CN208902647U - 一种土壤有机质间接测量装置 - Google Patents

一种土壤有机质间接测量装置 Download PDF

Info

Publication number
CN208902647U
CN208902647U CN201820772099.0U CN201820772099U CN208902647U CN 208902647 U CN208902647 U CN 208902647U CN 201820772099 U CN201820772099 U CN 201820772099U CN 208902647 U CN208902647 U CN 208902647U
Authority
CN
China
Prior art keywords
soil
measuring device
processor
disk
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201820772099.0U
Other languages
English (en)
Inventor
马伟
王秀
张春凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Research Center of Intelligent Equipment for Agriculture
Original Assignee
Beijing Research Center of Intelligent Equipment for Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Research Center of Intelligent Equipment for Agriculture filed Critical Beijing Research Center of Intelligent Equipment for Agriculture
Priority to CN201820772099.0U priority Critical patent/CN208902647U/zh
Application granted granted Critical
Publication of CN208902647U publication Critical patent/CN208902647U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本实用新型提供了一种土壤有机质间接测量装置,包括:土壤导电率检测传感器、位置传感器和处理器;土壤导电率检测传感器包括若干组相互平行设置且直径不同的圆盘;每个圆盘上均设置有电极;处理器用于在测量装置被拖动的过程中将采集的电场信息以及对应的时间信息进行存储。本实用新型通过直接获取土壤外加电场的电场信息,进而可以快速间接测量土壤有机质信息。

Description

一种土壤有机质间接测量装置
技术领域
本实用新型涉及农业生产技术领域,具体涉及一种土壤有机质间接测量装置。
背景技术
土壤中含有的各种形态的含碳有机化合物统称为土壤有机质,这些化合物是土壤中重要养分氮磷的主要来源,是植物吸收和利用的重要成分。有机质对农业生产非常重要,是土壤的结构性、保肥性和缓冲性等理化特性有重要的促进作用。
现有的土壤有机质测量方式是在实验室通过化学分析的方法完成,存在样本量小,费时费力,时效性差的问题。
实用新型内容
针对现有技术中的缺陷,本实用新型提供了一种土壤有机质间接测量装置,本实用新型通过直接获取土壤外加电场的电场信息,进而可以快速间接测量土壤有机质信息。
为实现上述目的,本实用新型提供了以下技术方案:
本实用新型提供了一种土壤有机质间接测量装置,包括:土壤导电率检测传感器、位置传感器和处理器;
所述土壤导电率检测传感器包括若干组相互平行设置且直径不同的圆盘,所述不同直径的圆盘用于检测不同粘性不同类型土壤的导电率;所述圆盘表面设置有外凸花纹;
每个所述圆盘上均设置有电极,所述电极通过导线与所述处理器连接,在所述电极通电时,两个圆盘之间形成一个电场,所述处理器采集形成的电场信息以及对应的时间信息;
其中,所述测量装置在待测土壤区域被拖动装置拖动的过程中,所述圆盘以预设穿插深度穿过所述待测土壤区域的土壤表层,设置在所述圆盘上的电极通电后形成对应的电场;相应地,所述处理器用于在所述测量装置被拖动的过程中将采集的电场信息以及对应的时间信息进行存储;
所述处理器还用于将所述位置传感器采集的位置信息以及对应的时间信息进行存储。
进一步地,所述拖动装置与所述土壤导电率检测传感器之间通过平行四连杆机构连接。
进一步地,所述拖动装置为拖拉机,相应地,所述平行四连杆机构固定在所述拖拉机配重铁的位置。
进一步地,所述土壤导电率检测传感器包括6组相互平行设置且直径不同的圆盘,6组圆盘的直径分别为20cm、30cm、40cm、45cm、50cm和55cm。
进一步地,所述处理器用于将存储的电场信息与时间的对应关系转换为土壤电导率与时间的对应关系并进行存储;
所述处理器用于根据第一预设转换关系将存储的土壤电导率与时间的对应关系转换为土壤有机质含量与时间的对应关系并进行存储;
所述处理器用于将同一时间点对应的土壤有机质含量信息以及位置信息进行存储,得到所述待测土壤区域中每个位置点的土壤有机质含量信息。
进一步地,所述第一预设转换关系为:y=-0.0039x2+0.6643x+0.375。
进一步地,所述测量装置还包括:超声传感器,所述预设穿插深度由所述超声传感器进行检测确认。
进一步地,所述测量装置还包括:支架,所述支架设置在所述土壤导电率检测传感器远离土壤的一端,所述支架上放置有多个超声传感器,所述超声传感器与所述圆盘间隔设置。
进一步地,所述测量装置还包括:保护地轮,所述保护地轮设置在所述土壤导电率检测传感器上,用于在所述土壤导电率检测传感器被拖动的过程中进行减震。
进一步地,所述保护地轮上配备有压力传感器,用于在所述保护地轮转动过程中测量所述保护地轮的压力状况。
由上述技术方案可知,本实用新型提供的土壤有机质间接测量装置,包括:土壤导电率检测传感器、位置传感器和处理器;所述土壤导电率检测传感器包括若干组相互平行设置且直径不同的圆盘,所述不同直径的圆盘用于检测不同粘性不同类型土壤的导电率;每个所述圆盘上均设置有电极,所述电极通过导线与所述处理器连接,在所述电极通电时,两个圆盘之间形成一个电场,所述处理器采集形成的电场信息以及对应的时间信息;所述测量装置在待测土壤区域被拖动装置拖动的过程中,所述圆盘以预设穿插深度穿过所述待测土壤区域的土壤表层,设置在所述圆盘上的电极通电后形成对应的电场;相应地,所述处理器用于在所述测量装置被拖动的过程中将采集的电场信息以及对应的时间信息进行存储;所述处理器还用于将所述位置传感器采集的位置信息以及对应的时间信息进行存储。可见,本实用新型通过直接获取土壤外加电场的电场信息,进而可以快速间接测量土壤有机质信息,省事省力,时效性高。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本实用新型一实施例提供的土壤有机质间接测量装置的结构示意图;
图2是拖动装置与土壤有机质间接测量装置的位置关系示意图;
图3是电导率与土壤有机质含量之间的关系示意图;
图4是土壤有机质测量方法的流程图。
具体实施方式
为使本实用新型实施例的目的、技术方案和优点更加清楚,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
本实用新型一实施例提供了一种土壤有机质间接测量装置,该测量装置,包括:土壤导电率检测传感器、位置传感器和处理器;
参见图1,所述土壤导电率检测传感器包括若干组相互平行设置且直径不同的圆盘,所述不同直径的圆盘用于检测不同粘性不同类型土壤的导电率;所述圆盘表面设置有外凸花纹,以增强强度,避免被土壤粘住;
每个所述圆盘上均设置有电极,所述电极通过导线与所述处理器连接,在所述电极通电时,两个圆盘之间形成一个电场,所述处理器采集形成的电场信息以及对应的时间信息;此外,需要说明的是,两个圆盘之间形成一个电场,因此,所述处理器用于直接测量任意两圆盘形成的电场信息,进而后续根据形成的电场信息间接获取土壤的导电率,也即,本实施例提供的土壤有机质间接测量装置,通过直接获取任意两圆盘形成的电场信息,后续,在所述间接测量装置之外,根据电场信息间接计算土壤的导电率,再根据土壤的导电率间接计算土壤有机质含量;
其中,所述测量装置在待测土壤区域被拖动装置拖动的过程中,所述圆盘以预设穿插深度穿过所述待测土壤区域的土壤表层,设置在所述圆盘上的电极通电后形成对应的电场;相应地,所述处理器用于在所述测量装置被拖动的过程中将采集的电场信息以及对应的时间信息进行存储;
所述处理器还用于将所述位置传感器采集的位置信息以及对应的时间信息进行存储。
可以理解的是,本实施例通过外加一个调制电场在土壤表层土中,通过直接获取电场的变化信息可间接获得土壤的电导率,进而根据电导率通过预设模型可以间接预测有机质的分布图。
由上面分析可知,本实用新型提供的土壤有机质间接测量装置,包括:土壤导电率检测传感器、位置传感器和处理器;所述土壤导电率检测传感器包括若干组相互平行设置且直径不同的圆盘,所述不同直径的圆盘用于检测不同粘性不同类型土壤的导电率;每个所述圆盘上均设置有电极,所述电极通过导线与所述处理器连接,在所述电极通电时,两个圆盘之间形成一个电场,所述处理器采集形成的电场信息以及对应的时间信息;所述测量装置在待测土壤区域被拖动装置拖动的过程中,所述圆盘以预设穿插深度穿过所述待测土壤区域的土壤表层,设置在所述圆盘上的电极通电后形成对应的电场;相应地,所述处理器用于在所述测量装置被拖动的过程中将采集的电场信息以及对应的时间信息进行存储;所述处理器还用于将所述位置传感器采集的位置信息以及对应的时间信息进行存储。可见,本实用新型通过直接获取土壤外加电场的电场信息,进而可以快速间接测量土壤有机质信息,省事省力,时效性高。
为进一步得到土壤有机质信息,在一种优选实施方式中,所述处理器还用于将存储的电场信息与时间的对应关系转换为土壤电导率与时间的对应关系并进行存储;
所述处理器还用于根据第一预设转换关系将存储的土壤电导率与时间的对应关系转换为土壤有机质含量与时间的对应关系并进行存储;
所述处理器还用于将同一时间点对应的土壤有机质含量信息以及位置信息进行存储,得到所述待测土壤区域中每个位置点的土壤有机质含量信息。
可以理解的是,所述处理器将土壤电场信息转换为土壤电导率的过程属于现有技术,本实施例对此不再进行详述。
在一种优选实施方式中,所述第一预设转换关系为:y=-ax2+bx+c;其中,a的取值范围为0.003~0.004,b的取值范围为0.6~0.7,c的取值范围为0.3~0.4,其中,x为电导率,y为土壤有机质含量。更为优选地,所述第一预设转换关系为:y=-0.0039x2+0.6643x+0.375。可以理解的是,所述第一预设转换关系是利用大量实验数据通过多元回归分析得到。
可以理解的是,电导率是以数字表示的溶液传导电流的能力,单位以西门子每米(S/m)表示。土壤有机质含量是单位体积土壤中含有的各种动植物残体与微生物及其分解合成的有机物质的数量,一般以有机质占干土重的百分数表示。参见图3所示的电导率与土壤有机质含量的关系示意图,也即所述第一预设转换关系的示意图。其中,图3为黏土含量小于或等于30%模型的验证曲线。在本实施例的其他优选方式中,对于黏土含量百分比差异较大的土壤进行田间校准,输入模型修正系数,优化一次项x的系数,以便提高模型预测精度。
在一种优选实施方式中,所述圆盘通过电刷连接到处理器上,处理器通过算法不断产生调制电场,同时接收土壤传导过来的其他次生磁场,将这些电压信号同位置点(如GPS点)结合起来已对应保存。在本实施例中,电场的调制程序和不同圆盘的直径是密切关联的。调制信号的输出也可圆盘直径的参数关联,这样可以提高获取土壤电导数据的精度。在一组圆盘中,一个是发射端,另一个为接收端,其中,发射端频率为正弦信号,频率是450HZ。发射端采用离散元件构成RC震荡电路产生正弦信号。具体为在传统RC震荡电路上外加一个负反馈(针对幅值用一个放大器和一个场效应管进行稳定和优化),这样可以确保能够获得稳定的电磁场信号进而可以得到较为准确的测量结果。
在一种优选实施方式中,如图2所示,所述拖动装置与所述土壤导电率检测传感器之间通过平行四连杆机构连接。优选地,所述拖动装置为拖拉机,相应地,所述平行四连杆机构固定在所述拖拉机配重铁的位置。
在本实施例中,所述土壤导电率检测传感器固定在拖拉机前方,拖拉机前方1.5米范围内螺栓固定前置测量土壤有机质,所述距离通过螺栓和U型孔调节。
可以理解的是,采用平行四连杆机构,特点是土壤导电率检测传感器升高或降低,土壤导电率检测传感器不会改变角度。优点是结构简单,易于拆卸。本实施例依靠该机构保持前置的传感器机构不会倾斜,保持测量角度不变,确保农田的起伏不会干扰测量,提高测量精确性。
可以理解的是,土壤导电率检测传感器固定在拖拉机前方,目的是前进中测量,可以在后方牵引变量执行机具,也可以不携带机具单独测量。
在一种优选实施方式中,所述土壤导电率检测传感器包括6组相互平行设置且直径不同的圆盘,6组圆盘的直径分别为20cm、30cm、40cm、45cm、50cm和55cm。所述6组不同直径圆盘通过螺栓固定,圆盘的固定有顺序,用于测量不同粘性不同类型土壤。
可以理解的是,在具体实施时,设备运输农田种,三点固定在平行四连杆机构上,根据圆盘直径调节好高度,拖拉机开始前进,同时采集土壤电导率。电压数据被输送到处理器中,利用数学模型(第一预设转换关系)计算,预测土壤有机质分布图,其具体测量步骤可参见图4所示。
在一种优选实施方式中,参见图1,所述测量装置还包括:超声传感器,所述预设穿插深度由所述超声传感器进行检测确认。所述超声传感器水平位置可通过U型孔在支架上调节,高度可通过螺栓调节。
在一种优选实施方式中,参见图1,所述测量装置还包括:支架,所述支架设置在所述土壤导电率检测传感器远离土壤的一端,所述支架上放置有多个超声传感器,所述超声传感器与所述圆盘间隔设置。
在一种优选实施方式中,参见图1,所述测量装置还包括:保护地轮,所述保护地轮设置在所述土壤导电率检测传感器上,用于在所述土壤导电率检测传感器被拖动的过程中进行减震。
在一种优选实施方式中,所述保护地轮上配备有压力传感器(图中未示出),用于在所述保护地轮转动过程中测量所述保护地轮的压力状况。
可以理解的是,增加保护地轮可以避免所述土壤导电率检测传感器被农田的秸秆顶起后落下时受到较大冲击而损坏,通过地轮发挥减震作用。此外,在地轮处配备有压力传感器,当根据压力传感器信号检测到地轮腾空时可以标注此时的信号是异常的,该时刻信号不参与电导率分析。
在本实用新型的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用于说明本实用新型的技术方案,而非对其限制;尽管参照前述实施例对本实用新型进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本实用新型各实施例技术方案的精神和范围。

Claims (10)

1.一种土壤有机质间接测量装置,其特征在于,包括:土壤导电率检测传感器、位置传感器和处理器;
所述土壤导电率检测传感器包括若干组相互平行设置且直径不同的圆盘,所述不同直径的圆盘用于检测不同粘性不同类型土壤的导电率;所述圆盘表面设置有外凸花纹;
每个所述圆盘上均设置有电极,所述电极通过导线与所述处理器连接,在所述电极通电时,两个圆盘之间形成一个电场,所述处理器采集形成的电场信息以及对应的时间信息;
其中,所述测量装置在待测土壤区域被拖动装置拖动的过程中,所述圆盘以预设穿插深度穿过所述待测土壤区域的土壤表层,设置在所述圆盘上的电极通电后形成对应的电场;相应地,所述处理器用于在所述测量装置被拖动的过程中将采集的电场信息以及对应的时间信息进行存储;
所述处理器还用于将所述位置传感器采集的位置信息以及对应的时间信息进行存储。
2.根据权利要求1所述测量装置,其特征在于,所述拖动装置与所述土壤导电率检测传感器之间通过平行四连杆机构连接。
3.根据权利要求2所述测量装置,其特征在于,所述拖动装置为拖拉机,相应地,所述平行四连杆机构固定在所述拖拉机配重铁的位置。
4.根据权利要求1所述测量装置,其特征在于,所述土壤导电率检测传感器包括6组相互平行设置且直径不同的圆盘,6组圆盘的直径分别为20cm、30cm、40cm、45cm、50cm和55cm。
5.根据权利要求1所述测量装置,其特征在于,所述处理器用于将存储的电场信息与时间的对应关系转换为土壤电导率与时间的对应关系并进行存储;
所述处理器用于根据第一预设转换关系将存储的土壤电导率与时间的对应关系转换为土壤有机质含量与时间的对应关系并进行存储;
所述处理器用于将同一时间点对应的土壤有机质含量信息以及位置信息进行存储,得到所述待测土壤区域中每个位置点的土壤有机质含量信息。
6.根据权利要求5所述测量装置,其特征在于,所述第一预设转换关系为:y=-0.0039x2+0.6643x+0.375。
7.根据权利要求1所述测量装置,其特征在于,还包括:超声传感器,所述预设穿插深度由所述超声传感器进行检测确认。
8.根据权利要求7所述测量装置,其特征在于,还包括:支架,所述支架设置在所述土壤导电率检测传感器远离土壤的一端,所述支架上放置有多个超声传感器,所述超声传感器与所述圆盘间隔设置。
9.根据权利要求1所述测量装置,其特征在于,还包括:保护地轮,所述保护地轮设置在所述土壤导电率检测传感器上,用于在所述土壤导电率检测传感器被拖动的过程中进行减震。
10.根据权利要求9所述测量装置,其特征在于,所述保护地轮上配备有压力传感器,用于在所述保护地轮转动过程中测量所述保护地轮的压力状况。
CN201820772099.0U 2018-05-23 2018-05-23 一种土壤有机质间接测量装置 Active CN208902647U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820772099.0U CN208902647U (zh) 2018-05-23 2018-05-23 一种土壤有机质间接测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820772099.0U CN208902647U (zh) 2018-05-23 2018-05-23 一种土壤有机质间接测量装置

Publications (1)

Publication Number Publication Date
CN208902647U true CN208902647U (zh) 2019-05-24

Family

ID=66566021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820772099.0U Active CN208902647U (zh) 2018-05-23 2018-05-23 一种土壤有机质间接测量装置

Country Status (1)

Country Link
CN (1) CN208902647U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828016A (zh) * 2018-05-23 2018-11-16 北京农业智能装备技术研究中心 一种土壤有机质的自动测量装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108828016A (zh) * 2018-05-23 2018-11-16 北京农业智能装备技术研究中心 一种土壤有机质的自动测量装置及方法
CN108828016B (zh) * 2018-05-23 2020-08-11 北京农业智能装备技术研究中心 一种土壤有机质的自动测量装置及方法

Similar Documents

Publication Publication Date Title
US10321623B1 (en) Mobile soil optical mapping system
Jaynes et al. Yield mapping by electromagnetic induction
US5418466A (en) Moisture and salinity sensor and method of use
Bittelli Measuring soil water content: A review
US6853937B2 (en) Soil characteristics survey device and soil characteristics survey method
Sudduth et al. Soil conductivity sensing on claypan soils: comparison of electromagnetic induction and direct methods
CA2392962C (en) Methods and systems for managing farmland
AU2007247732B2 (en) Method and system for monitoring growth characteristics
CN208902647U (zh) 一种土壤有机质间接测量装置
CN108828016A (zh) 一种土壤有机质的自动测量装置及方法
CN108781657A (zh) 一种马铃薯播种机及其漏播检测方法和检测装置
Chen et al. Two-dimensional monitoring of soil water content in fields with plastic mulching using electrical resistivity tomography
Fritz et al. Field comparison of two soil electrical conductivity measurement systems
US20190289775A1 (en) Mobile soil optical mapping system
CA2976160C (en) Probe for the continuous monitoring in real time of chemical parameters of interest directly in the ground and system for the continuous monitoring in real time of said chemical parameters of interest
CN108844997B (zh) 一种土壤水盐含量测量装置及方法
Lv et al. Review of the monitoring systems of the machine for precision sowing and fertilization of wheat
Stanley et al. SPATIAL APPARENT ELECTRICAL CONDUCTIVITY (EC), SOIL MOISTURE AND WATER USE EFFICIENCY IN VERTOSOL SOILS
AU655602B2 (en) Moisture and salinity sensor and method of use
Killick An analysis of the relationship of apparent electrical conductivity to soil moisture in alluvial recent soils, lower North Island, New Zealand: a thesis presented in partial fulfillment of the requirements for the degree of Masters of Philosophy (MPhil) in Soil Science at the Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
CN208780703U (zh) 一种用于农作物生长的土壤紧实度检测仪
Hinck et al. Development of a multi-sensor system for the low-sample recording of soil properties
Ye et al. Soil temperature detection based on acoustic method and improved Wyllie model
Padhi Incorporating spatial variability in soil and crop properties for effective irrigation
Han et al. Soil Sensing Mapping on Paddy Fields in South Korea

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant