CN207871274U - 一种神经刺激电极 - Google Patents

一种神经刺激电极 Download PDF

Info

Publication number
CN207871274U
CN207871274U CN201720533493.4U CN201720533493U CN207871274U CN 207871274 U CN207871274 U CN 207871274U CN 201720533493 U CN201720533493 U CN 201720533493U CN 207871274 U CN207871274 U CN 207871274U
Authority
CN
China
Prior art keywords
electrode
array
electrode substrate
substrate
stimulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201720533493.4U
Other languages
English (en)
Inventor
於广军
杨旭燕
王伟
杨佳威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hagnzhou Warm Caramel Core Electronic Technology Co Ltd
Hangzhou Nanochap Electronics Co Ltd
Original Assignee
Hagnzhou Warm Caramel Core Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hagnzhou Warm Caramel Core Electronic Technology Co Ltd filed Critical Hagnzhou Warm Caramel Core Electronic Technology Co Ltd
Priority to CN201720533493.4U priority Critical patent/CN207871274U/zh
Application granted granted Critical
Publication of CN207871274U publication Critical patent/CN207871274U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrotherapy Devices (AREA)

Abstract

本实用新型涉及一种神经刺激电极,包括电极阵列结构,所述电极阵列结构包括阵列分布的电极衬底,每个所述电极衬底的正面设置有凸出刺激电极,每个所述电极衬底背面形成金属电极,所述电极衬底之间填充玻璃固定及绝缘,本实用新型可形成高密度电极阵列,且电极形状可任意设计成圆形,方形,三角等所需图案,电极阵列可均匀排布也可疏密分布;并可与刺激芯片实现倒装焊连接,避免了柔性电极阵列随着电极阵列密度增加,与刺激芯片所需连接线大量增加的弊端,还可实现晶圆化大批量生产,并大幅度降低生产成本,且与刺激芯片所需连接线少,手术植入开口小,创伤面相对现有技术更小,术后愈合更快。

Description

一种神经刺激电极
技术领域
本实用新型涉及一种神经刺激电极,属于生物医学设备技术领域。
背景技术
植入式神经刺激器在医学上有着广泛的应用,如人工耳蜗、人工视觉恢复、脑深部电刺激***等。微电极作为揭示神经***工作机理、治疗神经疾病等方面的重要工具,越来越受到人们广泛的关注,已成为当前重要的研究方向。
人们对微电极的应用,通常是将微电极植入动物或者患者体内,通过加载电信号来刺激或抑制神经活动,或者利用微电极将神经活动转换为电信号记录下来加以研究。由于作用目标的不同,各种基于微加工技术制作的微电极阵列得到了发展。其中,高密度、有序排列的三维微电极阵列可植入神经组织内,实现高密度的选择性刺激与记录,具有良好的应用前景。
当前,神经刺激器的微电极多采用柔性衬底的MEMS技术制作,再与刺激芯片通过导线连接,而当制作高密度微电极阵列时,随着刺激点数量的增加,连接微电极阵列内刺激点导线的数量不断上升,会导致布线宽度变大,手术植入开口需要增大,创伤面大。
实用新型内容
本实用新型要解决的技术问题是:为克服上述问题,提供一种可实现超高密度的神经刺激电极。
本实用新型解决其技术问题所采用的技术方案是:
一种神经刺激电极,包括电极阵列结构,所述电极阵列结构包括阵列分布的电极衬底,每个所述电极衬底的正面设置有凸出刺激电极,每个所述电极衬底背面形成金属电极,所述电极衬底之间填充玻璃固定及绝缘。
优选地,所述电极阵列结构整体可均匀间隔阵列设置、不规则阵列排布或两者结合。
优选地,所述电极阵列结构中的电极衬底横截面可以为圆形、方形或多边形。
优选地,所述电极阵列结构中的电极衬底可为硅电极衬底、锗硅电极衬底或Ⅲ-Ⅴ族元素化合物电极衬底。
优选地,所述电极衬底的高度为100~500μm
优选地,所述金属电极的厚度是0.1~10μm
优选地,所述凸出刺激电极高度为0~500μm。
本实用新型的有益效果是:本实用新型采用在成型电极阵列结构时采用硅基MEMS技术,可形成高密度电极阵列且电极形状可任意设计成圆形,方形,三角等所需图案,并在半导体衬底的背面进行金属电极图形化制作金属电极焊点,可与刺激芯片实现倒装焊连接,避免了柔性电极阵列随着电极阵列密度增加,与刺激芯片所需连接线大量增加的弊端,另本实用新型还可实现晶圆化大批量生产,并大幅度降低生产成本。
附图说明
下面结合附图和实施例对本实用新型进一步说明。
图1是本实用新型一实施例的半导体衬底的结构示意图;
图2(a)是本实用新型一实施例的一单元20×20电极阵列平面示意图;
图2(b)是本实用新型一实施例的边缘疏中间密的电极阵列结构示意图;
图2(c)是本实用新型一实施例的多种电极图案的电极阵列结构示意图;
图3是本实用新型一实施例中形成电极阵列结构剖面示意图;
图4是本实用新型一实施例中电极阵列结构的沟槽填充玻璃后的示意图;
图5是本实用新型一实施例中半导体衬底与衬片键合后的示意图;
图6是本实用新型一实施例中半导体衬底背面减薄后的示意图;
图7是本实用新型一实施例中剥离后的神经刺激电极示意图;
图8是本实用新型一实施例的流程图。
图中标记:1-金属电极,2-玻璃,3-半导体衬底,4-凸出刺激电极,5-电极阵列结构,6-衬片,7-粘附层,8-沟槽,51-电极衬底。
具体实施方式
现在结合附图对本实用新型作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本实用新型的基本结构,因此其仅显示与本实用新型有关的构成。
实施例1
如图1所示的本实用新型所述一种神经刺激电极的制造方法,参见图8所示,包括如下步骤:
S1:对半导体衬底3进行扩散掺杂处理,使其正背面良性导通;如图1所示,首先,提供一完成前道工艺的半导体衬底3。其中,所述半导体衬底3可以是硅衬底、锗硅衬底、Ⅲ-Ⅴ族元素化合物衬底,也可以是本领域技术人员公知的其他半导体材料衬底。本实施例中采用的是硅衬底,对所述硅衬底进行掺杂处理,掺杂方式可以是通过POCl3、PH3、BCl3或BF3液态或气态源高温扩散工艺,对所述衬底掺杂,保证衬底正背面良性导通。
S2:然后在所述半导体衬底3的正面刻蚀出均匀分布的电极阵列结构5;所述电极阵列结构5整体可均匀间隔设置、不规则排布或两者结合,分别如图2A和图2B所示,图2A中为均匀间隔设置的,图2B中为中间为方形的均匀间隔设置,四周为放射状不规则设置,电极阵列结构5中的单个电极形状可为圆形、方形、三角形或其他多边形形状,如图2C中出现的多种形状,具体设置时根据实际的需要进行设计,本实施例中,如图2所示,在半导体衬底3上通过匀胶、曝光和显影的工艺形成20×20的电极阵列图形,所述的单元阵列为晶圆中一单元芯片。如图3所示,再利用深槽刻蚀工艺形成硅电极阵列结构5,该硅电极阵列结构5的硅柱高度为100~500μm,具体根据实际需要进行选择。
S3:向所述电极阵列结构5的沟槽8内填充不高于电极阵列结构5的玻璃2;如图4所示,在半导体衬底3上利用SOG等玻璃2前驱体涂布工艺,在沟槽8内填充涂布液,并在炉管中热处理,形成玻璃2;通过丝网印刷技术,在沟槽8内填充玻璃2浆料,并进行玻璃2熔融处理,形成固态玻璃2,需要注意的是,涂布液在旋涂过程中可能刚好填满沟槽8,可能超过或低于沟槽8高度。因此需要通过进一步的HF酸漂洗工艺处理玻璃2表面,并借助台阶测试仪形成所需的硅凸出刺激电极4,在本实施例中硅凸出刺激电极4高度为0~500μm,具体根据需要选择其高度。
S4:再将所述半导体衬底3的正面与一衬片6键合;如图5所示,在一衬片6的正面旋涂粘附层7,所述粘附层7可以是胶水,热玻璃2胶等粘性物质。将半导体衬片6的正面与旋涂有粘附层7的衬片6键合在一起。
S5:接着对所述半导体衬底3的背面进行减薄,直至完全露出所述电极阵列结构5中的玻璃2下表面为止;如图6所示,对半导体衬底3背面进行减薄,为了得到较高的加工效率,在减薄时可选用目数较小的磨盘进行粗磨;需要注意的是,当磨到接近玻璃2界面时,需要更换目数较大的磨盘进行细磨,一方面可得到平整度和光滑度较高的平面,便于后续背面工艺,另一方面可避免较粗磨盘对结构的破坏。
S6:再对所述半导体衬底3的背面进行金属电极图形化;如图7所示,对半导体衬底3进行金属电极图形化处理,首先,在背面溅射一层金属,再在表面旋涂光刻胶,再进行曝光和显影处理,形成与硅电极阵列结构5一一对应的金属电极1,再通过干法刻蚀或湿法腐蚀的方法形成金属电极1。溅射采用的金属可以是钛或金等,优选的金属层的厚度是0.1~10μm,但具体根据实际需要进行选择。该金属电极1可以与刺激芯片的铝焊点进行倒装焊连接,同时具有较好的生物相容性。
本实施例还提供背面金属化的优选实施方法,首先在背面旋涂负胶,然后进行曝光和显影,值得注意的是曝光时需要形成一定的倒角,便于后续剥离。再在表面溅射一层金属,最后在剥离液中完成lift-off过程,形成金属电极1。最后将衬片6与半导体衬底3分离,形成所需的神经刺激电极。
S7:最终将所述半导体衬底3与衬片6剥离,形成神经刺激电极。可采用退火、低温加热或紫外加热的方式,分离温度范围例如为150~300℃,使粘合层粘性降低,衬片6与半导体衬底3分离。
实施例2
在实施例1所述一种神经刺激电极的制造方法的基础上,由于生产的刺激电极需要植入人体,需要考刺激电极的生物相容性相容性,因此在本实施例中还提供了提高植入人体中生物和物理相容性的方法,具体的,采用CF4/O2混合气体对硅凸出刺激电极4各向同性刻蚀一定时间,对硅阵列结构边角进行圆滑处理,处理后的刺激电极对人体组织的摩擦刺激降低很多;再对半导体衬底3进行生物相容性金属的电镀、溅射或其他金属化方法处理,使硅凸出刺激电极4表面覆盖一层生物相容性金属,所述生物相容性金属可以是钨、钛、金、银、铱、钽、铌或锆,具体根据使用环境需要和成本需要进行选择。
在本实施例中,所述半导体衬底3为厚度可以选择的范围为100~1000μm,在其中最优选的范围是300~700μm,此区间是具体实施时效果最好的范围。
实施例3
一种神经刺激电极,如图7所示,包括阵列分布的电极阵列结构5,所述电极阵列结构5包括多个阵列分部的电极衬底51,该电极衬底51是从半导体衬底上成型而来,其材料与半导体衬底材料一致,此阵列可以是均匀分布的阵列,也可以使不均匀分布的阵列,每个所述电极衬底51的正面设置有凸出刺激电极4,可形成高密度电极阵列,每个所述电极衬底51背面形成金属电极1,所述金属电极1可与刺激芯片实现倒装焊连接,避免了柔性电极阵列随着电极阵列密度增加,与刺激芯片所需连接线大量增加的弊端,所述半导体电极之间填充玻璃2固定及绝缘。
本神经刺激电极采用在成型电极阵列结构时采用硅基MEMS技术,可形成高密度电极阵列且电极形状可任意设计成圆形,方形,三角等所需图案,并在半导体衬底的背面进行金属电极图形化制作金属电极焊点,可与刺激芯片实现倒装焊连接,与刺激芯片所需连接线少,手术植入开口小,创伤面相对现有技术更小,术后愈合更快。
在优选的实施方式中所述电极阵列结构中的电极衬底横截面可以为圆形、方形或多边形。
在优选的实施方式中,所述电极阵列结构中的电极衬底可为硅电极衬底、锗硅电极衬底或Ⅲ-Ⅴ族元素化合物电极衬底,但不限定于此,可根据需要进行选择。
在优选的实施方式中,所述电极衬底的高度为100~500μm,但不限定于此,可根据需要进行选择。
在优选的实施方式中,所述金属电极的厚度是0.1~10μm,但不限定于此,可根据需要进行选择。
在优选的实施方式中,所述凸出刺激电极高度为0~500μm,但不限定于此,可根据需要进行选择。
以上述依据本实用新型的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项实用新型技术思想的范围内,进行多样的变更以及修改。本项实用新型的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (7)

1.一种神经刺激电极,其特征在于,包括电极阵列结构,所述电极阵列结构包括阵列分布的电极衬底,每个所述电极衬底的正面设置有凸出刺激电极,每个所述电极衬底背面形成金属电极,所述电极衬底之间填充玻璃固定及绝缘。
2.如权利要求1所述的神经刺激电极,其特征在于,所述电极阵列结构整体可均匀间隔阵列设置、不规则阵列排布或两者结合。
3.如权利要求1所述的神经刺激电极,其特征在于,所述电极阵列结构中的电极衬底横截面可以为圆形、方形或多边形。
4.如权利要求1所述的神经刺激电极,其特征在于,所述电极阵列结构中的电极衬底可为硅电极衬底、锗硅电极衬底或Ⅲ-Ⅴ族元素化合物电极衬底。
5.如权利要求1所述的神经刺激电极,其特征在于,所述电极衬底的高度为100~500μm
6.如权利要求1所述的神经刺激电极,其特征在于,所述金属电极的厚度是0.1~10μm
7.如权利要求1所述的神经刺激电极,其特征在于,所述凸出刺激电极高度为0~500μm。
CN201720533493.4U 2017-05-15 2017-05-15 一种神经刺激电极 Active CN207871274U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201720533493.4U CN207871274U (zh) 2017-05-15 2017-05-15 一种神经刺激电极

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201720533493.4U CN207871274U (zh) 2017-05-15 2017-05-15 一种神经刺激电极

Publications (1)

Publication Number Publication Date
CN207871274U true CN207871274U (zh) 2018-09-18

Family

ID=63499294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201720533493.4U Active CN207871274U (zh) 2017-05-15 2017-05-15 一种神经刺激电极

Country Status (1)

Country Link
CN (1) CN207871274U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112237682A (zh) * 2019-07-17 2021-01-19 杭州暖芯迦电子科技有限公司 一种微型高密度阵列自由曲面电极及其制造方法
CN112657053A (zh) * 2020-03-31 2021-04-16 深圳硅基仿生科技有限公司 植入式的双面电极及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112237682A (zh) * 2019-07-17 2021-01-19 杭州暖芯迦电子科技有限公司 一种微型高密度阵列自由曲面电极及其制造方法
CN112657053A (zh) * 2020-03-31 2021-04-16 深圳硅基仿生科技有限公司 植入式的双面电极及其制备方法
CN112657053B (zh) * 2020-03-31 2024-03-29 深圳硅基仿生科技股份有限公司 植入式的双面电极及其制备方法

Similar Documents

Publication Publication Date Title
CN109205551B (zh) 一种锥形阵列柔性电极及其制备方法
Campbell et al. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array
US7790493B2 (en) Wafer-level, polymer-based encapsulation for microstructure devices
Bhandari et al. Wafer-scale fabrication of penetrating neural microelectrode arrays
CN101204603B (zh) 一种植入式mems生物电极及其制备工艺
CN104340956B (zh) 可植入多通道柔性微管电极及其制备方法
CN105214214B (zh) 一种神经刺激器及其制作方法
CN207871274U (zh) 一种神经刺激电极
CN205252321U (zh) 一种神经刺激器
CN102289148B (zh) 植入式微针尖电极及其制作方法
CN112631425B (zh) 一种微针阵列式脑机接口器件及其制备方法
Felderer et al. Transistor needle chip for recording in brain tissue
CN102336386A (zh) 一种三维实体针尖柔性微电极阵列及其制作方法
CN108175937A (zh) 一种连接探针、其制备方法及在微电极阵列连接中的用途
CN106054519A (zh) 一种利用光刻胶制备三维微电极阵列的方法
CN107224666B (zh) 一种神经刺激电极及其制造方法
EP3741427B1 (en) Method for manufacturing a nerve stimulator
CN112717273B (zh) 一种微柱状结构神经电刺激电极及其制备方法
Lee et al. Pillar-shaped stimulus electrode array for high-efficiency stimulation of fully implantable epiretinal prosthesis
JP2008029838A (ja) IrOXナノ構造体電極のニューラル・インターフェースを有する光学装置
US20190254546A1 (en) Neural multielectrode arrays and their manufacture and use
Leber et al. Novel method of fabricating self-dissolvable and freely floating neural array
Bhandari et al. Wafer-scale processed, low impedance, neural arrays with varying length microelectrodes
Motlagh et al. High-density 3D pyramid-shaped microelectrode arrays for brain-machine interface applications
Xu et al. Anodic-Bonding-Assisted Silicon Microelectrode Array For Neural Applications

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant