CN209972778U - 一种小型螺旋桨 - Google Patents

一种小型螺旋桨 Download PDF

Info

Publication number
CN209972778U
CN209972778U CN201920440325.XU CN201920440325U CN209972778U CN 209972778 U CN209972778 U CN 209972778U CN 201920440325 U CN201920440325 U CN 201920440325U CN 209972778 U CN209972778 U CN 209972778U
Authority
CN
China
Prior art keywords
radius
chord length
blade
tip
propeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201920440325.XU
Other languages
English (en)
Inventor
刘俊
罗世彬
王逗
朱慧玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201920440325.XU priority Critical patent/CN209972778U/zh
Application granted granted Critical
Publication of CN209972778U publication Critical patent/CN209972778U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本实用新型提供一种小型螺旋桨,所述螺旋桨包含两片完全相同的桨叶,其中一片桨叶是由另一片桨叶绕旋转轴旋转180度得到;每片桨叶由上表面和下表面两个曲面组成;从桨根至桨尖,上表面曲面从前缘往后缘始终呈现上凸状;从桨根至50%半径处,下表面曲面呈现下凸状;从50%半径至桨尖,下表面曲面在前缘弦长10%处呈现下凸状,从10%弦长至后缘为内凹形,且内凹的程度,从50%半径至桨尖逐渐增大;桨叶从旋转轴往外至50%半径,弦长逐渐增大;从50%半径至桨尖,弦长逐渐减小;最大弦长在50%半径处,其弦长为半径的15%,最小弦长在桨尖,其弦长为半径的6%。本实用新型提供一种小型螺旋桨,其拉力系数、功率系数、悬停效率都有了明细的提高,气动效率得到明显提高。

Description

一种小型螺旋桨
技术领域
本发明属于航空航天技术领域,具体涉及一种小型螺旋桨。
背景技术
多旋翼无人飞行器在工农业生产及人们的日常生活中发挥着重要的作用。这类飞行器通过电机带动螺旋桨旋转来产生垂直于旋转平面的拉力,通过调节不同螺旋桨的拉力大小值来实现飞行器的悬停、前飞、上升等动作。螺旋桨的拉力和扭矩是飞行控制***的重要输入条件,同时也是桨叶气动外形设计的两个主要技术指标,这是由于拉力和扭矩的大小决定着螺旋桨的气动效率,而螺旋桨的气动效率则是飞行器巡航时间的关键因素。
因此,如何提高螺旋桨的气动性能,成为人们亟待研究的课题。
发明内容
本发明的目的是提供一种小型螺旋桨,相比于现有的螺旋桨,其拉力系数、功率系数、悬停效率都有了明细的提高,气动效率得到明显提高。
本发明采用的技术方案是:本发明提供一种小型螺旋桨,所述螺旋桨包含两片完全相同的桨叶,其中一片桨叶是由另一片桨叶绕旋转轴旋转180度得到;
每片桨叶由上表面和下表面两个曲面组成;从桨根至桨尖,上表面曲面从前缘往后缘始终呈现上凸状;从桨根至50%半径处,下表面曲面呈现下凸状;
桨叶从旋转轴至桨尖,相对厚度逐渐减小;最大相对厚度为30%, 50%半径处的相对厚度为8.67%,60%半径处的相对厚度为7.07%,70%半径处的相对厚度为6.87%,80%半径处的相对厚度为6.04%,90%半径处的相对厚度为4.55%,桨尖的相对厚度为2.07%。
优选的,从桨根至桨尖,相对厚度、剖面扭转角逐渐减小,剖面弦长先增大后减小。
优选的,桨叶的后缘具有相对厚度,且相对厚度从50%半径至桨尖逐渐减小。
优选的,从50%半径至桨尖,下表面曲面在前缘弦长10%处呈现下凸状,从10%弦长至后缘为内凹形,且内凹的程度,从50%半径至桨尖逐渐增大;
桨叶从旋转轴往外至50%半径,弦长逐渐增大;从50%半径至桨尖,弦长逐渐减小;最大弦长在50%半径处,其弦长为半径的15%,最小弦长在桨尖,其弦长为半径的6%。
优选的,桨叶剖面的扭转角从根部至桨尖逐渐减小,桨根扭转角 40°,50%半径处的扭转角22.5°,桨尖的扭转角为11°。
优选的,桨叶50%、60%、70%、80%、90%、100%径向位置处的剖面翼型具有如下特征:
50%位置:翼型的最大厚度为8.67%,最大厚度位置位于0.2395 弦长处;
60%位置:翼型的最大厚度为7.07%,最大厚度位置位于0.2125 弦长处;
70%位置:翼型的最大厚度为6.87%,最大厚度位置位于0.20弦长处;
80%位置:翼型的最大厚度为6.04%,最大厚度位置位于0.1770 弦长处;
90%位置:翼型的最大厚度为4.55%,最大厚度位置位于0.1230 弦长处;
100%位置:翼型的最大厚度为2.07%,最大厚度位置位于0.0615 弦长处。
本发明的有益效果:
1.本发明提供一种小型螺旋桨,一种小型螺旋桨,相比于现有的螺旋桨,其拉力系数、功率系数、悬停效率都有了明细的提高,气动效率得到明显改善。
2.相比于现有的相同直径的螺旋桨NR640,本发明的螺旋桨气动效率更高:在消耗相同电机功率的情况下,产生更大的拉力,或在产生相同拉力的情况下消耗更小的电机功率。
附图说明
图1是现有技术中UIUU的螺旋桨NR640三维外形示意图;
图2是现有技术中UIUU的螺旋桨NR640剖面翼型示意图;
图3是本发明实施例螺旋桨的剖面翼型(叶素)受力示意图;
图4是采用本发明实施例提供的一种小型螺旋桨气动外形示意图(气动外形不含桨毂);
图5是采用本发明实施例提供的一种螺旋桨中桨叶的曲面形状示意图;
图6是采用本发明实施例提供的一种小型螺旋桨各径向位置的翼型形状与螺旋桨NR640翼型形状的对比示意图。
附图标记:1-桨毂;2-三维螺旋桨叶片;3-翼型;4-旋转平面; 5-50%桨叶径向位置;6-60%桨叶径向位置;7-70%桨叶径向位置;8-80%桨叶径向位置;9-90%桨叶径向位置;10-100%桨叶径向位置;11-桨尖;12-桨根;13-第一片桨;14-第二片桨;15-旋转轴;16-前缘; 17-后缘;
具体实施方式
为了使本领域的技术人员更好地理解此技术,我们结合附图和具体实施实例对本发明作进一步的详细说明。
本发明实施例提供的螺旋桨的整体外形尺寸与现有的NR640一致:桨叶直径0.23m(9英寸),桨叶从中心转轴到50%径向位置之间的剖面形状与NR640一致:剖面形状以低雷诺数螺旋桨翼型Clark-Y 翼型作为基准,从桨根至桨尖,相对厚度、剖面扭转角逐渐减小,剖面弦长先增大后减小。但是,本发明实施例提供的螺旋桨桨叶50%径向位置到100%径向位置与NR640明显不同,如图6所示,且经过实验证明,得到了很好的有益效果。
本发明实施例的螺旋桨相对于现有的NR640,其拉力系数、悬停效率都得到了明显的提升。
本发明实施例提供一种小型螺旋桨,该螺旋桨含两片桨叶,如图4所示,两片桨叶形状完全相同,其中一片是由另一片绕旋转轴旋转 180度得到。每片桨叶由上表面和下表面两个曲面组成。从桨根至桨尖,上表面曲面从前缘往后缘始终呈现上凸状;从桨根至50%半径处,下表面曲面呈现下凸状,但比上表面更为平坦;从50%半径至桨尖,下表面曲面在前缘约10%弦长呈现下凸状,从10%弦长至后缘为内凹形,且内凹的程度,从50%半径至桨尖逐渐增大。上述外形特征提高了桨叶的各剖面弯度,增大各剖面的升力系数,从而起到增大桨叶拉力系数的作用。
桨叶从旋转轴至桨尖,相对厚度逐渐减小;最大相对厚度为30%, 50%半径处的相对厚度为8.67%,60%半径处的相对厚度为7.07%,70%半径处的相对厚度为6.87%,80%半径处的相对厚度为6.04%,90%半径处的相对厚度为4.55%,桨尖的相对厚度为2.07%。桨叶剖面的扭转角从根部至桨尖逐渐减小,桨根扭转角40°,50%半径处的扭转角22.5°,桨尖的扭转角为11°。从桨根到桨尖剖面相对厚度的大小,既可以保证结构的强度和刚度,也可抑制外段剖面的阻力系数,从而抑制桨叶的扭矩系数。
桨叶的后缘具有相对厚度,且相对厚度从50%半径至桨尖逐渐减小。桨叶从旋转轴往外至50%半径,弦长逐渐增大;从50%半径至桨尖,弦长逐渐减小;最大弦长在50%半径处,其弦长为半径的15%,最小弦长在桨尖,其弦长为半径的6%。
本发明实施例的螺旋桨桨叶在50%、60%、70%、80%、90%、100%径向位置处的剖面翼型具有如下特征:
50%位置:翼型的最大厚度为8.67%,最大厚度位置位于0.2395弦长处,翼型上下表面几何坐标(x,y)表达式分别为:
翼型上表面:
Figure DEST_PATH_GDA0002261703660000061
翼型下表面:
Figure DEST_PATH_GDA0002261703660000062
其中的系数:
Au,0=0.152655,Au,1=0.425461,Au,2=-0.163914,Au,3=1.190867,Au,4=-1.097427
Au,5=2.094674,Au,6=-1.246325,Au,7=1.481334,Au,8=-0.090386,Au,9=0.574920,Au,10=0.385483
Al,0=-0.130539,Al,1=0.06895,Al,2=-0.024549,Al,3=0.093360,Al,4=0.301629
Al,5=-0.045437,Al,6=0.103491,Al,7=0.334922,Al,8=0.098178,Al,9=0.244832,Al,10=0.182890
60%位置:翼型的最大厚度为7.07%,最大厚度位置位于0.2125弦长处,翼型上下表面几何坐标(x,y)表达式分别为:
翼型上表面:
Figure DEST_PATH_GDA0002261703660000063
翼型下表面:
Figure DEST_PATH_GDA0002261703660000064
其中的系数:
Au,0=0.134306,Au,1=0.427156,Au,2=-0.182180,Au,3=1.158585,Au,4=-0.984807
Au,5=1.851305,Au,6=-1.036964,Au,7=1.279719,Au,8=-0.030759,Au,9=0.509214,Au,10=0.358182
Al,0=-0.111891,Al,1=0.120356,Al,2=-0.043038,Al,3=0.227367,Al,4=0.205828
Al,5=0.099386,Al,6=0.044842,Al,7=0.406770,Al,8=0.114971,Al,9=0.270654,Al,10=0.196961
70%位置:翼型的最大厚度为6.87%,最大厚度位置位于0.20弦长处,翼型上下表面几何坐标(x,y)表达式分别为:
翼型上表面:
Figure DEST_PATH_GDA0002261703660000065
翼型下表面:
Figure DEST_PATH_GDA0002261703660000071
其中的系数:
Au,0=0.128423,Au,1=0.453256,Au,2=-0.212088,Au,3=1.196303,Au,4=-0.959491
Au,5=1.718774,Au,6=-0.953750,Au,7=1.182584,Au,8=-0.071382,Au,9=0.464090,Au,10=0.299464
Al,0=-0.117286,Al,1=0.158370,Al,2=-0.106667,Al,3=0.373278,Al,4=0.046426
Al,5=0.211088,Al,6=0.003169,Al,7=0.423350,Al,8=0.089246,Al,9=0.260095,Al,10=0.173089
80%位置:翼型的最大厚度为6.04%,最大厚度位置位于0.1770弦长处,翼型上下表面几何坐标(x,y)表达式分别为:
翼型上表面:
Figure DEST_PATH_GDA0002261703660000072
翼型下表面:
Figure DEST_PATH_GDA0002261703660000073
其中的系数:
Au,0=0.128171,Au,1=0.424357,Au,2=-0.183163,Au,3=1.060051,Au,4=-0.766158
Au,5=1.396571,Au,6=-0.727121,Au,7=0.972472,Au,8=-0.049234,Au,9=0.391837,Au,10=0.248007
Al,0=-0.104653,Al,1=0.154068,Al,2=-0.061138,Al,3=0.290147,Al,4=0.209649
Al,5=-0.025255,Al,6=0.236628,Al,7=0.240151,Al,8=0.134606,Al,9=0.208060,Al,10=0.141050
90%位置:翼型的最大厚度为4.55%,最大厚度位置位于0.1230弦长处,翼型上下表面几何坐标(x,y)表达式分别为:
翼型上表面:
Figure DEST_PATH_GDA0002261703660000074
翼型下表面:
其中的系数:
Au,0=0.112687,Au,1=0.363011,Au,2=-0.186421,Au,3=0.908302,Au,4=-0.656793
Au,5=1.132545,Au,6=-0.573745,Au,7=0.765489,Au,8=-0.042525,Au,9=0.307268,Au,10=0.193787
Al,0=-0.092962,Al,1=0.153907,Al,2=-0.052851,Al,3=0.263846,Al,4=0.266642
Al,5=-0.178655,Al,6=0.413754,Al,7=0.028554,Al,8=0.176092,Al,9=0.133850,Al,10=0.103037
100%位置:翼型的最大厚度为2.07%,最大厚度位置位于0.0615弦长处,翼型上下表面几何坐标(x,y)表达式分别为:
翼型上表面:
Figure DEST_PATH_GDA0002261703660000081
翼型下表面:
Figure DEST_PATH_GDA0002261703660000082
其中的系数:
Au,0=0.073514,Au,1=0.193734,Au,2=-0.121582,Au,3=0.500704,Au,4=-0.340172
Au,5=0.587201,Au,6=-0.235181,Au,7=0.372227,Au,8=0.023512,Au,9=0.171377Au,10=0.143392
Al,0=-0.053941,Al,1=0.116787,Al,2=-0.005766,Al,3=0.172813,Al,4=0.308408
Al,5=-0.300532,Al,6=0.561680,Al,7=-0.261820,Al,8=0.240156,Al,9=0.016343,Al,10=0.070061
以下为实验数据:
将本发明实施例的螺旋桨与现有的螺旋桨NR640进行实验对比测试如下:
螺旋桨空气动力特性的参数主要有拉力系数CT、扭矩系数CM、功率系数CP、悬停效率FM等,其表达式如下:
其中,T为螺旋桨产生的拉力,M为螺旋桨产生的绕转轴的扭矩,P 为螺旋桨产生的功率;ρ是来流空气密度,R是螺旋桨半径,Ω是螺旋桨的旋转角速度(rad/s)。
本发明实施例的螺旋桨的拉力系数为0.103152,功率系数为 0.043964,悬停效率为0.6012,悬停效率比基准螺旋桨高8.13%,气动效率得到明显提高。从而验证了本方法的有效性,参见表1所示。图4给出的是本发明实施例提供的螺旋桨三维形状。图5给出的是一片桨叶上所有坐标点连成的网格面。
表1设计螺旋桨与螺旋桨NR640的气动参数对比
图6给出了本发明实施例的螺旋桨从50%~100%径向位置处的翼型形状与螺旋桨NR640翼型形状的比较,从图中看出本发明实施例的的螺旋桨桨叶更薄、弯度更大,从而产生的更大的拉力系数,提高了悬停效率。
下面给出本发明实施例螺旋桨50%、60%、70%、80%、90%、100%径向位置的(x,y)坐标点如下:
Figure DEST_PATH_GDA0002261703660000092
Figure DEST_PATH_GDA0002261703660000101
Figure DEST_PATH_GDA0002261703660000111
Figure DEST_PATH_GDA0002261703660000121
Figure DEST_PATH_GDA0002261703660000131
Figure DEST_PATH_GDA0002261703660000141
Figure DEST_PATH_GDA0002261703660000151
Figure DEST_PATH_GDA0002261703660000161
本发明实施例不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种小型螺旋桨,其特征在于,所述螺旋桨包含两片完全相同的桨叶,其中一片桨叶是由另一片桨叶绕旋转轴旋转180度得到;
每片桨叶由上表面和下表面两个曲面组成;从桨根至桨尖,上表面曲面从前缘往后缘始终呈现上凸状;从桨根至50%半径处,下表面曲面呈现下凸状;
桨叶从旋转轴至桨尖,相对厚度逐渐减小;最大相对厚度为30%,50%半径处的相对厚度为8.67%,60%半径处的相对厚度为7.07%,70%半径处的相对厚度为6.87%,80%半径处的相对厚度为6.04%,90%半径处的相对厚度为4.55%,桨尖的相对厚度为2.07%。
2.根据权利要求1所述的螺旋桨,其特征在于,从桨根至桨尖,相对厚度、剖面扭转角逐渐减小,剖面弦长先增大后减小。
3.根据权利要求1所述的螺旋桨,其特征在于,桨叶的后缘具有相对厚度,且相对厚度从50%半径至桨尖逐渐减小。
4.根据权利要求1所述的螺旋桨,其特征在于,从50%半径至桨尖,下表面曲面在前缘弦长10%处呈现下凸状,从10%弦长至后缘为内凹形,且内凹的程度,从50%半径至桨尖逐渐增大;
桨叶从旋转轴往外至50%半径,弦长逐渐增大;从50%半径至桨尖,弦长逐渐减小;最大弦长在50%半径处,其弦长为半径的15%,最小弦长在桨尖,其弦长为半径的6%。
5.根据权利要求1所述的螺旋桨,其特征在于,桨叶剖面的扭转角从根部至桨尖逐渐减小,桨根扭转角40°,50%半径处的扭转角22.5°,桨尖的扭转角为11°。
6.根据权利要求1所述的螺旋桨,其特征在于,桨叶50%、60%、70%、80%、90%、100%径向位置处的剖面翼型具有如下特征:
50%位置:翼型的最大厚度为8.67%,最大厚度位置位于0.2395弦长处;
60%位置:翼型的最大厚度为7.07%,最大厚度位置位于0.2125弦长处;
70%位置:翼型的最大厚度为6.87%,最大厚度位置位于0.20弦长处;
80%位置:翼型的最大厚度为6.04%,最大厚度位置位于0.1770弦长处;
90%位置:翼型的最大厚度为4.55%,最大厚度位置位于0.1230弦长处;
100%位置:翼型的最大厚度为2.07%,最大厚度位置位于0.0615弦长处。
CN201920440325.XU 2019-04-03 2019-04-03 一种小型螺旋桨 Expired - Fee Related CN209972778U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920440325.XU CN209972778U (zh) 2019-04-03 2019-04-03 一种小型螺旋桨

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920440325.XU CN209972778U (zh) 2019-04-03 2019-04-03 一种小型螺旋桨

Publications (1)

Publication Number Publication Date
CN209972778U true CN209972778U (zh) 2020-01-21

Family

ID=69256489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920440325.XU Expired - Fee Related CN209972778U (zh) 2019-04-03 2019-04-03 一种小型螺旋桨

Country Status (1)

Country Link
CN (1) CN209972778U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110015417A (zh) * 2019-04-03 2019-07-16 中南大学 一种小型螺旋桨

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110015417A (zh) * 2019-04-03 2019-07-16 中南大学 一种小型螺旋桨

Similar Documents

Publication Publication Date Title
JP6196795B2 (ja) 性能向上型ウイングレットシステムおよびその方法
CN110015417B (zh) 一种小型螺旋桨
US20110024552A1 (en) Anhedral Tip Blades for Tiltrotor Aircraft
CN206344995U (zh) 用于飞行器的涵道风扇
CN108163192B (zh) 一种高效低噪旋翼
CN110155319B (zh) 改进桨叶以增大其负失速迎角的方法
US8985503B2 (en) Aircraft stabilization systems and methods of modifying an aircraft with the same
US9709026B2 (en) Airfoil for a flying wind turbine
US10858093B2 (en) Thick airfoil shapes for blade necks and for blade cuff fairings for an aircraft rotor
CN109071004A (zh) 螺旋桨、动力套装及无人飞行器
CN211364914U (zh) 旋翼飞行器的桨叶及旋翼飞行器
CN209972778U (zh) 一种小型螺旋桨
CN110155318B (zh) 确定桨叶的翼型的初始前缘圆的方法和改进桨叶以增大其负失速迎角的方法
US8991747B2 (en) Aircraft stabilization systems and methods of modifying an aircraft with the same
WO2020024488A1 (zh) 螺旋桨、动力组件及无人飞行器
CN112977816A (zh) 旋翼飞行器的桨叶及旋翼飞行器
CN204507266U (zh) 一种翼尖后掠下反的低诱导阻力直升机旋翼
CN113022849B (zh) 螺旋桨及旋翼飞行器
CN111498108B (zh) 一种适用于多旋翼高速飞行的高效桨叶
KR20220048937A (ko) 블레이드의 공기역학적 프로파일의 리딩 에지를 변환하여 호버링 비행 중 회전익기 블레이드의 공기역학적 거동을 개선하는 방법
CN211364941U (zh) 旋翼飞行器的桨叶及旋翼飞行器
CN110844064B (zh) 一种低雷诺数旋翼桨叶
JP2002166891A (ja) ブレード用高性能翼型
CN112918668B (zh) 旋翼飞行器的旋翼及旋翼飞行器
CN112977815B (zh) 旋翼飞行器、旋翼飞行器的桨叶及其翼型

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200121

Termination date: 20210403

CF01 Termination of patent right due to non-payment of annual fee