CN209727808U - A kind of high precision neutron non-destructive testing device - Google Patents

A kind of high precision neutron non-destructive testing device Download PDF

Info

Publication number
CN209727808U
CN209727808U CN201920468855.5U CN201920468855U CN209727808U CN 209727808 U CN209727808 U CN 209727808U CN 201920468855 U CN201920468855 U CN 201920468855U CN 209727808 U CN209727808 U CN 209727808U
Authority
CN
China
Prior art keywords
neutron
screening cover
pedestal
high precision
destructive testing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201920468855.5U
Other languages
Chinese (zh)
Inventor
钱铁威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Taiwei accelerator Co., Ltd
Original Assignee
Beijing Zhongbaiyuan International Science And Technology Innovation Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Zhongbaiyuan International Science And Technology Innovation Research Co Ltd filed Critical Beijing Zhongbaiyuan International Science And Technology Innovation Research Co Ltd
Priority to CN201920468855.5U priority Critical patent/CN209727808U/en
Application granted granted Critical
Publication of CN209727808U publication Critical patent/CN209727808U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The utility model discloses a kind of high precision neutron non-destructive testing devices, including neutron emitting source, pedestal, screening cover, neutron imaging detector, pedestal upper side is sample deposition, the cavity of installation neutron emitting source is equipped among pedestal, the cavity is arranged through the upside of pedestal, the screening cover is located on the upside of pedestal, and screening cover can carry out the adjusting of position in above-below direction, and the upside of screening cover is arranged in the neutron imaging detector;The screening cover is up-small and down-big conical tube structure, it further include shielded-plate tube, the shielded-plate tube is vertically arranged in screening cover, it is connected at the upper end of shielded-plate tube and the upper end opening of screening cover, shielded-plate tube is the setting that can stretch up and down, and the inner sidewall of the screening cover is equipped with Reflective regulation plate, the lower end of Reflective regulation plate and screening cover are articulated and connected, screening cover is equipped with threaded hole, is connected with adjusting screw rod on the threaded hole, the adjusting screw rod is connect with the upper end of Reflective regulation plate.

Description

A kind of high precision neutron non-destructive testing device
Technical field
The utility model relates to neutron detection device technical fields, and in particular to a kind of high precision neutron non-destructive testing dress It sets.
Background technique
Neutron detection is that non-damaged data is carried out using the transmission of neutron, the application of this kind of detection mode, is human eye The detection in the interior of articles region that can not be observed and can not contact brings huge convenience.Especially in aviation field, to zero The inside of component, which carries out detection, to be necessary, if there are cavity or slight cracks inside components, it is easy to cause unexpected thing Therefore threaten the personal safety of people.Generally when detecting, neutron is transmitted from sample to be tested, then directive imaging system, But the transmission direction of neutron is not only directive imaging system, can also be encountered to transmittance to the neutron of transmittance Reflection can be generated again after object, which is applied to the precision that imaging system influences whether detection.
Utility model content
The purpose of the utility model is to provide a kind of high precision neutron non-destructive testing devices that detection accuracy is high.
A kind of high precision neutron non-destructive testing device, including neutron emitting source, pedestal, screening cover, neutron imaging detector, Pedestal upper side is sample deposition, the cavity of installation neutron emitting source is equipped among pedestal, the cavity is through pedestal Upside setting, the screening cover are located on the upside of pedestal, and screening cover can carry out the adjusting of position, the neutron in above-below direction The upside of screening cover is arranged in imaging detector;
The screening cover is up-small and down-big conical tube structure, further includes shielded-plate tube, the shielded-plate tube is set vertically It sets in screening cover, is connected at the upper end of shielded-plate tube and the upper end opening of screening cover, shielded-plate tube is the setting that can stretch up and down, described The inner sidewall of screening cover be equipped with Reflective regulation plate, the lower end of Reflective regulation plate and screening cover are articulated and connected, set on screening cover There is threaded hole, adjusting screw rod is connected on the threaded hole, the adjusting screw rod is connect with the upper end of Reflective regulation plate;
The neutron imaging detector includes flashing including neutron detection scintillator and detection from the neutron detection The light of body sending and the photodetector for being converted into electric signal, photodetector have multiple optical fiber and multiple photodetectors, Multiple optical fiber correspond to multiple positions setting of the incidence surface of scintillator, and multiple photodetectors are arranged corresponding to multiple optical fiber, Neutron measurement device is connect with photodetector, and neutron measurement device is used to record the number of light emission times of photodetector, neutron inspection Survey is arranged at the upper end opening of screening cover with scintillator.
The utility model is further arranged to, the pedestal be equipped with guide rod, the screening cover be equipped with The pilot hole of guide rod cooperation, the pedestal are equipped with the driving device one that driving screening cover moves on the guide bar.
The utility model is further arranged to, and the shielded-plate tube includes the fixing pipe and adjustable pipe of coaxial arrangement, institute The fixing pipe stated is fixedly connected with screening cover, and the adjustable pipe is threadedly coupled with fixing pipe.
The utility model is further arranged to, and the photodetector is photomultiplier tube.
The utility model is further arranged to, and the neutron emitting source includes the charged particle for being sequentially connected setting Source, accelerator, beam adjuster, target further include container and tubular shielding component, and target is arranged inside container, tubular shielding structure The NEUTRON EMISSION end of container is arranged in part.
The utility model is further arranged to, and the neutron measurement device is counter.
The utility model is further arranged to, the cross section that the screening cover is be it is rectangular, on four inner sidewalls It is respectively equipped with Reflective regulation plate.
The utility model is further arranged to, and the bottom that the lower end of the Reflective regulation plate is higher than screening cover is arranged, The upper end of Reflective regulation plate is arranged lower than the lower end of fixing pipe.
The utility model is further arranged to, and the upper side of the pedestal is equipped with sample rack.
The utility model is further arranged to, and further includes computing device, data processing equipment, storage equipment.
The utility model has the beneficial effects that
The neutron that foreign object emits can be carried out shielding isolation by high precision neutron non-destructive testing device provided herein Fall, avoids the neutron directive neutron detection scintillator of reflection, cause detection error, receive neutron detection scintillator can only To the neutron transmitted from sample, to improve the precision of detection.
Detailed description of the invention
Fig. 1 is the structural schematic diagram of the utility model;
Fig. 2 is the structural schematic diagram of the utility model screening cover;
Fig. 3 is the structural schematic diagram of the utility model neutron emitting source.
Specific embodiment
With reference to the accompanying drawings and examples, specific embodiment of the present utility model is described in further detail.Below Embodiment is not intended to limit the scope of the present invention for illustrating the utility model.
The utility model is illustrated below with reference to Fig. 1 to Fig. 3.
A kind of high precision neutron non-destructive testing device, including the detection of neutron emitting source 1, pedestal 2, screening cover 3, neutron imaging Device, 2 upper side of pedestal are sample deposition, the cavity 4 of installation neutron emitting source 1 are equipped among pedestal 2, the cavity 4 passes through The upside setting for wearing pedestal 2, enables the given-ioff neutron beam upwards of emission source 1, and the screening cover 3 is located at 2 upside of pedestal, screening cover 3 can carry out the adjusting of position in above-below direction, and screening cover 3 can move up opening and move down closing, and screening cover 3 is by that can inhale The material for receiving shielding neutron is made, and the upside of screening cover 3 is arranged in the neutron imaging detector.
The screening cover 3 is up-small and down-big conical tube structure, and pyramidal structure setting may make directive screening cover The reflection direction of neutron is obliquely, to avoid reflected neutron directive imaging detector.
It further include shielded-plate tube 5, the shielded-plate tube 5 is vertically arranged in screening cover 3, the upper end of shielded-plate tube 5 and screening cover 3 Upper end opening at connect, shielded-plate tube 5 is can stretch up and down setting, and the shielded-plate tube 5 includes the fixing pipe 51 that is coaxially disposed With adjustable pipe 52, the fixing pipe 51 is fixedly connected with screening cover 3, and the adjustable pipe 52 is threadedly coupled with fixing pipe 51. By using above-mentioned technical proposal, shielded-plate tube 5 can further stop the neutron of directive imaging detector, in use, adjustable pipe 52 can be regulated down to the upper side as close as sample to be tested, can reach better blocking effect in this way.
The inner sidewall of the screening cover 3 is equipped with Reflective regulation plate 6, and the lower end of Reflective regulation plate 6 and screening cover 3 are hinged Connection, screening cover 3 are equipped with threaded hole, and adjusting screw rod 7, the adjusting screw rod 7 and reflection are connected on the threaded hole The upper end of adjustable plate 6 connects.In above-mentioned technical proposal, the inclination angle of Reflective regulation plate 6 is adjusted by turn adjusting screw rod 7 Degree is that the neutron of reflection is reflected down as far as possible, is arranged to adjust the reflection angle of the neutron of directive Reflective regulation plate 6 The purpose of Reflective regulation plate 6, to avoid the neutron of directive screening cover in some cases because the tilt angle of screening cover is inadequate, and Neutron is caused to reflect upwards, directive imaging detector, so setting Reflective regulation plate 6 further adjusts tilt angle.
Wherein, the pedestal 2 is equipped with guide rod 13, and the screening cover 3 is equipped with and leads with what guide rod 13 cooperated To hole 14, the pedestal 2 is equipped with the driving device 1 that driving screening cover 3 moves on guide rod 13.
Wherein, the cross section that the screening cover 3 is be it is rectangular, be respectively equipped with Reflective regulation plate 6 on four inner sidewalls.
Wherein, the bottom that the lower end of the Reflective regulation plate 6 is higher than screening cover 3 is arranged, and the upper end of Reflective regulation plate 6 is low It is arranged in the lower end of fixing pipe 51.
Wherein, the upper side of the pedestal 2 is equipped with sample rack 21.
In above-mentioned technical proposal, the neutron of imaging detector reflection is turned by shielding to reach the mesh for improving detection accuracy 's.
The neutron imaging detector includes using including neutron detection scintillator 101 and detection from the neutron detection The light of the sending of scintillator 101 and the photodetector for being converted into electric signal, photodetector have multiple optical fiber 102 and multiple light Detecting element 103, multiple positions setting of the incidence surface of the corresponding scintillator 101 of multiple optical fiber 102, multiple photodetectors 103, which correspond to multiple optical fiber 102, is arranged, and neutron measurement device 104 is connect with photodetector 103, and neutron measurement device 104 is used In the number of light emission times of record photodetector 103, neutron detection scintillator 101 is arranged at the upper end opening of screening cover 3.
Non-damaged data, the neutron beam that neutron emitting source 1 issues, directive object to be detected are carried out using the transmission of neutron It transmits, is irradiated to scintillator 101, so that the neutron population for reaching scintillator 101 is measured, since object to be detected can produce neutron Raw attenuation can then generate differential declines effect, so passing through when object inside especially to be detected has damage to neutron beam Compare attenuation of the object to be detected to the attenuation of neutron beam with high quality object to be detected to neutron beam, so that it may judge to be checked Survey the quality of object.
We can preset neutron population decaying interval value, as amount of substance to be detected reference value whether up to standard, Because there is the object to be detected of damage, more serious neutron population generally can all be brought to decay, as long as so the neutron population measured not In the decaying interval value, then it can determine whether to detect object damage to be detected.
Neutron beam pass through object to be detected, be irradiated on the incidence surface of scintillator 101, scintillator 101 by neutron exposure and The position for issuing fluorescence is conducted to photodetector 103 under the action of optical fiber 102, and achievees the purpose that detection and count.
Neutron measurement device 104 measures the number of light emission times of each photodetector 103, the number as detection reflected neutron Amount, and generate detection data.
Wherein, the photodetector 103 is photomultiplier tube.Photomultiplier tube is that faint optical signal is converted into electricity The vacuum electron device of signal.Often it is used on scintillation counter.
Neutron emitting source 1 includes the charged particle source 105, accelerator 106, beam adjuster 107, target for being sequentially connected setting 108, it further include container 109 and tubular shielding component 110, target 108 is arranged inside container 109, and tubular shielding component 110 is arranged At the NEUTRON EMISSION end of container 109.
Charged particle source 105 generates proton, and accelerator 106 has multiple accelerators 106, for continuously accelerating by charging The proton that particle source 105 generates has 1MeV or higher energy by the proton that accelerator 106 accelerates in preferred embodiments, Beam adjuster 107 has multiple field coils, for adjusting the proton beam accelerated by beam adjuster 107 according to target 108 Direction and extension, the proton beam across beam adjuster 107 are generated on target 108 by the reaction between proton and target 108 Neutron, target 108 is placed on can not hardly be in the container 109 that is formed of material of transmission neutron, and the outer surface of container 109 forms and wears Internal hole is arrived thoroughly, and tubular shielding component 110 is connected at the hole, and tubular shielding component 110 transmits the material of neutron by being difficult to It is formed, the neutron generated in target 108 passes through tubular shielding component 110, and becomes the pulsed neutron being incident in check object Beam.
Wherein, the neutron measurement device 104 be counter, further include computing device 111, data processing equipment 112, Store equipment 113.The data that neutron measurement device 104 measures are sent to computing device 111 and data processing equipment 112, to this Data are handled, and obtain testing result, are ultimately stored in storage equipment 113.
The utility model has the beneficial effects that
The neutron that foreign object emits can be carried out shielding isolation by high precision neutron non-destructive testing device provided herein Fall, avoids the neutron directive neutron detection scintillator of transmitting, cause detection error, receive neutron detection scintillator can only To the neutron transmitted from sample, to improve the precision of detection.
The above is only the preferred embodiment of the utility model, it is noted that for the common skill of the art For art personnel, without deviating from the technical principle of the utility model, several improvements and modifications, above-mentioned vacation can also be made If these improvements and modifications also should be regarded as the protection scope of the utility model.

Claims (10)

1. a kind of high precision neutron non-destructive testing device, it is characterised in that: including neutron emitting source, pedestal, screening cover, neutron at As detector, pedestal upper side is sample deposition, and the cavity of installation neutron emitting source is equipped among pedestal, and the cavity passes through The upside setting of pedestal is worn, the screening cover is located on the upside of pedestal, and screening cover can carry out the adjusting of position, institute in above-below direction The upside of screening cover is arranged in the neutron imaging detector stated;
The screening cover is up-small and down-big conical tube structure, further includes shielded-plate tube, the shielded-plate tube is vertically arranged in It in screening cover, is connected at the upper end of shielded-plate tube and the upper end opening of screening cover, shielded-plate tube is the setting that can stretch up and down, the screen The inner sidewall for covering lid is equipped with Reflective regulation plate, and the lower end of Reflective regulation plate and screening cover are articulated and connected, and screening cover is equipped with spiral shell Pit is connected with adjusting screw rod on the threaded hole, and the adjusting screw rod is connect with the upper end of Reflective regulation plate;
The neutron imaging detector includes that neutron detection scintillator and detection are issued from the neutron detection scintillator Light and the photodetector for being converted into electric signal, photodetector have multiple optical fiber and multiple photodetectors, multiple optical fiber Multiple positions setting of the incidence surface of corresponding scintillator, multiple photodetectors are arranged corresponding to multiple optical fiber, neutron measurement Device is connect with photodetector, and neutron measurement device is used to record the number of light emission times of photodetector, neutron detection flashing Body is arranged at the upper end opening of screening cover.
2. a kind of high precision neutron non-destructive testing device according to claim 1, it is characterised in that: set on the pedestal There is guide rod, the screening cover is equipped with the pilot hole cooperated with guide rod, and the pedestal is equipped with driving screening cover and exists The driving device one moved on guide rod.
3. a kind of high precision neutron non-destructive testing device according to claim 1, it is characterised in that: the shielded-plate tube packet The fixing pipe and adjustable pipe of coaxial arrangement are included, the fixing pipe is fixedly connected with screening cover, the adjustable pipe and fixing pipe It is threadedly coupled.
4. a kind of high precision neutron non-destructive testing device according to claim 1, it is characterised in that: the light detection member Part is photomultiplier tube.
5. a kind of high precision neutron non-destructive testing device according to claim 1, it is characterised in that: the NEUTRON EMISSION Source includes the charged particle source for being sequentially connected setting, accelerator, beam adjuster, target, further includes container and tubular shielding component, Target is arranged inside container, and the NEUTRON EMISSION end of container is arranged in tubular shielding component.
6. a kind of high precision neutron non-destructive testing device according to claim 1, it is characterised in that: the neutron measurement Device is counter.
7. a kind of high precision neutron non-destructive testing device according to claim 3, it is characterised in that: the screening cover is Cross section be it is rectangular, be respectively equipped with Reflective regulation plate on four inner sidewalls.
8. a kind of high precision neutron non-destructive testing device according to claim 7, it is characterised in that: the Reflective regulation The bottom that the lower end of plate is higher than screening cover is arranged, and the upper end of Reflective regulation plate is arranged lower than the lower end of fixing pipe.
9. a kind of high precision neutron non-destructive testing device according to claim 1, it is characterised in that: the pedestal it is upper Side is equipped with sample rack.
10. a kind of high precision neutron non-destructive testing device according to claim 1, it is characterised in that: further include calculating dress It sets, data processing equipment, storage equipment.
CN201920468855.5U 2019-04-09 2019-04-09 A kind of high precision neutron non-destructive testing device Active CN209727808U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920468855.5U CN209727808U (en) 2019-04-09 2019-04-09 A kind of high precision neutron non-destructive testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920468855.5U CN209727808U (en) 2019-04-09 2019-04-09 A kind of high precision neutron non-destructive testing device

Publications (1)

Publication Number Publication Date
CN209727808U true CN209727808U (en) 2019-12-03

Family

ID=68690622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920468855.5U Active CN209727808U (en) 2019-04-09 2019-04-09 A kind of high precision neutron non-destructive testing device

Country Status (1)

Country Link
CN (1) CN209727808U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884093A (en) * 2019-04-09 2019-06-14 北京中百源国际科技创新研究有限公司 A kind of high precision neutron non-destructive testing device
JP2022093243A (en) * 2020-12-11 2022-06-23 東莞理工学院 Performance test device for material which penetrates target by neutron
CN109884093B (en) * 2019-04-09 2024-07-30 广东太微加速器有限公司 High-precision neutron nondestructive detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884093A (en) * 2019-04-09 2019-06-14 北京中百源国际科技创新研究有限公司 A kind of high precision neutron non-destructive testing device
CN109884093B (en) * 2019-04-09 2024-07-30 广东太微加速器有限公司 High-precision neutron nondestructive detection device
JP2022093243A (en) * 2020-12-11 2022-06-23 東莞理工学院 Performance test device for material which penetrates target by neutron
JP7142971B2 (en) 2020-12-11 2022-09-28 東莞理工学院 Material performance test equipment that injects neutrons into the target

Similar Documents

Publication Publication Date Title
RU2415404C1 (en) Method and device to detect smuggled goods using x-ray radiation and photoneutrons
US7583788B2 (en) Measuring device for the shortwavelength x ray diffraction and a method thereof
JP6052933B2 (en) Neutron beam detection device and neutron capture therapy device
EP3370088B1 (en) Neutron ray detecting system, and method of setting neutron ray detecting system
EP3306352A1 (en) Radioactive contamination inspection device
CN209727808U (en) A kind of high precision neutron non-destructive testing device
CN109884096A (en) A kind of neutron detection device of high security
JP6320761B2 (en) Neutron beam detection device and neutron capture therapy device
CN109884093A (en) A kind of high precision neutron non-destructive testing device
CN102841366B (en) Method and system for detecting discrimination threshold of pulse-amplitude discriminator
JP7021989B2 (en) Neutron capture therapy system and neutron detector
JP7084758B2 (en) Neutron beam detector and anomaly detection method for neutron beam detector
CN109884093B (en) High-precision neutron nondestructive detection device
CN209727809U (en) A kind of neutron non-destructive testing device
CN210690452U (en) Optical system for combining X-ray small-angle scattering and X-ray imaging
CN113866188A (en) Device for measuring thermal neutron transmittance of shielding material
JP6875265B2 (en) Neutron beam detector
CN111399028A (en) Neutron terminal of multipurpose
JP7248470B2 (en) Neutron detector
CN109884094A (en) A kind of neutron non-destructive testing device
CN113560218B (en) X-ray scattering correction system and method for color sorter
CN112764078B (en) Nuclear material measuring device
Song et al. The calibration of the DD neutron indium activation diagnostic
CN109709114B (en) Portable neutron detection device
CN217133392U (en) Detection device for special nuclear materials

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200103

Address after: 523808 room 310, building 1, No. 8, South Industrial Road, Songshanhu Park, Dongguan City, Guangdong Province

Patentee after: Guangdong Taiwei accelerator Co., Ltd

Address before: 101149 Beijing Tongzhou Canal Core Area IV-07 Block Greenbelt Building, 22 Floors 21389

Patentee before: Beijing Zhongbaiyuan International Science and Technology Innovation Research Co., Ltd.