸基端,拆卸过滤器 17和采水袋19,取出过滤膜18和流体样品,完成整体作业。
本实用新型结构小巧紧凑,耐腐蚀性能强,转动平稳运行误差小,并可适用于多种深度、温度及洋流环境下的复杂海底环境,可广泛应用于需要严格保真的大洋深海多通道原位过滤和取样。

Claims (8)

1.一种基于ROV的深海多通道原位流体取样过滤装置,其特征在于:包括流体取样机构、流体转换通道、液体过滤装置及流体存储机构,其中流体取样机构包括驱动机构、往返刚体(3)、滑动机构(4)、流体临时保存机构(5)、进水单向阀(6)、出水单向阀(7)及前置过滤器(9),该驱动机构安装于流体临时保存机构(5)的一端、由ROV提供动力,所述滑动机构(4)可相对滑动地容置于流体临时保存机构(5)内,一侧通过所述往返刚体(3)与驱动机构连接,另一侧为可变容积的流体暂存空间,所述流体临时保存机构(5)的另一端分别连接有进水单向阀(6)及出水单向阀(7),该进水单向阀(6)通过胶管A(8)与前置过滤器(9)相连,所述前置过滤器(9)上直连有进水口(10),所述出水单向阀(7)通过胶管B(11)与流体转换通道相连;所述流体存储机构为多个,每个流体存储机构均通过独立的流体过滤装置与流体转换通道连接,该流体过滤装置包括截止阀(14)及过滤器(17),所述截止阀(14)的一端与流体转换通道相连,另一端通过所述过滤器(17)连接于流体存储机构,该过滤器(17)内部装有过滤膜(18)。
2.根据权利要求1所述基于ROV的深海多通道原位流体取样过滤装置,其特征在于:所述流体转换通道包括三通接头(12)、胶管C(13)及弯头(20),位于与流体转换通道两端连接的流体存储机构之间的各流体存储机构均对应一个三通接头(12),该三通接头(12)的一个接头与所对应的流体存储机构连接的所述截止阀(14)的一端相连,另外两个接头分别与相邻的三通接头(12)通过所述胶管C(13)连通;与所述流体转换通道两端连接的流体存储机构所连接的截止阀(14)的一端连接有弯头(20),该弯头(20)通过胶管C(13)与相邻的三通接头(12)连通。
3.根据权利要求1所述基于ROV的深海多通道原位流体取样过滤装置,其特征在于:所述流体转换通道包括三通接头(12)、胶管C(13)、清洗截止阀(15)、清洗口(16)及弯头(20),与所述流体转换通道一端连接的流体存储机构所连接的截止阀(14)的一端连接有弯头(20),其余的流体存储机构均对应一个三通接头(12),该三通接头(12)的一个接头与所对应的流体存储机构连接的所述截止阀(14)的一端相连,与所述流体转换通道另一端连接的流体存储机构对应的三通接头(12)的第二个接头与相邻的三通接头(12)通过所述胶管C(13)连通、第三个接头通过胶管C(13)连接有清洗截止阀(15),该清洗截止阀(15)直连有清洗口(16),其余各三通接头(12)的另外两个接头分别与相邻的三通接头(12)或弯头(20)通过所述胶管C(13)连通。
4.根据权利要求3所述基于ROV的深海多通道原位流体取样过滤装置,其特征在于:所述清洗截止阀(15)包括阀体(23)、球杆(24)、球体(25)、驱动转向杆(26)及驱动直杆(28),该阀体(23)上分别安装有与阀体(23)内部连通的进口(21)和出口(22),所述进口(21)通过胶管C(13)与三通接头(12)的第三个接头相连,出口(22)直连所述清洗口(16);所述球杆(24)转动安装在阀体(23)上,一端与位于阀体(23)内部的球体(25)相连,该球体(25)上贯穿开设有用于控制所述进口(21)与出口(22)连通或断开的通孔(30),所述球杆(24)的另一端与驱动转向杆(26)的一端连接,该驱动转向杆(26)的另一端与所述驱动直杆(28)的一端铰接,该驱动直杆(28)的另一端为按压端。
5.根据权利要求1所述基于ROV的深海多通道原位流体取样过滤装置,其特征在于:所述往返刚体(3)的长度与滑动机构(4)在流体临时保存机构(5)内的移动距离相等。
6.根据权利要求1所述基于ROV的深海多通道原位流体取样过滤装置,其特征在于:所述滑动机构(4)为形状与流体临时保存机构(5)内部形状相同的活塞头,该滑动机构(4)的外表面与所述流体临时保存机构(5)的内壁滑动密封抵接。
7.根据权利要求1所述基于ROV的深海多通道原位流体取样过滤装置,其特征在于:所述流体临时保存机构(5)包括本体及封盖(2),该本体为内部中空结构,所述本体的两端分别螺纹连接有封盖(2),所述驱动机构安装于一端的封盖(2)上,另一端的所述封盖(2)上分别连接有进水单向阀(6)及出水单向阀(7)。
8.根据权利要求1所述基于ROV的深海多通道原位流体取样过滤装置,其特征在于:所述截止阀(14)包括阀体(23)、球杆(24)、球体(25)、驱动转向杆(26)及驱动直杆(28),该阀体(23)上分别安装有与阀体(23)内部连通的进口(21)和出口(22),所述进口(21)与流体转换通道相连,出口(22)通过所述过滤器(17)连接于流体存储机构;所述球杆(24)转动安装在阀体(23)上,一端与位于阀体(23)内部的球体(25)相连,该球体(25)上贯穿开设有用于控制所述进口(21)与出口(22)连通或断开的通孔(30),所述球杆(24)的另一端与驱动转向杆(26)的一端连接,该驱动转向杆(26)的另一端与所述驱动直杆(28)的一端铰接,该驱动直杆(28)的另一端为按压端。
CN201920492024.1U 2019-04-11 2019-04-11 基于rov的深海多通道原位流体取样过滤装置 Active CN210071392U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920492024.1U CN210071392U (zh) 2019-04-11 2019-04-11 基于rov的深海多通道原位流体取样过滤装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920492024.1U CN210071392U (zh) 2019-04-11 2019-04-11 基于rov的深海多通道原位流体取样过滤装置

Publications (1)

Publication Number Publication Date
CN210071392U true CN210071392U (zh) 2020-02-14

Family

ID=69436786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920492024.1U Active CN210071392U (zh) 2019-04-11 2019-04-11 基于rov的深海多通道原位流体取样过滤装置

Country Status (1)

Country Link
CN (1) CN210071392U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932211A (zh) * 2019-04-11 2019-06-25 中国科学院海洋研究所 基于rov的深海多通道原位流体取样过滤装置及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932211A (zh) * 2019-04-11 2019-06-25 中国科学院海洋研究所 基于rov的深海多通道原位流体取样过滤装置及方法

Similar Documents

Publication Publication Date Title
CN109932211A (zh) 基于rov的深海多通道原位流体取样过滤装置及方法
CN107966321B (zh) 基于rov的深海原位流体高通量采样器及其取样方法
US20130145867A1 (en) Contamination free water sampler and system
CN107328606B (zh) 一种基于双活塞自适应压力平衡的深海压力补偿取样装置
CN105420097A (zh) 一种应用于全海深的微生物原位自动化富集固定装置及方法
CN210005299U (zh) 一种水下机器人用水样采集装置
CN204690000U (zh) 一种基于rov的深海极端环境微生物捕获器
CN110736645A (zh) 一种具有通流式结构的深海水体序列采样装置
CN214408221U (zh) 一种地表水体多点同时取样装置
CN210071392U (zh) 基于rov的深海多通道原位流体取样过滤装置
CN110734845A (zh) 基于rov的深海极端环境微生物初级生产力原位检测装置及方法
CN112325947A (zh) 一种深海近海底多参数集成探测装置及探测方法
CN102747970A (zh) 一种海洋钻井隔水管灌注阀自动控制***
CN114705511A (zh) 一种多通道气体采样器
CN210774691U (zh) 一种液阀液流稳定性简易测试试验台
CN211179122U (zh) 一种具有通流式结构的深海水体序列采样装置
CN110763502A (zh) 基于rov的深海贻贝等大型生物挤压式原位固定装置及其固定方法
CN109765070A (zh) 一种潜水器用宏生物取样器
CN211042749U (zh) 基于rov的深海贻贝等大型生物挤压式原位固定装置
CN210322442U (zh) 一种基于rov的流体样品抽滤装置
CN201488993U (zh) 侧向变形控制器
CN212080223U (zh) 一种自过滤球阀
CN101270852B (zh) 管道检漏器
CN218823420U (zh) 流体气密取样器
CN211339463U (zh) 基于rov的微生物初级生产力原位检测装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant