CN209276210U - It is a kind of for removing the upward flow Zero-valent Iron filtration reactor and filtration system of underwater trace concentration heavy metal - Google Patents

It is a kind of for removing the upward flow Zero-valent Iron filtration reactor and filtration system of underwater trace concentration heavy metal Download PDF

Info

Publication number
CN209276210U
CN209276210U CN201821874629.9U CN201821874629U CN209276210U CN 209276210 U CN209276210 U CN 209276210U CN 201821874629 U CN201821874629 U CN 201821874629U CN 209276210 U CN209276210 U CN 209276210U
Authority
CN
China
Prior art keywords
zero
valent iron
reactor
supporting layer
heavy metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201821874629.9U
Other languages
Chinese (zh)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Zanren Environmental Protection Technology Co Ltd
Original Assignee
Harbin Zanren Environmental Protection Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Zanren Environmental Protection Technology Co Ltd filed Critical Harbin Zanren Environmental Protection Technology Co Ltd
Priority to CN201821874629.9U priority Critical patent/CN209276210U/en
Application granted granted Critical
Publication of CN209276210U publication Critical patent/CN209276210U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

It is a kind of for removing the upward flow Zero-valent Iron filtration reactor and filtration system of underwater trace concentration heavy metal, and in particular to a kind of filtration reactor and filtration system.Purpose is to solve the problems, such as that ZVI easily occurs hardened filtrate, short stream and is lost.Reactor is made of reactor body, regulating system and back-purge system;The bottom of reactor body is provided with water inlet pipe, and top is provided with drainpipe, and inside is from top to bottom provided with Zero-valent Iron filter material layer, the first supporting layer, the second supporting layer, third supporting layer and the 4th supporting layer.Filtration system is the series-parallel system that train, parallel system and the parallel system that reactor body is constituted are constituted.To avoid filtrate hardened, short stream and loss can occur for the utility model;It is capable of handling multiple pollutant, at low cost, sulfurization can prevent from forming iron oxide passivation layer, and the pollutant and iron oxygen passivation layer of filter material surface are cleaned by way of backwashing and weak acid is washed, restores filtrate reducing property.The utility model is suitable for water process.

Description

A kind of upward flow Zero-valent Iron filtering reaction for removing underwater trace concentration heavy metal Device and filtration system
Technical field
The utility model belongs to technical field of water treatment equipment, and in particular to a kind of filtration reactor and filtration system.
Background technique
Micro and trace concentration inorganic pollution includes fluoride, selenate, arsenate, arsenite, chromate, again Chromate, lead, cadmium, copper, zinc, mercury etc., micro and trace concentration organic pollutant includes nitrobenzene, chlorinatedorganic, chloro Organic agricultural chemicals etc.;Micro and trace concentration inorganic pollution and organic pollutant often appear in all kinds of water pollution areas, dirty Contaminate drinking water source, underground water source and natural water.These pollutant main sources be mining industry, machining manufacturing industry, The heavy metal-containing waste water being discharged in the industrial processes such as chemical company, steel and non-ferrous metal metallurgy and agricultural irrigation, change The organic pollutant given off in the industrial processes such as work synthesis tires out since this kind of micro and trace concentration pollutant has It the features such as product property and persistence, is not easy to be degraded in the environment, easily be bioaccumulation.Contaminants drinking water source enters drink Water system will seriously threaten human health and ecological environment security.On the other hand, contaminating enterprises need to locate to the sewage of discharge Manage it is up to standard after can just be discharged into water body, the raising of the requirement with country to discharge standard, the dirt of micro and trace concentration The removal of dye object is increasingly becoming the technical bottleneck that disposal of pollutants person promotes discharge standard.For example, urban wastewater treatment firm pollutant Characterizing portion a class of pollutant highest allows concentration of emission limit value that need to reach in discharge standard (standard No. GB18918-2002) Less than 1mg/L, it is even less than the rank of 1 μ g/L or the water outlet requirement that must not detect, such as total mercury need to be lower than 1 μ g/L, alkyl mercury It must not detect, total cadmium need to be lower than 0.01mg/L, and total chromium need to be lower than 0.1mg/L, and Cr VI need to be lower than 0.05mg/L, and total arsenic need to be lower than 0.1mg/L, total lead need to be lower than 0.1mg/L;In selection item controlled, the concentration of emission of chloroform need to be lower than 0.3mg/L, and four The concentration of emission of chlorination carbon need to be lower than 0.03mg/L.For blowdown enterprise, higher emission request need to be reached, i.e., need to meet receiving Classification standard of the water body in water environment quality standard (standard No. GB3838-2002), wherein total mercury need to be lower than 0.05 μ g/L (I/II class water) need to be lower than 0.1 μ g/L (III/IV class water), and total cadmium need to be lower than 0.001mg/L (I class water) or need to be lower than 0.005mg/L (II/III/IV class water), Cr VI need to be lower than 0.01mg/L (I class water) or need to be lower than 0.05mg/L (II/III/ IV class water), total arsenic need to be lower than 0.05mg/L (I/II/III class water) or need to be lower than 0.1mg/L (IV/V class water), and total lead need to be lower than 0.01mg/L (I/II class water) need to be lower than 0.05mg/L (III/IV class water).With country to blowdown enterprise to different receivings The emission request of water body improves, so, find a kind of removal for being able to satisfy micro and trace concentration pollutant again of low cost It is required that technology, it has also become sewage treatment facility mention mark transformation technical bottleneck.Conventional heavy metal pollution water treatment technology pair In high density pollution object removal advantageously, such as electric flocculation technique, coagulation-settlement process etc. have many successful cases Example, but electric flocculation technique, coagulation-settlement process etc. are needed when handling micro and trace concentration by increasing energy consumption and increase The mode of added amount of chemical increases reaction power, and cost of sewage disposal is caused to increase at series.Entering water heavy metal concentration 102 ~103When in the range of mg/L, the removal rate for reaching 99.9% that can be stable by the processing of traditional handicraft keeps pollutant dense Degree reaches 100~101Mg/L magnitude, and keep lower operating cost.However when pollutant concentration continues from 100~ 101Mg/L is reduced to 10-2~10-3Mg/L is even lower, as mercury water outlet need to be lower than 0.05 μ g/L (5x10-5Mg/L), then need to hold It is continuous to add excessive medicament, increase current strength, or improve hydraulic detention time, therefore cause significantly mentioning for processing cost It is high.
Micro or trace concentration water outlet can effectively be reached using ion exchange and biosorption technology, but in reality In the operation of border, since there is very strong selectivity often can guarantee when handling Single Pollution object for absorption resin and biological adsorption Higher removal effect, but when being coexisted in water there are many heavy metal contaminants the case where, such as when zwitterion coexists, from Son exchange and biosorption technology it is difficult to ensure that handle the heavy metal ion coexisted simultaneously.In addition, ion exchange and biological adsorption In the process of running, redox or complex reaction do not occur for technology, and generated waste residue is needed according at danger wastes Requirement disposition is set, whole operating cost is improved.
Zero-valent Iron (ZVI) has many advantages, such as that hypotoxicity, environmental-friendly, cheap, easy to operate, green is without secondary pollution, One of the important technology for having become polluted water body reparation, it is dirty in processing nitrogen dye wastewater, chlorinatedorganic sewage, nitrate It is standby in terms of the waste water controls such as water, perchlorate, herbicide, heavy metal containing sewage to have wide application prospect.ZVI comes from manufacture craft Classification mainly includes common grinding iron powder, nanometer iron powder, iron sponge powder and water mist iron powder.ZVI particle can restore, adsorb and The harmful substances such as precipitating removal multi-metal.The mechanism of Zero-valent Iron removal pollutant is divided into: (1) reduction of iron: iron is living Metal is sprinkled, has stronger reproducibility to heavy metal contaminants, various heavy can be reduced into the valence of zero-valent state or hypotoxicity State reaches processing intent.(2) light electrolysis acts on: Zero-valent Iron has electrochemical properties, generate in electrode reaction nascent state [H] and Fe2+Redox can occur with many components in sewage to restore many contaminant degradations.(3) coagulation-co-precipitation is made With: iron can generate unformed iron hydroxide, cotton-shaped Fe (OH) in corrosion process2With Fe (OH)3Isoreactivity ferrous components, they With it is very strong adsorb, flocculate, cohere, surface complexing, chelating, build bridge, volume is swept, interface oxidation and co-precipitation ability, whereby may be used Heavy metal Gu liquid circle Mian gan is controlled to move.(4) absorption-enrichment-co-precipitation: using at iron powder, nanometer iron powder and iron sponge powder It, can be by micro and trace since iron powder surface has the strong characterization of adsorption of bigger serface when managing heavy metal contaminants in water Concentration enriching pollutants form co-precipitate in the surface void of iron powder, then through reduction.
ZVI goes heavy metal research in water removal to have certain basis, but there is also problems for practical application.From application Mode is classified, and adding of agent mode and media filtration mode are broadly divided into.Directly using nanometer ZVI or micron-sized ZVI as medicine Agent is added in sewage, and the pollutant in water can be effectively treated, however during adding, ZVI easily with the oxygen in air Dissolved oxygen in molecule and water reacts, the iron oxygen passivation layer of one layer of 1~4nm densification of Surface Creation, leads to corrosion slowly, instead Answer active reduction.ZVI kernel is wrapped up by ferriferous oxide and separates further corrosion and the contact with pollutant, leads to whole work Property it is low, efficiency decline.In order to overcome ZVI surface passivation, academia and engineering circles have carried out many trials, including preparation nanometer zero Valence iron (nZVI), bimetallic system oxide, additional low-intensity magnetic field, ultrasonic wave synergistic reaction, loaded nano Zero-valent Iron, a hydridization huge sum of money It is molten etc. to belong to ion (palladium, nickel), acid.Above-mentioned improvement can improve ZVI activity and enhancing removal efficiency of heavy metals to a certain extent, but all In the presence of such as cost is excessively high, engineering construction is difficult, brings secondary pollution problems, such as patent CN106477689A, CN203256019, CN103332823, CN104326595, CN105776491, CN102807272, CN102583689, CN103112918 and CN103342410.Use ZVI that can prevent contact of the ZVI with air as filtrate, prevents it direct Oxidation, while reducing the investment of medicine system and cooperative system.However, general filter type be it is lower to flow through filter, due to ZVI grain diameter very little (partial size is usually between nm~um), lower to when flowing through filter running, filtrate frequent occurrence The problem of hardened, short stream and loss, influence outlet effect.The either application of ZVI adding of agent formula or lower filter to stream ZVI is answered With, in known application case, the first use of ZVI is only accounted for, it will by way of spoil disposal and replacement filtrate after use ZVI is abandoned, therefore only the ZVI of surface portion is contaminated object oxidation or forms the oxide of iron, and is still had inside ZVI a large amount of The good Zero-valent Iron for having neither part nor lot in reaction is not used, and is resulted in waste of resources.
Utility model content
The utility model in order to solve ZVI in existing sewage disposal process easily occur filtrate it is hardened, it is short stream and loss ask Topic, proposes a kind of for removing the upward flow Zero-valent Iron filtration reactor and filtration system of underwater trace concentration heavy metal.
The utility model is used to remove the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal by reactor Main body, regulating system and back-purge system are constituted;
The reactor body be containment cylinder tank or closed cuboid pond, the bottom of reactor body be provided with into Water pipe, the top of reactor body are provided with drainpipe, are provided with intake pump on water inlet pipe;Inside reactor body from top to bottom It is disposed with Zero-valent Iron filter material layer, the first supporting layer, the second supporting layer, third supporting layer and the 4th supporting layer;
4th supporting layer bottom is provided with big resistance cloth water assembly;Zero-valent Iron filter material layer lower part is provided with slight drag water distribution group Part;The water inlet end of big resistance cloth water assembly is connected to water inlet pipe water outlet;The water inlet pipe of slight drag cloth water assembly is leant out to reaction Device bottom part body is provided with valve on the water inlet pipe of the slight drag cloth water assembly outside reactor body;
Wherein, the water inlet end of big resistance cloth water assembly is connected to water inlet pipe intakes for reactor body;Slight drag water distribution The water inlet pipe of component is connected to the backwash for answering device main body with the backwash tube that back-purge system bottom is arranged;
The Zero-valent Iron filter material layer is made of zeroth order iron powder;The effective grain size d10 of zeroth order iron powder in Zero-valent Iron filter material layer It is 250 μm, nonuniformity coefficient k80 is less than 1.5, iron content >=96%;Zero-valent Iron filter material layer with a thickness of 0.5~1.5m;It is described Supporting layer filtrate is filled in first supporting layer, the second supporting layer, third supporting layer and the 4th supporting layer;First supporting layer In supporting layer filtrate be close with zeroth order iron powder identical in Zero-valent Iron filter material layer or with the zeroth order iron powder in Zero-valent Iron filter material layer Spend identical quartz sand;The partial size of supporting layer filtrate is 0.8~2mm, 40~100mm of thickness in first supporting layer;Described second Supporting layer filtrate in supporting layer be with zeroth order iron powder identical in Zero-valent Iron filter material layer or with the zeroth order in Zero-valent Iron filter material layer The identical quartz sand of iron powder density;The partial size of supporting layer filtrate is 2~4mm, 40~100mm of thickness in second supporting layer;It is described Supporting layer filtrate in third supporting layer be with zeroth order iron powder identical in Zero-valent Iron filter material layer or in Zero-valent Iron filter material layer The identical quartz sand of Zero-valent Iron powder density;The partial size of supporting layer filtrate is 4~8mm, 40~100mm of thickness in third supporting layer; Supporting layer filtrate in 4th supporting layer be with zeroth order iron powder identical in Zero-valent Iron filter material layer or with Zero-valent Iron filter material layer In the identical quartz sand of Zero-valent Iron powder density;In 4th supporting layer the partial size of supporting layer filtrate be 8~16mm, thickness 40~ 100mm;
The back-purge system is added by reverse washing tank, the first pH transmitter, blender, stirring slurry, the first pH electrode, first Teat pipette and the first medicine storing pot are constituted;First pH transmitter, blender, stirring slurry and the first pH electrode are arranged in reverse washing tank Portion, the first medicine storing pot are arranged outside reverse washing tank;Reverse washing tank bottom is provided with drain pipe and backwash tube, on backwash tube It is provided with valve and delivery pump;First medicine storing pot is connected to reverse washing tank by pipeline, and the first dosing pump is arranged in the first drug storage Pipeline between tank and reverse washing tank connects;The signal output end of first pH electrode and the control signal of the first pH transmitter input End is connected to by signal wire, and the control signal output of the first pH transmitter and the control signal input of the first dosing pump pass through Signal wire connection;The backwash tube of back-purge system bottom setting is connected to the water inlet pipe of slight drag cloth water assembly;Backwash system Reverse washing tank top in system is connected to the drainpipe that the top of reactor body is arranged;
The regulating system is by adjusting tank, the 2nd pH transmitter, blender, stirring slurry, the 2nd pH electrode, the second dosing Pump, the second medicine storing pot and third medicine storing pot are constituted;2nd pH transmitter, blender, stirring slurry and the setting of the 2nd pH electrode are being adjusted It saves inside tank, the second medicine storing pot and the setting of third medicine storing pot are being adjusted outside tank, on the second medicine storing pot and third medicine storing pot respectively It is provided with drug output branch pipe, is provided with valve, the second storage on the drug output branch pipe on the second medicine storing pot and third medicine storing pot Drug output branch pipe on medicinal cupping and third medicine storing pot is connected to drug delivery trunk respectively, and drug delivery trunk and adjusting tank connect It is logical, the second dosing pump is provided on drug delivery trunk;It adjusts tank top and is provided with water inlet pipe, adjust pot bottom and be provided with draining It manages, is provided with valve on drainpipe;The signal output end of 2nd pH electrode and the control signal input of the 2nd pH transmitter are logical Signal wire connection is crossed, the control signal output of the 2nd pH transmitter and the control signal input of the second dosing pump pass through signal Line connection;
The water inlet of the drainpipe of pot bottom setting and the water inlet pipe of reactor body bottom setting is adjusted in regulating system Connection;
The big resistance cloth water assembly is strainer head;The slight drag cloth water assembly is perforated pipe;
The reactor body material is glass reinforced plastic, aluminium alloy, cast iron, carbon steel, stainless steel, plastics or armored concrete; The aluminium alloy, cast iron, carbon steel, stainless steel material reactor body the inner surface and the outer surface be coated with erosion resistant coating;Anti-corrosion The material of layer material is raw lacquer, cashew resin, phenolic resin coating, epoxy-phenolic paint, epoxy coating, chlorinated polyvinyl chloride paints, drip Blueness, furane resins, polyurethanes, inorganic zinc rich paint etc.;
Waterpower is negative when the upward flow Zero-valent Iron filtration reactor for removing underwater trace concentration heavy metal is run Lotus is 4~30m3/h/m2;Air-land combat is 4~30min;
Wherein, regulating system has the function of that vulcanization and pH value regulatory function, the second medicine storing pot and third medicine storing pot are used respectively In the dissolvable sulfide and acid solution of storage high concentration;It is the pH value most preferably reacted that pH value, which is 4~6, by the 2nd pH transmitter It is set as 4~6, when the pH of the 2nd pH electrode detection sewage into adjusting tank is not in 4~6 ranges, the 2nd pH transmitter control It is 4~6 that the second dosing pump, which is made, to adjusting tank to input acid solution pH of sewage into section tank;
Dissolvable sulfide is used to adjust the S of sewage in tank2-Dissolvable sulfide is added into adjusting tank in the adjusting of concentration Make the S in sewage2-Concentration be 0.02~20mg/L;By the way that dissolvable sulfide is added in the pending water into regulating system After acid, reactor body is entered by the drain pipe that regulating system bottom is arranged by regulating system treated pending water, Vulcanized using regulating system, make filtrate that sulfurization occur, can prevent filtrate and oxygen or water effect from oxygen occurs in filtrate It comes to the surface and forms iron oxide passivation layer, instead form ferrous sulfide or vulcanization iron layer, ferrous sulfide or iron sulfide In S2-Reduction can be equally provided, and remove the heavy metal in water removal by way of precipitating;
The residence time of the regulating system is 15~45min;The dissolvable sulfide is dissolvable sulfide salt;It can Dissolubility sulphide salt is calcium sulfide or vulcanized sodium;The acid solution is hydrochloric acid of the pH value between 1~5;
Wherein, back-purge system has the function of backwashing function and pickling;First medicine storing pot is for storing acid solution;When with In removal underwater trace concentration heavy metal upward flow Zero-valent Iron filtration reactor in Zero-valent Iron filtrate due to oxidation and by When gradually losing processing reducing power, the first pH transmitter controls the first dosing pump and is input to the acid solution in the first medicine storing pot instead It is 4~6 that backwashing water pH is adjusted in can,douche;Back-purge system is to the upward flow zero for removing underwater trace concentration heavy metal The backwashing water that input pH is 4~6 in valence iron filtration reactor carries out pickling, and the first pH transmitter setting value is in acid cleaning process 4~6;Pickling is the di-iron trioxide that the attachment of Zero-valent Iron filter material surface is dissolved in by chemical action, ferroso-ferric oxide, hydroxide Ferrous and iron hydroxide, Zero-valent Iron is exposed again, achievees the purpose that recovery and reduction adsorption ability.Backwash is to pass through The physical action of water flow scrubs filter material surface, and the iron oxide that the hydroxide, particulate matter, pickling of the iron of attachment are fallen off is passivated Layer, pollutant are co-precipitated the sediments such as residue and heavy metal-iron complex and remove from filter material surface, reduce for removing trace in water removal Measure the head resistance of the upward flow Zero-valent Iron filtration reactor of concentration heavy metal;
The period using back-purge system pickling was 1~4 week, and the pickling time of each pickling cycle is 5~30 Minute;
Hydraulic loading when being backwashed using back-purge system is 30~40m3/h/m2;Backwashing period is 24~72 Hour, the backwashing time of each backwashing period is 5~30 minutes.
The upward flow Zero-valent Iron filtration reactor that the utility model is used to remove underwater trace concentration heavy metal has following The utility model has the advantages that
1, utility model device treatment process do not need other ancillary equipments such as electromagnetism or ultrasound can be to avoid filtrate Hardened, short stream and loss occurs;The upward flow Zero-valent Iron filtering that the utility model is used to remove underwater trace concentration heavy metal is anti- It answers in device, zeroth order iron powder filtering material particle is in the suspended state of gravity and buoyant equilibrium, and sewage is filled in zeroth order iron powder filtrate The phenomenon that making Zero-valent Iron filter material layer be in expansion suspended form between grain, having prevented hardened filtrate and short stream;Sewage is by reactor Lower part enters in reactor, reactor is discharged by reactor top, zeroth order iron powder filtering material particle is suspended in sewage, therefore zero Valence iron powder filtering material particle will not sink to be leaked into inlet pipeline, will not be overflowed from discharge pipe line;
2, the upward flow Zero-valent Iron filtration reactor that the utility model is used to remove underwater trace concentration heavy metal was run Cheng Zhong, filter process only need two parameters of expansion rate and hydraulic detention time that filtrate entirety is realized by control intake pressure, Concentration for the treatment of up to standard required for i.e. controllable water treatment procedure is horizontal, therefore easy to operate;
3, the upward flow Zero-valent Iron filtration reactor that the utility model is used to remove underwater trace concentration heavy metal was run Cheng Zhong makes filtrate that sulfurization (Sulfidation) occur by adding dissolvable sulfide into water.Sulfurization can be to prevent Only filtrate and the effect of oxygen or water occur to aoxidize and form iron oxide passivation layer, replace to form ferrous sulfide or vulcanization iron layer; The ferrous sulfide or iron sulfide of synkaingenesis state can equally provide reduction, can be gone by way of precipitating in water removal Heavy metal;
4. in the utility model longtime running, cleaning the pollutant of filter material surface such as by way of backwashing and weak acid is washed The precipitating such as iron complex, while iron oxygen passivation layer is removed, restore filtrate reducing property;Therefore filtrate has obtained pickling weight repeatedly System improves the service life of ZVI filtrate, achievees the purpose that sufficiently to adsorb and use to greatest extent;
5, compared with conventional processing technique, the utility model utilizes the strong reducing property of Zero-valent Iron, can handle simultaneously a variety of Pollutant, processing cost is low, and water pollutant reaches trace concentration or less out;The pollutant that the utility model can be handled simultaneously Including heavy metal, fluoride and chlorinated organics;Heavy metal is that the movable metallics such as Pb, As, Cd, Cr (sexavalence), Ni, Cu, Hg are suitable The metal more more stable than iron in sequence table;Chlorinated organics are Polychlorinated biphenyls, containing chloro pesticide etc.;
6, in the utility model, after Zero-valent Iron filtrate is by exhaustive oxidation or adsorption saturation, can not again by backwash or When pickling restores processing capacity again, these filtrates become discarded filtrate;The waste material and residue energy that utility model device generates Enough by toxic leaching test, it is not belonging to danger wastes.
It is filtered using the upward flow Zero-valent Iron for removing underwater trace concentration heavy metal that above-mentioned reactor body is constituted Reactor train is made of multiple reactor bodies, regulating system and back-purge system;
The water inlet pipe that the drainpipe and first reactor body bottom that pot bottom setting is adjusted in regulating system are arranged Water inlet connection;The water inlet of the drainpipe of previous reactor body and the latter reactor body in adjacent reactor body The drainpipe of pipe connection, the setting of the last one reactor body top is connected to the reverse washing tank top in back-purge system;Instead The backwash tube of rinse-system bottom setting is connected to the water inlet end of the slight drag cloth water assembly in reactor body respectively;
The utility model is used to remove the upward flow Zero-valent Iron filtration reactor train of underwater trace concentration heavy metal Longer air-land combat can be provided, pollutant passes through the process filtered step by step, and pollutant concentration reduces step by step in sewage; Each for removing the pollutant process of the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal in train Rate is 80~99%;
It is filtered using the upward flow Zero-valent Iron for removing underwater trace concentration heavy metal that above-mentioned reactor body is constituted Reactor parallel system is by multiple reactor bodies, regulating system, back-purge system, water inlet supervisor, drain header and backwash Supervisor is constituted;Multiple reactor bodies are set side by side, and the drainpipe and water inlet supervisor that pot bottom setting is adjusted in regulating system connect Logical, the water inlet pipe of each reactor body is connected to water inlet supervisor respectively, the drainpipe of each reactor body respectively with draining Supervisor's connection, drain header are connected to the reverse washing tank top in back-purge system;The backwash of back-purge system bottom setting Pipe is connected to backwash supervisor, and the water inlet end of the slight drag cloth water assembly in reactor body is connected to backwash supervisor respectively;
Using above-mentioned for removing the upward flow Zero-valent Iron filtration reactor parallel system structure of underwater trace concentration heavy metal At for removing the upward flow Zero-valent Iron filtration reactor series-parallel system of underwater trace concentration heavy metal by multiple reactions singly Member is constituted;The reaction member is the upward flow Zero-valent Iron filtration reactor taken in conjunction for removing underwater trace concentration heavy metal System;It is adjusted in the drain pipe and the latter reaction member of the reverse washing tank bottom setting of back-purge system in previous reaction member The water inlet pipe of the adjusting tank top setting of system is connected to by unit connecting tube;
The utility model is used to remove the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal System be suitable for sewage quantity it is larger when, and when pollutant concentration fluctuation is larger in sewage, provide longer air-land combat, it is dirty Dye object passes through the process filtered step by step, and pollutant concentration reduces step by step in sewage;Extend the processing time, and can provide additional Back-up system.
Detailed description of the invention
Fig. 1 is the upward flow Zero-valent Iron filtration reactor structural schematic diagram for removing underwater trace concentration heavy metal;
Fig. 2 is the schematic diagram that hardened phenomenon occurs for the existing lower ZVI into stream filter process;Arrow direction is water in Fig. 2 Flow direction;
Fig. 3 is filtrate occupied state in the upward flow Zero-valent Iron filtration reactor for removing underwater trace concentration heavy metal Schematic diagram;
Fig. 4 is filtrate suspended state in the upward flow Zero-valent Iron filtration reactor for removing underwater trace concentration heavy metal Schematic diagram;
Fig. 5 is weight in the upward flow Zero-valent Iron filtration reactor backwash process for removing underwater trace concentration heavy metal The sediment removal process schematic diagram such as metal-iron complex;
Fig. 6 is iron oxide passivation layer in the upward flow Zero-valent Iron filtration reactor for removing underwater trace concentration heavy metal Removal process schematic diagram;
Fig. 7 be in upward flow Zero-valent Iron filtration reactor for removing underwater trace concentration heavy metal FeS layer or Vulcanize the forming process schematic diagram of iron layer;
Fig. 8 is to illustrate for removing the upward flow Zero-valent Iron filtration reactor train of underwater trace concentration heavy metal Figure;
Fig. 9 is to illustrate for removing the upward flow Zero-valent Iron filtration reactor parallel system of underwater trace concentration heavy metal Figure;
Figure 10 is to show for removing the upward flow Zero-valent Iron filtration reactor series-parallel system of underwater trace concentration heavy metal It is intended to.
Specific embodiment:
Technical solutions of the utility model are not limited to that specific embodiments lis below, and further include each specific embodiment Between any reasonable combination.
Specific embodiment 1: illustrating that present embodiment, present embodiment are dense for removing underwater trace in conjunction with Fig. 1~8 The upward flow Zero-valent Iron filtration reactor of degree heavy metal is made of reactor body 1, regulating system 3 and back-purge system 4;
The reactor body 1 is that containment cylinder tank or closed cuboid pond, the bottom of reactor body 1 are provided with Water inlet pipe 11, the top of reactor body 1 are provided with drainpipe 13, intake pump 12 are provided on water inlet pipe 11;Reactor body 1 Inside is from top to bottom disposed with Zero-valent Iron filter material layer 18, the first supporting layer 14, the second supporting layer 15,16 and of third supporting layer 4th supporting layer 17;
4th supporting layer, 17 bottom is provided with big resistance cloth water assembly 22;18 lower part of Zero-valent Iron filter material layer is provided with slight drag Cloth water assembly 23;The water inlet end of big resistance cloth water assembly 22 is connected to 11 water outlet of water inlet pipe;Slight drag cloth water assembly 23 into Water pipe is leant out to 1 bottom of reactor body, is provided with valve on the water inlet pipe of the slight drag cloth water assembly 23 outside reactor body 1 Door;The Zero-valent Iron filter material layer 18 is made of zeroth order iron powder;The effective grain size d10 of zeroth order iron powder in Zero-valent Iron filter material layer 18 is 250 μm, nonuniformity coefficient k80 is less than 1.5, iron content >=96%;Zero-valent Iron filter material layer 18 with a thickness of 0.5~1.5m;
Support is filled in first supporting layer 14, the second supporting layer 15, third supporting layer 16 and the 4th supporting layer 17 Layer filtrate;Supporting layer filtrate in first supporting layer 14 is with zeroth order iron powder identical in Zero-valent Iron filter material layer 18 or with zero The identical quartz sand of Zero-valent Iron powder density in valence iron filter material layer 18;The partial size of supporting layer filtrate is 0.8 in first supporting layer 14 ~2mm, 40~100mm of thickness;Supporting layer filtrate in second supporting layer 15 is identical with Zero-valent Iron filter material layer 18 Zeroth order iron powder or quartz sand identical with the Zero-valent Iron powder density in Zero-valent Iron filter material layer 18;Supporting layer in second supporting layer 15 The partial size of filtrate is 2~4mm, 40~100mm of thickness;Supporting layer filtrate in the third supporting layer 16 is and Zero-valent Iron filtrate Identical zeroth order iron powder or quartz sand identical with the Zero-valent Iron powder density in Zero-valent Iron filter material layer 18 in layer 18;Third supporting layer The partial size of supporting layer filtrate is 4~8mm, 40~100mm of thickness in 16;Supporting layer filtrate in 4th supporting layer 17 be with Identical zeroth order iron powder or quartz sand identical with the Zero-valent Iron powder density in Zero-valent Iron filter material layer 18 in Zero-valent Iron filter material layer 18; The partial size of supporting layer filtrate is 8~16mm, 40~100mm of thickness in 4th supporting layer 17.
Fig. 1 is the upward flow Zero-valent Iron filtration reactor structural schematic diagram for removing underwater trace concentration heavy metal;Fig. 2 The schematic diagram of hardened phenomenon occurs for the existing lower ZVI into stream filter process;Arrow direction is water (flow) direction in Fig. 2;Due to The lower gravity to the waterpower squeezing action of stream and filtrate itself, causes filtrate to generate aggregation during the filtration process.After aggregation Filter material layer sufficient time of filtration can not be provided, therefore water flow can only be flowed by the gap between hardened piece, generate short stream, Sewage can not come into full contact with filtrate, influence filter effect and reaction effect;
Fig. 3 is filtrate occupied state in the upward flow Zero-valent Iron filtration reactor for removing underwater trace concentration heavy metal Schematic diagram;Hardened phenomenon easily occurs for filtrate during upward flow filtration in the prior art, the reason is that the gradation due to filtrate does not conform to Reason, density is bigger than normal, and the relatively low factor of hydraulic loading of filtering, causes filtrate during the filtration process without forming ideal suspend State, since the effect of gravity generates aggregation.Filter material layer after aggregation can not provide sufficient time of filtration, therefore water flow can only By the gap flowing between hardened piece, short stream is generated, can not be come into full contact with filtrate, influence filter effect and reaction effect. The effective grain size d10 of zeroth order iron powder is 250 μm in Fig. 3, and nonuniformity coefficient k80 is less than 1.5, the ferrous powder granules of small particle after filling It is interspersed between large-sized ferrous powder granules, forms uniform gap.Fig. 4 is for removing underwater trace concentration heavy metal The filtrate suspended state schematic diagram into stream Zero-valent Iron filtration reactor;Fig. 4 can be seen that the uniform of big resistance water distribution system generation Upward flow, filtrate entirety under hydraulic loading expansion rate be 5~10% between, formed suspended state, uniform fluid flow distribution Between the uniform gap that bulky grain and short grained Zero-valent Iron filtrate generate.Fig. 5 is for removing a underwater trace concentration huge sum of money The sediment removal process schematic diagram such as heavy metal-iron complex in the upward flow Zero-valent Iron filtration reactor backwash process of category; Fig. 5 it is found that the sediments such as a large amount of heavy metal-iron complex can be generated after filtering after a period of time, between ferrous powder granules, Gap between obstruction filtrate;By the backwash of high water-base fluid, water flow can remove the sediment of these obstructions, discharge filtrate Gap reduces head resistance when conventional upward flow filtration;Fig. 6 is the upward flow zero for removing underwater trace concentration heavy metal Iron oxide passivation layer removal process schematic diagram in valence iron filtration reactor;After filtering after a period of time, ferrous powder granules surface One layer is formed by Fe2O3、Fe4O3Or Fe (OH)3The iron oxide passivation layer that the oxide of equal iron is formed.Due to depositing for the passivation layer The active Zero-valent Iron of filter material surface can not come into full contact with filtered water stream, lose reducing power.Present embodiment passes through weak Acid backwash removes iron oxide passivation layer, and weak acid backwash uses the weak acid of pH=4~6, and it is blunt can effectively to dissolve iron oxide Change layer, while again will not be by zeroth order dissolved ferric iron;Fig. 7 is to filter for removing the upward flow Zero-valent Iron of underwater trace concentration heavy metal The forming process schematic diagram of FeS layer or vulcanization iron layer in reactor;When there are a certain amount of S in water flow2-When ion, Fe And the Fe that Fe is formed in oxidation-reduction process2+And Fe3+Ion meeting and S2-Sulfurization occurs, forms FeS and Fe2S3, take Generation iron oxide passivation layer, due to S in the ferrous sulfide or iron sulfide of these nascent states2-Presence can equally provide and go back original work With.
The upward flow Zero-valent Iron filtration reactor that present embodiment is used to remove underwater trace concentration heavy metal has following The utility model has the advantages that
1, present embodiment device treatment process do not need other ancillary equipments such as electromagnetism or ultrasound can be to avoid filtrate Hardened, short stream and loss occurs;The upward flow Zero-valent Iron filtering that present embodiment is used to remove underwater trace concentration heavy metal is anti- It answers in device, zeroth order iron powder filtering material particle is in the suspended state of gravity and buoyant equilibrium, and sewage is filled in zeroth order iron powder filtrate The phenomenon that making Zero-valent Iron filter material layer 18 be in expansion suspended form between grain, having prevented hardened filtrate and short stream;Sewage is by reacting Device lower part enters in reactor, and reactor is discharged by reactor top, and zeroth order iron powder filtering material particle is suspended in sewage, therefore Zeroth order iron powder filtering material particle will not sink to be leaked into inlet pipeline, will not be overflowed from discharge pipe line;
2, the upward flow Zero-valent Iron filtration reactor that present embodiment is used to remove underwater trace concentration heavy metal was run Cheng Zhong, filter process only need two parameters of expansion rate and hydraulic detention time that filtrate entirety is realized by control intake pressure, Concentration for the treatment of up to standard required for i.e. controllable water treatment procedure is horizontal, therefore easy to operate;
3, the upward flow Zero-valent Iron filtration reactor that present embodiment is used to remove underwater trace concentration heavy metal was run Cheng Zhong makes filtrate that sulfurization (Sulfidation) occur by adding dissolvable sulfide into water.Sulfurization can be to prevent Only filtrate and the effect of oxygen or water occur to aoxidize and form iron oxide passivation layer, replace to form ferrous sulfide or vulcanization iron layer; The ferrous sulfide or iron sulfide of synkaingenesis state can equally provide reduction, can be gone by way of precipitating in water removal Heavy metal;
4. in present embodiment longtime running, cleaning the pollutant of filter material surface such as by way of backwashing and weak acid is washed The precipitating such as iron complex, while iron oxygen passivation layer is removed, restore filtrate reducing property;Therefore filtrate has obtained pickling weight repeatedly System improves the service life of ZVI filtrate, achievees the purpose that sufficiently to adsorb and use to greatest extent;
5, compared with conventional processing technique, present embodiment utilizes the strong reducing property of Zero-valent Iron, can handle simultaneously a variety of Pollutant, processing cost is low, and water pollutant reaches trace concentration or less out;The pollutant that present embodiment can be handled simultaneously Including heavy metal, fluoride and chlorinated organics;Heavy metal is that the movable metallics such as Pb, As, Cd, Cr (sexavalence), Ni, Cu, Hg are suitable The metal more more stable than iron in sequence table;Chlorinated organics are Polychlorinated biphenyls, containing chloro pesticide etc.;
6, in present embodiment, after Zero-valent Iron filtrate is by exhaustive oxidation or adsorption saturation, can not again by backwash or When pickling restores processing capacity again, these filtrates become discarded filtrate;The waste material and residue energy that present embodiment device generates Enough by toxic leaching test, it is not belonging to danger wastes.
Specific embodiment 2: the present embodiment is different from the first embodiment in that: the big resistance cloth water assembly 22 be strainer head;The slight drag cloth water assembly 23 is perforated pipe.Other steps and parameter and one phase of specific embodiment Together.
Specific embodiment 3: the present embodiment is different from the first and the second embodiment in that: the reactor body 1 Material is glass reinforced plastic, aluminium alloy, cast iron, carbon steel, stainless steel, plastics or armored concrete;The aluminium alloy, cast iron, carbon steel, no The inner surface and the outer surface of the reactor body 1 for steel material of becoming rusty is coated with erosion resistant coating;The material of erosion resistant coating material is raw lacquer, laccol Resin, phenolic resin coating, epoxy-phenolic paint, epoxy coating, chlorinated polyvinyl chloride paints, pitch, furane resins, polyurethane Ester or inorganic zinc rich paint.Other steps and parameter are the same as one or two specific embodiments.
Specific embodiment 4: unlike one of present embodiment and specific embodiment one to three: described is used for Hydraulic loading is 4~30m when removing the upward flow Zero-valent Iron filtration reactor operation of underwater trace concentration heavy metal3/h/m2;It is empty Bed time of contact is 4~30min.Other steps and parameter are identical as one of specific embodiment one to three.
Specific embodiment 5: unlike one of present embodiment and specific embodiment one to four: the adjusting is The residence time of system 3 is 15~45min;The dissolvable sulfide is dissolvable sulfide salt;Dissolvable sulfide salt is sulphur Change calcium or vulcanized sodium;The acid solution is the hydrochloric acid that pH value is 1~5.Other steps and parameter and specific embodiment one to four One of it is identical.
Specific embodiment 6: unlike one of present embodiment and specific embodiment one to five: described using anti- The period of 4 pickling of rinse-system was 1~4 week, and the pickling time of each pickling cycle is 5~30 minutes.Other steps and ginseng Number is identical as one of specific embodiment one to five.
Specific embodiment 7: unlike one of present embodiment and specific embodiment one to six: described using anti- Hydraulic loading when rinse-system 4 backwashes is 30~40m3/h/m2;Backwashing period is 24~72 hours, each backwash week The backwashing time of phase is 5~30 minutes.Other steps and parameter are identical as one of specific embodiment one to six.
Specific embodiment 8: embodiment is described with reference to Fig.8, present embodiment utilizes the composition of reactor body 1 For remove the upward flow Zero-valent Iron filtration reactor train of underwater trace concentration heavy metal by multiple reactor bodies 1, Regulating system 3 and back-purge system 4 are constituted;
The drainpipe of pot bottom setting and the water inlet pipe of first 1 bottom of reactor body setting are adjusted in regulating system 3 11 water inlet connection;The drainpipe 13 of previous reactor body 1 and the latter reactor in adjacent reactor body 1 The water inlet pipe 11 of main body 1 is connected to, the drainpipe 13 of the last one 1 top of reactor body setting with it is anti-in back-purge system 4 The connection of can,douche top;4 bottom of back-purge system setting backwash tube respectively with the slight drag water distribution group in reactor body 1 The water inlet end of part 23 is connected to.
Present embodiment is used to remove the upward flow Zero-valent Iron filtration reactor train of underwater trace concentration heavy metal Longer air-land combat can be provided, pollutant passes through the process filtered step by step, and pollutant concentration reduces step by step in sewage; Each for removing the pollutant process of the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal in train Rate is 80~99%.
Specific embodiment 9: embodiment is described with reference to Fig.9, present embodiment utilizes the composition of reactor body 1 For remove the upward flow Zero-valent Iron filtration reactor parallel system of underwater trace concentration heavy metal by multiple reactor bodies 1, Regulating system 3, back-purge system 4, water inlet supervisor 19, drain header 20 and backwash supervisor 21 are constituted;Multiple reactor bodies 1 It is set side by side, the drainpipe that pot bottom setting is adjusted in regulating system 3 is connected to water inlet supervisor 19, each reactor body 1 Water inlet pipe 11 is connected to water inlet supervisor 19 respectively, and the drainpipe 13 of each reactor body 1 is connected to drain header 20 respectively, row Water supervisor 20 is connected to the reverse washing tank top in back-purge system 4;The backwash tube of 4 bottom of back-purge system setting and recoil 21 connection of supervisor is washed, the water inlet end of the slight drag cloth water assembly 23 in reactor body 1 is connected to backwash supervisor 21 respectively.
Present embodiment is used to remove the upward flow Zero-valent Iron filtration reactor parallel system of underwater trace concentration heavy metal Additional back-up system can be provided, be suitable for water and fluctuate biggish sewage treatment requirement.
Specific embodiment 10: embodiment is described with reference to Fig.10, present embodiment is utilized for removing underwater trace What the upward flow Zero-valent Iron filtration reactor parallel system of concentration heavy metal was constituted is used to remove underwater trace concentration heavy metal Upward flow Zero-valent Iron filtration reactor series-parallel system is made of multiple reaction members;The reaction member is for going in water removal The upward flow Zero-valent Iron filtration reactor parallel system of trace concentration heavy metal;Back-purge system 4 in previous reaction member The water inlet pipe for adjusting the setting of tank top of regulating system 3 is logical in the drain pipe and the latter reaction member of the setting of reverse washing tank bottom Cross the connection of unit connecting tube 24.
Present embodiment is used to remove the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal System be suitable for sewage quantity it is larger when, and when pollutant concentration fluctuation is larger in sewage, provide longer air-land combat, it is dirty Dye object passes through the process filtered step by step, and pollutant concentration reduces step by step in sewage;Extend the processing time, and can provide additional Back-up system.
Specific embodiment 11: the present embodiment is different from the first embodiment in that: the back-purge system 4 by Reverse washing tank, the first pH transmitter 41, blender, stirring slurry, the first pH electrode 42, the first dosing pump 43 and the first medicine storing pot 44 It constitutes;First pH transmitter 41, blender, stirring slurry and the first pH electrode 42 are arranged inside reverse washing tank, the first medicine storing pot 44 are arranged outside reverse washing tank;Reverse washing tank bottom is provided with drain pipe and backwash tube, is provided with valve on backwash tube And delivery pump;First medicine storing pot 44 is connected to reverse washing tank by pipeline, the setting of the first dosing pump 43 the first medicine storing pot 44 with Pipeline between reverse washing tank connects;The control signal of the signal output end and the first pH transmitter 41 of first pH electrode 42 is defeated Enter end to be connected to by signal wire, the control signal of the control signal output of the first pH transmitter 41 and the first dosing pump 43 inputs End is connected to by signal wire;
The backwash tube of 4 bottom of back-purge system setting is connected to the water inlet pipe of slight drag cloth water assembly 23;Backwash system Reverse washing tank top in system 4 is connected to the drainpipe 13 that the top of reactor body 1 is arranged.Other steps and parameter and tool Body embodiment one is identical.
Present embodiment back-purge system 4 has the function of backwashing function and pickling;First medicine storing pot 44 is for storing acid Solution;When in the upward flow Zero-valent Iron filtration reactor for removing underwater trace concentration heavy metal Zero-valent Iron filtrate due to oxidation When acting on and gradually losing processing reducing power, the first pH transmitter 41 controls the first dosing pump 43 will be in the first medicine storing pot 44 Acid solution be input in reverse washing tank that adjust backwashing water pH be 4~6;Back-purge system 4 is dense to being used to remove underwater trace It spends the backwashing water that input pH is 4~6 in the upward flow Zero-valent Iron filtration reactor of heavy metal and carries out pickling, the in acid cleaning process One pH transmitter, 41 setting value is 4~6;Pickling is that three oxidations two of Zero-valent Iron filter material surface attachment are dissolved in by chemical action Zero-valent Iron is exposed again, reaches recovery and reduction adsorption energy by iron, ferroso-ferric oxide, ferrous hydroxide and iron hydroxide The purpose of power.Backwash is to scrub filter material surface by the physical action of water flow, by the hydroxide of the iron of attachment, particulate matter, Iron oxide passivation layer that pickling falls off, the pollutant co-precipitation sediments such as residue and heavy metal-iron complex are gone from filter material surface It removes, reduces the head resistance for removing the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal;
Specific embodiment 12: the present embodiment is different from the first embodiment in that: the regulating system 3 is by adjusting Save tank, the 2nd pH transmitter 31, blender, stirring slurry, the 2nd pH electrode 32, the second dosing pump 33, the second medicine storing pot 34 and the Three medicine storing pots 35 are constituted;2nd pH transmitter 31, blender, stirring slurry and the setting of the 2nd pH electrode 32 are being adjusted inside tank, the Two medicine storing pots 34 and the setting of third medicine storing pot 35 are being adjusted outside tank, are respectively set on the second medicine storing pot 34 and third medicine storing pot 35 There is drug to export branch pipe, is provided with valve, the second storage on the drug output branch pipe on the second medicine storing pot 34 and third medicine storing pot 35 Drug output branch pipe on medicinal cupping 34 and third medicine storing pot 35 is connected to drug delivery trunk respectively, drug delivery trunk and adjusting Tank is connected to, and is provided with the second dosing pump 33 on drug delivery trunk;It adjusts tank top and is provided with water inlet pipe, adjust pot bottom setting There is drainpipe, is provided with valve on drainpipe;The control of the signal output end and the 2nd pH transmitter 31 of 2nd pH electrode 32 is believed Number input terminal passes through signal wire and is connected to, and the control of the control signal output of the 2nd pH transmitter 31 and the second dosing pump 33 is believed Number input terminal passes through signal wire and is connected to;
In regulating system 3 adjust pot bottom setting drainpipe and 1 bottom of reactor body setting water inlet pipe 11 into Mouth of a river connection.Other steps and parameter are identical with embodiment two.
Present embodiment regulating system 3 has the function of vulcanization and pH value regulatory function, the second medicine storing pot 34 and third drug storage Tank 35 is respectively used to the dissolvable sulfide and acid solution of storage high concentration;It is the pH value most preferably reacted that pH value, which is 4~6, by Two pH transmitters 31 are set as 4~6, when the 2nd pH electrode 32 detects the pH for adjusting sewage in tank not in 4~6 ranges, It is 4~6 that 2nd pH transmitter 31, which controls the second dosing pump 33 to adjusting tank to input acid solution pH of sewage into section tank,;
Dissolvable sulfide is used to adjust the S of sewage in tank2-Dissolvable sulfide is added into adjusting tank in the adjusting of concentration Make the S in sewage2-Concentration be 0.02~20mg/L;By the way that soluble vulcanization is added in the pending water into regulating system 3 After object and acid, reactor master is entered by the drain pipe that 3 bottom of regulating system is arranged by treated the pending water of regulating system 3 Body 1 is vulcanized using regulating system 3, makes filtrate that sulfurization occur, and can be prevented filtrate and oxygen or water effect from oxygen occurs and be existed Filter material surface simultaneously forms iron oxide passivation layer, instead forms ferrous sulfide or vulcanization iron layer, ferrous sulfide or sulphur Change the S in iron2-Reduction can be equally provided, and remove the heavy metal in water removal by way of precipitating.
Using following embodiment verifying the utility model has the beneficial effects that
Embodiment 1:
The present embodiment is used to remove the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal by reactor master Body 1, regulating system 3 and back-purge system 4 are constituted;
The reactor body 1 is that containment cylinder tank or closed cuboid pond, the bottom of reactor body 1 are provided with Water inlet pipe 11, the top of reactor body 1 are provided with drainpipe 13, intake pump 12 are provided on water inlet pipe 11;Reactor body 1 Inside is from top to bottom disposed with Zero-valent Iron filter material layer 18, the first supporting layer 14, the second supporting layer 15,16 and of third supporting layer 4th supporting layer 17;
The regulating system 3 is by adjusting tank, the 2nd pH transmitter 31, blender, stirring slurry, the 2nd pH electrode 32, second Dosing pump 33, the second medicine storing pot 34 and third medicine storing pot 35 are constituted;2nd pH transmitter 31, blender, stirring slurry and the 2nd pH The setting of electrode 32 is being adjusted inside tank, and the second medicine storing pot 34 and the setting of third medicine storing pot 35 are being adjusted outside tank, the second medicine storing pot 34 and third medicine storing pot 35 on be respectively arranged with drug output branch pipe, the drug on the second medicine storing pot 34 and third medicine storing pot 35 is defeated Valve is provided on branch pipe out, the drug output branch pipe on the second medicine storing pot 34 and third medicine storing pot 35 is total with drug output respectively Pipe connection, drug delivery trunk are connected to tank is adjusted, and the second dosing pump 33 is provided on drug delivery trunk;Tank top is adjusted to set It is equipped with water inlet pipe, pot bottom is adjusted and is provided with drainpipe, be provided with valve on drainpipe;The signal output end of 2nd pH electrode 32 It is connected to the control signal input of the 2nd pH transmitter 31 by signal wire, the control signal output of the 2nd pH transmitter 31 It is connected to the control signal input of the second dosing pump 33 by signal wire;
The back-purge system 4 by reverse washing tank, the first pH transmitter 41, blender, stirring slurry, the first pH electrode 42, First dosing pump 43 and the first medicine storing pot 44 are constituted;First pH transmitter 41, blender, stirring slurry and the first pH electrode 42 are set It sets inside reverse washing tank, the first medicine storing pot 44 is arranged outside reverse washing tank;Reverse washing tank bottom is provided with drain pipe and anti- Flushing pipe is provided with valve and delivery pump on backwash tube;First medicine storing pot 44 is connected to reverse washing tank by pipeline, and first adds The pipeline that Teat pipette 43 is arranged between the first medicine storing pot 44 and reverse washing tank connects;The signal output end of first pH electrode 42 with The control signal input of first pH transmitter 41 is connected to by signal wire, the control signal output of the first pH transmitter 41 It is connected to the control signal input of the first dosing pump 43 by signal wire;
4th supporting layer, 17 bottom is provided with big resistance cloth water assembly 22;18 lower part of Zero-valent Iron filter material layer is provided with slight drag Cloth water assembly 23;The water inlet end of big resistance cloth water assembly 22 is connected to 11 water outlet of water inlet pipe;Slight drag cloth water assembly 23 into Water pipe leans out to 1 bottom of reactor body and is connected to the backwash tube of 4 bottom of back-purge system setting, reactor body 1 Valve is provided on the water inlet pipe of external slight drag cloth water assembly 23;The drainpipe of pot bottom setting is adjusted in regulating system 3 It is connected to the water inlet of the water inlet pipe 11 of 1 bottom of reactor body setting;Reactor body 1 top setting drainpipe 13 with Reverse washing tank top connection in back-purge system 4;
The Zero-valent Iron filter material layer 18 is made of zeroth order iron powder;The effective grain size of zeroth order iron powder in Zero-valent Iron filter material layer 18 D10 is 250 μm, and nonuniformity coefficient k80 is less than 1.5, iron content >=96%;Zero-valent Iron filter material layer 18 with a thickness of 1m;
Support is filled in first supporting layer 14, the second supporting layer 15, third supporting layer 16 and the 4th supporting layer 17 Layer filtrate;Supporting layer filtrate in first supporting layer 14 is with zeroth order iron powder identical in Zero-valent Iron filter material layer 18 or with zero The identical quartz sand of Zero-valent Iron powder density in valence iron filter material layer 18;The partial size of supporting layer filtrate is in first supporting layer 14 1mm, thickness 40mm;Supporting layer filtrate in second supporting layer 15 is and zeroth order iron powder identical in Zero-valent Iron filter material layer 18 Or quartz sand identical with the Zero-valent Iron powder density in Zero-valent Iron filter material layer 18;The partial size of supporting layer filtrate in second supporting layer 15 For 3mm, thickness 40mm;Supporting layer filtrate in the third supporting layer 16 is and identical zeroth order in Zero-valent Iron filter material layer 18 Iron powder or quartz sand identical with the Zero-valent Iron powder density in Zero-valent Iron filter material layer 18;Supporting layer filtrate in third supporting layer 16 Partial size be 6mm, thickness 40mm;Supporting layer filtrate in 4th supporting layer 17 is identical with Zero-valent Iron filter material layer 18 Zeroth order iron powder or quartz sand identical with the Zero-valent Iron powder density in Zero-valent Iron filter material layer 18;Supporting layer is filtered in 4th supporting layer 17 The partial size of material is 10mm, thickness 40mm.The big resistance cloth water assembly 22 is strainer head;The slight drag cloth water assembly 23 is Perforated pipe;1 material of reactor body is glass reinforced plastic;
For removing the design discharge of the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal in embodiment 1 1.2 ton/hours, 24 hours continuous operations design air-land combat 10min, design hydraulic loading 10m3/h/m2;Adjust system The pH that sewage in tank is adjusted in system 3 is adjusted to 5.5;PH adjust use pH value for 2 hydrochloric acid;S in sewage in adjusting tank2-Concentration For 0.05mg/L, S2-Concentration, which is adjusted, uses calcium sulfide;The residence time of the regulating system 3 is 30min;Back-purge system 4 The concentration of As, Cd and Pb are respectively 0.01482,<0.0005 and<0.0005PPM in water outlet, removal rate is respectively 90%,>99% With > 99%;The period of 4 pickling of back-purge system was 1 week, and the pickling time of each pickling cycle is 10 minutes, when pickling PH is 5 in reverse washing tank;The hydraulic loading when backwash using back-purge system 4 is 30m3/h/m2;Backwashing period is 24 hours, the backwashing time of each backwashing period was 10 minutes;
The process object of embodiment 1 is the underground water in certain underground water pollution amelioration project, after underground water takes pump-and-treat system Discharge, treating capacity are 25 ton per days, and emission request reaches GB3838-2002IV class water quality standard.
Embodiment 1 is used to remove backwash and the acid of the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal The concentration for washing As, Cd and Pb in the water outlet that journey generates is respectively 0.00558,0.001 and 0.0007PPM, also corresponds to discharge Standard, therefore can also be with direct emission.The application of the technology effectively removes the heavy metal ion in underground water, after processing in water As meet emission request, Cd and Pb reach the processing target of no detection.And process is it is experimentally confirmed that the present embodiment generation is given up It abandons in solid waste leachate of the filtrate by HJ/T299 preparation, any one endangers component content and is less than GB5085.3- The concentration of 2007 tables 1 limits, and determines that the solid waste is not belonging to the hazardous waste with Leaching feature.In embodiment 1 The total quantity control on emission and processing result being lauched are as shown in table 1;0.0005L is represented in table 1 pollutes in treated underground water Detection limit 0.0005PPM or less of the concentration of the detection of object in detection method;
Table 1
Pollutant Total As Total Cd Total Pb
Unit PPM PPM PPM
It is up to standard to require GB3838-2002IV <0.1 <0.005 <0.05
Before groundwater treatment 0.1439 0.0063 0.0739
After groundwater treatment 0.01482 0.0005L 0.0005L
Backwash water outlet 0.00558 0.001 0.0007
Embodiment 2:
Embodiment 2 is to be constituted using reactor body 1 described in embodiment 1 for removing underwater trace concentration heavy metal Upward flow Zero-valent Iron filtration reactor train, this is used to remove the upward flow Zero-valent Iron mistake of underwater trace concentration heavy metal Filter reactor train is made of multiple reactor bodies 1, regulating system 3 and back-purge system 4;It is adjusted in regulating system 3 The drainpipe of pot bottom setting is connected to the water inlet for the water inlet pipe 11 that first 1 bottom of reactor body is arranged;Adjacent is anti- The drainpipe 13 of previous reactor body 1 in device main body 1 is answered to be connected to the water inlet pipe 11 of the latter reactor body 1, finally The drainpipe 13 of one 1 top of reactor body setting is connected to the reverse washing tank top in back-purge system 4;Back-purge system The backwash tube of 4 bottoms setting is connected to the water inlet end of the slight drag cloth water assembly 23 in reactor body 1 respectively.
It is used to remove the upward flow Zero-valent Iron filtration reactor train of underwater trace concentration heavy metal in embodiment 2 1.2 ton/hours of design discharge, 24 hours continuous operations design total air-land combat 30min, each for removing trace in water removal The air-land combat for measuring the upward flow Zero-valent Iron filtration reactor of concentration heavy metal is 10min, each for removing trace in water removal Measure the hydraulic loading 10m of the upward flow Zero-valent Iron filtration reactor of concentration heavy metal3/h/m2;It is adjusted in regulating system 3 dirty in tank The pH of water is adjusted to 5.5;PH adjust use pH value for 2 hydrochloric acid;S in sewage in adjusting tank2-Concentration be 0.1mg/L;S2- Concentration, which is adjusted, uses calcium sulfide;The residence time of the regulating system 3 is 30min;The period of 4 pickling of back-purge system is 1 Week, the pickling time of each pickling cycle are 10 minutes, and pH is 5 in reverse washing tank when pickling;It is described to utilize back-purge system 4 Hydraulic loading when backwash is 30m3/h/m2;Backwashing period is 24 hours, and the backwashing time of each backwashing period is 10 minutes;
The process object of embodiment 2 is somewhere underground water drinking water treatment pilot scale, and underground water is local drinking water source, in water As concentration be 0.54494ppm, treating capacity requires to be 25 ton per days, and processing requirement reaches GB5749-2006 Drinking Water and defend Raw standard.As concentration in treated underground water is dense lower than GB5749-2006 standards for drinking water quality 0.01PPM Degree requires an order of magnitude, reaches drinking water standard.The total quantity control on emission of underground water and processing result such as table in embodiment 2 Shown in 2;0.001L represents detection limit 0.001PPM or less of the concentration in detection method of detection in table 2;
Table 2
Pollutant Total As
Unit PPM
It is up to standard to require GB5749-2006 <0.01
Before groundwater treatment 0.54494
After coagulation 0.03932
After two stage treatment 0.01151
After tertiary treatment 0.001L
Embodiment 3:
Embodiment 3 is to be constituted using reactor body 1 described in embodiment 1 for removing underwater trace concentration heavy metal Upward flow Zero-valent Iron filtration reactor parallel system, this is used to remove the upward flow Zero-valent Iron mistake of underwater trace concentration heavy metal Reactor parallel system is filtered by multiple reactor bodies 1, regulating system 3, back-purge system 4, water inlet supervisor 19, drain header 20 It is constituted with backwash supervisor 21;Multiple reactor bodies 1 are set side by side, and the drainpipe of pot bottom setting is adjusted in regulating system 3 It is connected to water inlet supervisor 19, the water inlet pipe 11 of each reactor body 1 is connected to water inlet supervisor 19 respectively, each reactor body 1 drainpipe 13 is connected to drain header 20 respectively, and drain header 20 is connected to the reverse washing tank top in back-purge system 4; The backwash tube of 4 bottom of back-purge system setting is connected to backwash supervisor 21, the slight drag cloth water assembly in reactor body 1 23 water inlet end is connected to backwash supervisor 21 respectively.
Each design discharge for removing the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal is 25 Ton/day, the design discharge of two operations simultaneously is 50 ton per days.Each upward flow for being used to remove underwater trace concentration heavy metal The air-land combat of Zero-valent Iron filtration reactor is 10min, each for removing the upward flow of underwater trace concentration heavy metal The design hydraulic loading 10m of Zero-valent Iron filtration reactor3/h/m2.The pH that sewage in tank is adjusted in regulating system 3 is adjusted to 5.5; PH adjust use pH value for 2 hydrochloric acid;S in sewage in adjusting tank2-Concentration be 0.15mg/L, S2-Concentration is adjusted using vulcanization Calcium;The residence time of the regulating system 3 is 30min;The period of 4 pickling of back-purge system is 1 week, each pickling cycle Pickling time be 10 minutes, pH is 5 in reverse washing tank when pickling;The waterpower when backwash using back-purge system 4 is negative Lotus is 30m3/h/m2;Backwashing period is 24 hours, and the backwashing time of each backwashing period is 10 minutes;
The process object of embodiment 3 is somewhere underground water pollution rehablitation project, and underground water by rainy season due to being influenced, water Amount changes greatly, 25 ton per day of dry season day output, 50 ton per day of rainy season day output.Pollutant concentration in underground water is shown in Table 3;Processing requirement reaches GB3838-2002IV class water quality standard.
Heavy metal ion in embodiment 3 in underground water effectively removes, and the As after processing in water meets emission request, rainy season It is run simultaneously using two groups of parallel systems, treating capacity is increased to 50 ton per days by 25 ton per days.The concentration of As is in water outlet 0.03188PPM, removal rate are respectively 78.57%.The total quantity control on emission of underground water and processing result such as table 3 in embodiment 3 It is shown.
Table 3
Pollutant Total As
Unit PPM
It is up to standard to require GB3838-2002IV <0.1
Before groundwater treatment 0.14885
After coagulation 0.03188

Claims (9)

1. a kind of for removing the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal, it is characterised in that: be used for Remove underwater trace concentration heavy metal upward flow Zero-valent Iron filtration reactor by reactor body (1), regulating system (3) and instead Rinse-system (4) is constituted;
The reactor body (1) is containment cylinder tank or closed cuboid pond, and the bottom of reactor body (1) is provided with Water inlet pipe (11), the top of reactor body (1) are provided with drainpipe (13), and intake pump (12) are provided on water inlet pipe (11); Zero-valent Iron filter material layer (18), the first supporting layer (14), the second supporting layer are from top to bottom disposed with inside reactor body (1) (15), third supporting layer (16) and the 4th supporting layer (17);
4th supporting layer (17) bottom is provided with big resistance cloth water assembly (22);Zero-valent Iron filter material layer (18) lower part is provided with small resistance Power cloth water assembly (23);The water inlet end of big resistance cloth water assembly (22) is connected to water inlet pipe (11) water outlet;Slight drag water distribution group The water inlet pipe of part (23) is leant out to reactor body (1) bottom, the external slight drag cloth water assembly (23) of reactor body (1) Valve is provided on water inlet pipe;The Zero-valent Iron filter material layer (18) is made of zeroth order iron powder;Zero in Zero-valent Iron filter material layer (18) The effective grain size d10 of valence iron powder is 250 μm, and nonuniformity coefficient k80 is less than 1.5, iron content >=96%;Zero-valent Iron filter material layer (18) With a thickness of 0.5~1.5m;
It is filled in first supporting layer (14), the second supporting layer (15), third supporting layer (16) and the 4th supporting layer (17) Supporting layer filtrate;Supporting layer filtrate in first supporting layer (14) is and identical Zero-valent Iron in Zero-valent Iron filter material layer (18) Powder or quartz sand identical with the Zero-valent Iron powder density in Zero-valent Iron filter material layer (18);Supporting layer filtrate in first supporting layer (14) Partial size be 0.8~2mm, 40~100mm of thickness;Supporting layer filtrate in second supporting layer (15) is and Zero-valent Iron filtrate Identical zeroth order iron powder or quartz sand identical with the Zero-valent Iron powder density in Zero-valent Iron filter material layer (18) in layer (18);Second holds The partial size for holding in the palm supporting layer filtrate in layer (15) is 2~4mm, 40~100mm of thickness;Supporting layer in the third supporting layer (16) Filtrate be with identical zeroth order iron powder in Zero-valent Iron filter material layer (18) or with the Zero-valent Iron powder density in Zero-valent Iron filter material layer (18) Identical quartz sand;The partial size of supporting layer filtrate is 4~8mm, 40~100mm of thickness in third supporting layer (16);Described 4th Supporting layer filtrate in supporting layer (17) be with identical zeroth order iron powder in Zero-valent Iron filter material layer (18) or with Zero-valent Iron filter material layer (18) the identical quartz sand of Zero-valent Iron powder density in;The partial size of supporting layer filtrate is 8~16mm in 4th supporting layer (17), thick Spend 40~100mm.
2. it is according to claim 1 for removing the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal, It is characterized by: the back-purge system (4) is by reverse washing tank, the first pH transmitter (41), blender, stirring slurry, the first pH Electrode (42), the first dosing pump (43) and the first medicine storing pot (44) are constituted;First pH transmitter (41), blender, stirring slurry and First pH electrode (42) is arranged inside reverse washing tank, and the first medicine storing pot (44) is arranged outside reverse washing tank;Reverse washing tank bottom Portion is provided with drain pipe and backwash tube, is provided with valve and delivery pump on backwash tube;First medicine storing pot (44) and backwash Tank is connected to by pipeline, and the pipeline that the first dosing pump (43) is arranged between the first medicine storing pot (44) and reverse washing tank connects;The The signal output end of one pH electrode (42) is connected to the control signal input of the first pH transmitter (41) by signal wire, and first The control signal output of pH transmitter (41) is connected to the control signal input of the first dosing pump (43) by signal wire;
The backwash tube of back-purge system (4) bottom setting is connected to the water inlet pipe of slight drag cloth water assembly (23);Backwash system Reverse washing tank top in system (4) is connected to the drainpipe (13) that the top of reactor body (1) is arranged.
3. it is according to claim 1 for removing the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal, It is characterized by: the regulating system (3) is by adjusting tank, the 2nd pH transmitter (31), blender, stirring slurry, the 2nd pH electrode (32), the second dosing pump (33), the second medicine storing pot (34) and third medicine storing pot (35) are constituted;2nd pH transmitter (31), stirring Machine, stirring slurry and the setting of the 2nd pH electrode (32) are being adjusted inside tank, the second medicine storing pot (34) and third medicine storing pot (35) setting It is adjusting outside tank, drug output branch pipe, the second drug storage is respectively arranged on the second medicine storing pot (34) and third medicine storing pot (35) Valve, the second medicine storing pot (34) and third medicine storing pot are provided on drug output branch pipe on tank (34) and third medicine storing pot (35) (35) the drug output branch pipe on is connected to drug delivery trunk respectively, and drug delivery trunk is connected to tank is adjusted, drug output The second dosing pump (33) are provided on general pipeline;It adjusts tank top and is provided with water inlet pipe, adjust pot bottom and be provided with drainpipe, drain Valve is provided on pipe;The signal output end of 2nd pH electrode (32) and the control signal input of the 2nd pH transmitter (31) are logical Cross signal wire connection, the control signal output of the 2nd pH transmitter (31) and the control signal input of the second dosing pump (33) It is connected to by signal wire;
The water inlet pipe (11) that the drainpipe and reactor body (1) bottom that pot bottom setting is adjusted in regulating system (3) are arranged Water inlet connection.
4. it is according to claim 1 for removing the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal, It is characterized by: waterpower when the upward flow Zero-valent Iron filtration reactor for removing underwater trace concentration heavy metal is run Load is 4~30m3/h/m2;Air-land combat is 4~30min.
5. it is according to claim 1 for removing the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal, It is characterized by: the period using back-purge system (4) pickling was 1~4 week, the pickling time of each pickling cycle is 5~30 minutes.
6. it is according to claim 1 for removing the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal, It is characterized by: hydraulic loading when utilization back-purge system (4) backwashes is 30~40m3/h/m2;Backwashing period is 24~72 hours, the backwashing time of each backwashing period was 5~30 minutes.
7. utilize reactor body described in claim 1 (1) constitute for remove underwater trace concentration heavy metal on to Flow Zero-valent Iron filtration reactor train, it is characterised in that: this is used to remove the upward flow zero of underwater trace concentration heavy metal Valence iron filtration reactor train is made of multiple reactor bodies (1), regulating system (3) and back-purge system (4);
The drainpipe of pot bottom setting and the water inlet pipe of first reactor body (1) bottom setting are adjusted in regulating system (3) (11) water inlet connection;The drainpipe (13) and the latter of previous reactor body (1) in adjacent reactor body (1) The water inlet pipe (11) of reactor body (1) is connected to, the drainpipe (13) of the last one reactor body (1) top setting and recoil Wash the connection of the reverse washing tank top in system (4);Back-purge system (4) bottom setting backwash tube respectively with reactor body (1) water inlet end of the slight drag cloth water assembly (23) in is connected to.
8. utilize reactor body described in claim 1 (1) constitute for remove underwater trace concentration heavy metal on to Flow Zero-valent Iron filtration reactor parallel system, it is characterised in that: this is used to remove the upward flow zero of underwater trace concentration heavy metal Valence iron filtration reactor parallel system is responsible for by multiple reactor bodies (1), regulating system (3), back-purge system (4), water inlet (19), drain header (20) and backwash supervisor (21) are constituted;Multiple reactor bodies (1) are set side by side, in regulating system (3) Adjust pot bottom setting drainpipe with water inlet be responsible for (19) be connected to, the water inlet pipe (11) of each reactor body (1) respectively with Water inlet supervisor (19) connection, the drainpipe (13) of each reactor body (1) are connected to drain header (20) respectively, drain header (20) it is connected to the reverse washing tank top in back-purge system (4);The backwash tube of back-purge system (4) bottom setting and recoil Supervisor (21) connection is washed, the water inlet end of the slight drag cloth water assembly (23) in reactor body (1) is responsible for backwash respectively (21) it is connected to.
9. simultaneously using the upward flow Zero-valent Iron filtration reactor for removing underwater trace concentration heavy metal according to any one of claims 8 The upward flow Zero-valent Iron filtration reactor series-parallel system for being used to remove underwater trace concentration heavy metal that connection system is constituted, it is special Sign is: this is used to remove the upward flow Zero-valent Iron filtration reactor series-parallel system of underwater trace concentration heavy metal by multiple anti- Unit is answered to constitute;The reaction member is for removing the upward flow Zero-valent Iron filtration reactor of underwater trace concentration heavy metal simultaneously Connection system;The drain pipe of the reverse washing tank bottom setting of back-purge system (4) reacts single with the latter in previous reaction member The water inlet pipe for adjusting the setting of tank top of regulating system (3) is connected to by unit connecting tube (24) in member.
CN201821874629.9U 2018-11-14 2018-11-14 It is a kind of for removing the upward flow Zero-valent Iron filtration reactor and filtration system of underwater trace concentration heavy metal Active CN209276210U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201821874629.9U CN209276210U (en) 2018-11-14 2018-11-14 It is a kind of for removing the upward flow Zero-valent Iron filtration reactor and filtration system of underwater trace concentration heavy metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201821874629.9U CN209276210U (en) 2018-11-14 2018-11-14 It is a kind of for removing the upward flow Zero-valent Iron filtration reactor and filtration system of underwater trace concentration heavy metal

Publications (1)

Publication Number Publication Date
CN209276210U true CN209276210U (en) 2019-08-20

Family

ID=67601288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201821874629.9U Active CN209276210U (en) 2018-11-14 2018-11-14 It is a kind of for removing the upward flow Zero-valent Iron filtration reactor and filtration system of underwater trace concentration heavy metal

Country Status (1)

Country Link
CN (1) CN209276210U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231409A (en) * 2018-11-14 2019-01-18 哈尔滨泽能环保科技有限公司 It is a kind of for removing the upward flow Zero-valent Iron filtration reactor and filtration system of underwater trace concentration heavy metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231409A (en) * 2018-11-14 2019-01-18 哈尔滨泽能环保科技有限公司 It is a kind of for removing the upward flow Zero-valent Iron filtration reactor and filtration system of underwater trace concentration heavy metal
CN109231409B (en) * 2018-11-14 2024-01-19 哈尔滨泽能环保科技有限公司 Upward flow zero-valent iron filtering reactor and filtering system for removing trace concentration heavy metals in water

Similar Documents

Publication Publication Date Title
AU2010295313B2 (en) Zero valent iron/iron oxide mineral/ferrous iron composite for treatment of a contaminated fluid
CN102503030B (en) System for treating heavy metal wastewater
CN102951749B (en) Method and device for removing heavy metals in industrial wastewater by nanoscale zero-valent iron-multilevel reversed filter type system
Liu et al. A new technology for the treatment of chromium electroplating wastewater based on biosorption
Casentini et al. Arsenic removal by discontinuous ZVI two steps system for drinking water production at household scale
Wang et al. Arsenic removal from drinking water by ion exchange and activated alumina plants
CN107215940A (en) Multistage arrangement uniform activation Zero-valent Iron goes the water treatment system and method for removing heavy metals
CN101264946A (en) Iron-carbon pipe component capable of purifying waste water, integrated magnetoelectric oxidation biological filter chamber and application system
CN102417253A (en) In-depth treatment zero-discharge recovery equipment for heavy metal waste water
CN101096279A (en) Multifunctional critical multiple catalyzing electrolysis set equipment
CN109231409A (en) It is a kind of for removing the upward flow Zero-valent Iron filtration reactor and filtration system of underwater trace concentration heavy metal
CN101244860A (en) Extremely-high concentration multi-species heavy metal waste liquid treatment method and apparatus
CN103112918A (en) Integrated process for treating heavy metal wastewater
CN209276210U (en) It is a kind of for removing the upward flow Zero-valent Iron filtration reactor and filtration system of underwater trace concentration heavy metal
CN109231719A (en) It is a kind of for removing the advanced treatment system of heavy metal in sewage plant sewage
Fields et al. Arsenic removal from drinking water by iron removal plants
CN209065615U (en) It is a kind of for removing the processing system of heavy metal in percolate
CN209143972U (en) It is a kind of for removing the advanced treatment system of heavy metal in sewage plant sewage
CN2751019Y (en) Industrial waste water treatment system
CN107068228B (en) Nuclear power plant low-radioactivity process wastewater advanced treatment device and treatment method thereof
CN106830430B (en) Efficient and rapid treatment process and method for low-temperature and low-turbidity water
CN102303931A (en) Treating method and device for electroplating wastewater
CN202265468U (en) Equipment for deeply treating and recovering heavy metal waste water with zero discharge
CN109179789A (en) It is a kind of for removing the processing system of heavy metal in percolate
CN207361939U (en) A kind of skid-mounted type low concentration heavy metal water processing equipment

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant