CN210005696U - 双波长自适应距离门激光雷达 - Google Patents

双波长自适应距离门激光雷达 Download PDF

Info

Publication number
CN210005696U
CN210005696U CN201822189310.9U CN201822189310U CN210005696U CN 210005696 U CN210005696 U CN 210005696U CN 201822189310 U CN201822189310 U CN 201822189310U CN 210005696 U CN210005696 U CN 210005696U
Authority
CN
China
Prior art keywords
wavelength
dual
processing module
laser
performs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201822189310.9U
Other languages
English (en)
Inventor
石振东
高建波
宋昭
***
毛一江
冷杰
姜勇
杨镇源
贾凯
徐诗月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South West Institute of Technical Physics
Original Assignee
South West Institute of Technical Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South West Institute of Technical Physics filed Critical South West Institute of Technical Physics
Priority to CN201822189310.9U priority Critical patent/CN210005696U/zh
Application granted granted Critical
Publication of CN210005696U publication Critical patent/CN210005696U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本实用新型公开了一种双波长自适应距离门激光雷达,其包括双波长激光光源(1)、光学延时器(2)、收发光学***(3)、分束器(4)、线性探测器(5)、双模信号处理模块(6)、门控电路(7)、单光子面阵探测器(8),三维图像处理模块(9)。本实用新型线性探测、单光子探测双模式优势互补,线性探测快速获取目标距离信息,作为单光子面阵探测器实时自适应距离门开门信号,距离门随目标变化而变化,从而降低后向散射、背景噪声影响,提升单光子面阵探测效率和雷达***工作效率;双波长数据融合,提升点云精度和目标识别和分类能力。

Description

双波长自适应距离门激光雷达
技术领域
本实用新型属于光电成像技术领域,涉及一种双波长自适应距离门激光雷达。
背景技术
在丛林下目标、遮蔽目标、水下目标等探测过程中,其回波信号非常微弱,线性探测器灵敏度较低,只可采用单元或者小面阵探测,工作效率低;一般采用高灵敏度单光子面阵探测器,数据采集效率高,地面分辨率高,但高灵敏度带来了噪声抑制的难度加大,易被噪声触发产生虚警;单光子探测器存在死亡时间,需多脉冲累计探测。从而引入距离选通激光成像技术抑制后向散射、背景噪声,提高目标信噪比,而一般距离门开关是固定,对于动态变化的目标或者激光雷达位于动平台上,为保证最远和最近目标都可被探测,距离门设置一般要求较长,从而降低探测效率,减少了距离门技术带来的优势,因此需要根据目标远近变化自适应调整距离门的开门时间,进而减少距离门门控时间。另外,单光子探测是一个累加概率探测过程,也可通过前面多脉冲累计获得距离信息,作为后面距离门开门信号的参考,但是对具有相对运动的探测过程来说,参考会出现滞后,特别是在地形梯度变化大的区域,存在目标数据丢失可能。
实用新型内容
(一)实用新型目的
本实用新型的目的是:克服上述现有技术的不足,提出一种双波长自适应距离门激光雷达。
(二)技术方案
为了解决上述技术问题,本实用新型提供一种双波长自适应距离门激光雷达,其包括双波长激光光源1、光学延时器2、收发光学***3、分束器4、线性探测器5、双模信号处理模块6、门控电路7、单光子面阵探测器8,三维图像处理模块9;双波长激光光源1发射双波长激光,其中一路为基频光,另一路为倍频光;基频光传送至收发光学***3,倍频光经过光学延时器2后传送至收发光学***3;收发光学***3对基频光和光学延时后的倍频光进行双波长激光发射和动态目标回波接收;收发光学***3将回波激光传送至分束器4,分束器4将回波激光按波长进行分离,分离后的基频光的回波激光传送至线性探测器5,线性探测器5探测的模拟信号传送至双模信号处理模块6进行信号处理,获取动态目标的距离信息,传送至门控电路7作为开门信号,门控电路7连接单光子面阵探测器8,单光子面阵探测器8在门控电路7设定的距离门内工作,倍频光的回波信号进入单光子面阵探测器8,单光子面阵探测器8输出的数字信号;双模信号处理模块6接收单光子面阵探测器8输出的数字信号和线性探测器5探测的模拟信号,累计回波信号,解算距离信息,三维图像处理模块9连接双模信号处理模块6,接收回波信号,进行单光子点云去噪、点云坐标转换、双波长数据融合,获取三维图像。
其中,所述双波长激光光源1采用Nd:YAG固体激光器。
其中,所述双波长激光光源1产生的基频光波长为λ1=1.06μm;双波长激光光源1内设置倍频晶体,通过倍频晶体获取倍频光,其波长为λ2=0.53μm。
其中,所述光学延时器2采用保偏光纤,针对0.53um激光,其材料折射率为n=1.46,光速c=3*10^(8)m/s。
其中,所述分束器4采用短波通二向色镜,截止波长0.75μm,波长0.53μm形成透射光束,波长1.06μm形成反射光束。
其中,所述线性探测器5采用InGaAs雪崩光电二极管探测器。
其中,所述双模信号处理模块6首先处理线性探测器5输出的λ1=1.06μm激光模拟回波信号,获取目标距离信息((T1-T0)×c)、发出门控电路7距离门开关触发信号(T1+Δt);在门控信号作用下,单光子面阵探测器8开始工作,λ2=0.53μm激光回波信号正好位于距离门开门位置(T1+Δt),然后处理0.53μm激光数字回波信号,完成一定景深条件下的目标单光子面阵探测;c为光速,T0为基频光发射时间,T1为基频光回波时间,Δt为倍频光相对基频光的延时时间。
其中,所述单光子面阵探测器8选择32×32Si-SPAD探测器。(三)有益效果
上述技术方案所提供的双波长自适应距离门激光雷达,线性探测、单光子探测双模式优势互补,线性探测快速获取目标距离信息,作为单光子面阵探测器实时自适应距离门开门信号,距离门随目标变化而变化,从而降低后向散射、背景噪声影响,提升单光子面阵探测效率和雷达***工作效率;双波长数据融合,提升点云精度和目标识别和分类能力。
附图说明
图1是双波长自适应距离门激光雷达***框图。
图2是双波长自适应距离门工作时序图。
具体实施方式
为使本实用新型的目的、内容、和优点更加清楚,下面结合附图和实施例,对本实用新型的具体实施方式作进一步详细描述。
如图1和图2所示,本实用新型双波长自适应距离门激光雷达包括双波长激光光源1、光学延时器2、收发光学***3、分束器4、线性探测器5、双模信号处理模块6、门控电路7、单光子面阵探测器8,三维图像处理模块9;双波长激光光源1发射双波长激光,其中一路为基频光λ1,作为门控开关光源,另一路为倍频光λ2,作为单光子面阵高分辨成像光源;倍频光λ2经过光学延时器2,补偿基频光λ1线性探测和信号处理时间,从而保证倍频光λ2距离门开始位置位于动态变化目标位置处;收发光学***3对基频光λ1和光学延时后的倍频光λ2进行双波长激光发射和回波接收;分束器4将回波信号按波长进行分离,分别进入不同探测器,线性探测器5首先接收基频光λ1的回波信号,经双模信号处理模块6进行信号处理后,传送至门控电路7作为开门信号,单光子面阵探测器8在门控电路7设定的距离门内工作,倍频光λ2的回波信号进入单光子面阵探测器8;最后,双模信号处理模块6处理后的基频光λ1的回波信号和倍频光λ2的回波信号传送至三维图像处理模块9进行双波长数据融合,获取精确三维图像。
双波长激光光源1采用Nd:YAG固体激光器产生基频光λ1=1.06μm、通过倍频晶体,获取倍频光λ2=0.53μm,倍频效率在50%左右,实现双波长激光输出。
光学延时器2采用保偏光纤,针对0.53um激光其材料折射率为n=1.46,光速c=3*10^(8)m/s,1.06μm激光回波信息处理时间Δt=10ns左右,光纤长度为L=c/n×Δt=2.05m,实际光纤长度约大于这个值,保证一定距离冗余。
收发光学***3采用收发视场匹配,减少背景噪声影响,利于双波长数据融合。
分束器4采用短波通二向色镜,截止波长0.75μm,波长0.53μm形成透射光束,波长1.06μm形成反射光束。
线性探测器5完成1.06μm激光回波信号线性模拟探测,保证快速实时获取动态目标的距离信息,同时作为门控电路7的开门信号;与单光子面阵探测器8相比,其探测器灵敏度相差2~3数量级,为保证双波长有效工作,采用单元或者面阵规模2×2等,比如,InGaAsAvalanche Photodiode单元探测器。
双模信号处理模块6首先处理线性探测器5输出的λ1=1.06μm激光模拟回波信号,获取目标距离信息((T1-T0)×c)、发出门控电路7距离门开关触发信号(T1+Δt);在门控信号作用下,单光子面阵探测器8开始工作,λ2=0.53μm激光回波信号正好位于距离门开门位置(T1+Δt),然后处理0.53μm激光数字回波信号,完成一定景深条件下的目标单光子面阵探测。整个信号处理时序图如图2所示。
门控电路7距离门开关由线性探测器5回波信息和景深决定,根据线性探测器5获取目标距离信息,实时自适应调节单光子面阵探测器8距离门开关。
单光子面阵探测器8,在门控电路7控制下工作,通过线性探测器回波信号控制门控电路7开门信号,完成对目标单光子面阵探测。单光子面阵探测器规模选择32×32Si-SPAD Sensor。
三维图像处理模块9完成0.53μm激光点云去噪,0.53μm、1.06μm双波长激光点云坐标转换,双波长数据融合,类光谱三维数据处理。
所述的双波长激光光源1采用倍频技术产生双波长激光,保证双波长激光脉冲同步;所述的光学延时器2在激光雷达发射端补偿线性探测器信号接收、放大、处理时间,保证单光子面阵探测器距离门开启位置和动态目标位置一致;所述的收发光学***3完成双波长激光发射和接收,收发视场匹配,减少背景噪声影响,利于双波长数据融合;所述的分束器4按波长对回波光信号进行分离,并进入不同探测器;所述的线性探测器5采用单元或者小面阵探测器,利用线性、模拟探测方式,保证快速实时获取动态目标的距离信息,同时作为门控电路7开门信号的参考;所述的双模信号处理模块6来自线性探测器5输出的模拟放大信号,获取首回波距离信息,触发门控电路7距离门开关,和来自单光子面阵探测器8输出的数字信号,累计回波信号,解算距离信息。所述的门控电路7距离门开关由线性探测器5回波信息和景深决定,根据线性探测器5获取动态目标距离信息,实时自适应调节单光子面阵探测器8距离门开关;所述的单光子面阵探测器8,面阵规模与激光器倍频后双波长能量比、线性探测器灵敏度相关,需保证双探测模式工作;单光子探测器在门控电路7控制下工作,完成一定景深条件下的目标单光子面阵探测;所述的三维图像处理模块9完成单光子点云去噪、点云坐标转换、双波长数据融合。
以上所述仅是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本实用新型的保护范围。

Claims (8)

1.一种双波长自适应距离门激光雷达,其特征在于,包括双波长激光光源(1)、光学延时器(2)、收发光学***(3)、分束器(4)、线性探测器(5)、双模信号处理模块(6)、门控电路(7)、单光子面阵探测器(8),三维图像处理模块(9);双波长激光光源(1)发射双波长激光,其中一路为基频光,另一路为倍频光;基频光传送至收发光学***(3),倍频光经过光学延时器(2)后传送至收发光学***(3);收发光学***(3)对基频光和光学延时后的倍频光进行双波长激光发射和动态目标回波接收;收发光学***(3)将回波激光传送至分束器(4),分束器(4)将回波激光按波长进行分离,分离后的基频光的回波激光传送至线性探测器(5),线性探测器(5)探测的模拟信号传送至双模信号处理模块(6)进行信号处理,获取动态目标的距离信息,传送至门控电路(7)作为开门信号,门控电路(7)连接单光子面阵探测器(8),单光子面阵探测器(8)在门控电路(7)设定的距离门内工作,倍频光的回波信号进入单光子面阵探测器(8),单光子面阵探测器(8)输出的数字信号;双模信号处理模块(6)接收单光子面阵探测器(8)输出的数字信号和线性探测器(5)探测的模拟信号,累计回波信号,解算距离信息,三维图像处理模块(9)连接双模信号处理模块(6),接收回波信号,进行单光子点云去噪、点云坐标转换、双波长数据融合,获取三维图像。
2.如权利要求1所述的双波长自适应距离门激光雷达,其特征在于,所述双波长激光光源(1)采用Nd:YAG固体激光器。
3.如权利要求2所述的双波长自适应距离门激光雷达,其特征在于,所述双波长激光光源(1)产生的基频光波长为λ1=1.06μm;双波长激光光源(1)内设置倍频晶体,通过倍频晶体获取倍频光,其波长为λ2=0.53μm。
4.如权利要求3所述的双波长自适应距离门激光雷达,其特征在于,所述光学延时器(2)采用保偏光纤,针对0.53um激光,其材料折射率为n=1.46,光速c=3*10^(8)m/s。
5.如权利要求4所述的双波长自适应距离门激光雷达,其特征在于,所述分束器(4)采用短波通二向色镜,截止波长0.75μm,波长0.53μm形成透射光束,波长1.06μm形成反射光束。
6.如权利要求5所述的双波长自适应距离门激光雷达,其特征在于,所述线性探测器(5)采用InGaAs雪崩光电二极管探测器。
7.如权利要求6所述的双波长自适应距离门激光雷达,其特征在于,所述双模信号处理模块(6)首先处理线性探测器(5)输出的λ1=1.06μm激光模拟回波信号,获取目标距离信息((T1-T0)×c)、发出门控电路(7)距离门开关触发信号(T1+Δt);在门控信号作用下,单光子面阵探测器(8)开始工作,λ2=0.53μm激光回波信号正好位于距离门开门位置(T1+Δt),然后处理0.53μm激光数字回波信号,完成一定景深条件下的目标单光子面阵探测;c为光速,T0为基频光发射时间,T1为基频光回波时间,Δt为倍频光相对基频光的延时时间。
8.如权利要求7所述的双波长自适应距离门激光雷达,其特征在于,所述单光子面阵探测器(8)选择32×32Si-SPAD探测器。
CN201822189310.9U 2018-12-25 2018-12-25 双波长自适应距离门激光雷达 Active CN210005696U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201822189310.9U CN210005696U (zh) 2018-12-25 2018-12-25 双波长自适应距离门激光雷达

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201822189310.9U CN210005696U (zh) 2018-12-25 2018-12-25 双波长自适应距离门激光雷达

Publications (1)

Publication Number Publication Date
CN210005696U true CN210005696U (zh) 2020-01-31

Family

ID=69299077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201822189310.9U Active CN210005696U (zh) 2018-12-25 2018-12-25 双波长自适应距离门激光雷达

Country Status (1)

Country Link
CN (1) CN210005696U (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541627A (zh) * 2018-12-25 2019-03-29 西南技术物理研究所 双波长自适应距离门激光雷达
CN111650602A (zh) * 2020-06-22 2020-09-11 西南技术物理研究所 基于衍射光学元件与光纤阵列的多波长激光雷达
CN112731443A (zh) * 2021-02-08 2021-04-30 山东大学 一种单光子激光雷达与短波红外图像融合的三维成像***及方法
CN114924257A (zh) * 2022-04-18 2022-08-19 深圳阜时科技有限公司 接收模组、光电检测装置及电子设备
CN117741622A (zh) * 2024-01-19 2024-03-22 哈尔滨集睿谱光电技术有限公司 一种Gm-APD激光雷达距离门自动调节方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541627A (zh) * 2018-12-25 2019-03-29 西南技术物理研究所 双波长自适应距离门激光雷达
CN111650602A (zh) * 2020-06-22 2020-09-11 西南技术物理研究所 基于衍射光学元件与光纤阵列的多波长激光雷达
CN111650602B (zh) * 2020-06-22 2024-05-24 西南技术物理研究所 基于衍射光学元件与光纤阵列的多波长激光雷达
CN112731443A (zh) * 2021-02-08 2021-04-30 山东大学 一种单光子激光雷达与短波红外图像融合的三维成像***及方法
CN114924257A (zh) * 2022-04-18 2022-08-19 深圳阜时科技有限公司 接收模组、光电检测装置及电子设备
CN117741622A (zh) * 2024-01-19 2024-03-22 哈尔滨集睿谱光电技术有限公司 一种Gm-APD激光雷达距离门自动调节方法
CN117741622B (zh) * 2024-01-19 2024-06-04 哈尔滨集睿谱光电技术有限公司 一种Gm-APD激光雷达距离门自动调节方法

Similar Documents

Publication Publication Date Title
CN210005696U (zh) 双波长自适应距离门激光雷达
EP3268771B1 (en) Coherent ladar using intra-pixel quadrature detection
CN108132471B (zh) 发射及接收激光脉冲的方法、介质及激光雷达***
CN109541627A (zh) 双波长自适应距离门激光雷达
US20160377721A1 (en) Beat signal bandwidth compression method, apparatus, and applications
US20170261612A1 (en) Optical distance measuring system and light ranging method
CN106597468B (zh) 一种双模激光成像***及成像方法
JP2021503085A (ja) ノイズ適応ソリッドステートlidarシステム
AU2020103665A4 (en) Low-altitude Light Small Area Array LiDAR Measuring System
CN110471083B (zh) 一种纵向距离的激光三维成像装置及方法
WO2020199447A1 (zh) 基于宽谱光源的测风激光雷达
CN108375762B (zh) 激光雷达及其工作方法
CN101846745A (zh) 基于强关联量子成像原理的激光雷达
Bastos et al. An overview of LiDAR requirements and techniques for autonomous driving
CN105044731A (zh) 一种激光三维成像***及成像方法
JPH03252586A (ja) レーザレーダ装置
EP3710853A1 (en) Scanning lidar system and method with spatial filtering for reduction of ambient light
CN109471121B (zh) 双介质空间激光光声雷达
CN111708004A (zh) 一种新型激光测距方法及激光雷达***
CN112731428A (zh) 一种测距装置及主动三维成像***
KR20090121609A (ko) 멀티채널 레이저 거리측정 장치
CN210155331U (zh) 一种激光雷达
JP6797327B2 (ja) レーザレーダ装置
KR20120069487A (ko) 능동형 광 레이더 장치
US20130341486A1 (en) Apparatus for obtaining 3d information using photodetector array

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant