CN207350992U - 氢能和太阳能互补的热泵*** - Google Patents

氢能和太阳能互补的热泵*** Download PDF

Info

Publication number
CN207350992U
CN207350992U CN201720545240.9U CN201720545240U CN207350992U CN 207350992 U CN207350992 U CN 207350992U CN 201720545240 U CN201720545240 U CN 201720545240U CN 207350992 U CN207350992 U CN 207350992U
Authority
CN
China
Prior art keywords
water
heat
flow channel
hot water
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201720545240.9U
Other languages
English (en)
Inventor
欧阳瑞
杨宇飞
柴国民
郝义国
吴波
熊钢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUHAN GEOLOGICAL RESOURCES AND ENVIRONMENT INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE Co Ltd
Original Assignee
WUHAN GEOLOGICAL RESOURCES AND ENVIRONMENT INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUHAN GEOLOGICAL RESOURCES AND ENVIRONMENT INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE Co Ltd filed Critical WUHAN GEOLOGICAL RESOURCES AND ENVIRONMENT INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE Co Ltd
Priority to CN201720545240.9U priority Critical patent/CN207350992U/zh
Application granted granted Critical
Publication of CN207350992U publication Critical patent/CN207350992U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Fuel Cell (AREA)

Abstract

本实用新型公开了氢能和太阳能互补的热泵***,包括质子交换膜燃料电池电堆、直流‑直流变换器、散热水箱、散热风扇、第一水泵、膨胀水箱、蒸发器、太阳能集热器、第二水泵、压缩机、冷凝器、节流元件、第一阀、第二阀、热水储箱,所述蒸发器包括第一流道和第二流道,所述冷凝器包括冷凝流道和吸热流道,第一流道依次连接散热水箱、第一水泵、质子交换膜燃料电池电堆构成燃料电池冷却水回路,所述第二流道依次连接压缩机、冷凝流道、膨胀阀构成热泵循环回路,吸热流道依次连接热水储箱和第二水泵构成第一热水循环回路,太阳能集热器依次连接热水储箱和第二水泵。本实用新型利用燃料电池余热和太阳能,得到温度较高的热能,具有多种运行模式。

Description

氢能和太阳能互补的热泵***
技术领域
本实用新型涉及热能动力技术领域,尤其涉及氢能和太阳能互补的热泵***。
背景技术
太阳能集热器是一种太阳能收集装置,太阳能集热器收集的热量可用于热水、采暖等场合。太阳能集热器一般可以将水加热到50℃以上。由于太阳能具有间歇的特性,在夜晚和阴雨天气没有阳光,收集不了太阳热能,此时就需要其它能源对其进行补充。此外,在冬天时太阳能集热器的效率很低,使得集热后的水温很低,达不到热水、采暖的最低温度。若冬季有热水、采暖的需要,就需要尽量提高太阳能热水器的水温。
以氢为燃料的质子交换膜燃料电池具有燃料来源广泛、清洁环保、电能转换效率高、工作温度低的特点,只要源源不断地给质子交换膜燃料电池供应氢气,质子交换膜燃料电池就能源源不断地产生电力,不受天气条件的限制。输入到质子交换膜燃料电池的氢气的能量有50%以上转化成电能,剩下不到50%则转化成热量。由于此热量温度较低,一般利用价值不大,只能白白排放掉。如要充分利用此余热,就需要将此余温的温度提升到足够高的水平。
热泵是以消耗一定的高品位能源(一般为电能或机械能)为代价,从低温热源吸热,并向高温热源放热的装置。因此,如果利用热泵装置,来提升太阳能集热器的温度和质子交换膜燃料电池余热的温度,可以使太阳能和PEFMC的余热能更好地被利用。
发明内容
有鉴于此,本实用新型的实施例提供了一种通过以氢气为燃料的质子交换膜燃料电池和蒸气压缩式热泵循环,来提升太阳能集热器和质子交换膜燃料电池余热的温度,以解决太阳能热水器和质子交换膜燃料电池发电***的余热温度不高的问题的氢能和太阳能互补的热泵***。
本实用新型的实施例提供氢能和太阳能互补的热泵***,包括质子交换膜燃料电池电堆、蒸发器、散热水箱、第一水泵、压缩机、冷凝器、膨胀阀、太阳能集热器、热水储箱和第二水泵,所述蒸发器包括第一流道和第二流道,所述第一流道为无相变散热流道,所述第二流道为蒸发流道,所述冷凝器包括冷凝流道和吸热流道,所述第一流道依次连接散热水箱、第一水泵、质子交换膜燃料电池电堆构成燃料电池冷却水回路,所述第二流道依次连接压缩机、冷凝流道、膨胀阀构成热泵循环回路,所述吸热流道依次连接热水储箱和第二水泵构成第一热水循环回路,所述太阳能集热器依次连接热水储箱和第二水泵构成第二热水循环回路,所述第二水泵和太阳能集热器间设有第一阀,所述吸热流道和第二水泵间设有第二阀,通过控制所述第一阀和第二阀的打开和关闭,使所述第一热水循环回路或第二热水循环回路开始工作。
进一步,所述第一水泵将散热水箱中的冷却水泵入质子交换膜燃料电池电堆中,所述冷却水带走质子交换膜燃料电池电堆中的反应热,所述冷却水的温度升高,并流入第一流道,所述冷却水的热量在第一流道中被所述第二流道的吸热介质吸收,所述冷却水的温度降低,并流回散热水箱,所述冷却水在散热水箱中进一步散热,所述冷却水的温度进一步降低至能够再次冷却质子交换膜燃料电池电堆。
进一步,所述压缩机将冷媒气体压缩为高温高压的冷媒气体,并流进冷凝流道,所述高温高压的冷媒气体在所述冷凝流道中向吸热流道放热,并冷凝为高温高压的液体,所述高温高压的液体经膨胀阀变为低温低压的气液混合物,所述低温低压的气液混合物流入第二流道,所述低温低压的气液混合物就是第二流道中的吸热介质,所述低温低压的气液混合物在第二流道中吸收热量蒸发为冷媒气体。
进一步,所述第二阀打开,所述第一阀关闭,所述第二水泵将水从热水储箱的底部泵入吸热流道,并在吸热流道内吸收冷凝流道中高温高压的冷媒气体的放热,水温升高,再流回热水储箱的顶部,所述第二水泵再将水从热水储箱的底部泵入吸热流道直至整个热水储箱中的水均被加热。
进一步,所述第二阀关闭,所述第一阀打开时,第二水泵将水从热水储箱的底部泵入太阳能集热器,并在太阳能集热器内吸收太阳能,水温升高,再流回热水储箱的顶部,所述第二水泵再将水从热水储箱的底部泵入太阳能集热器直至整个热水储箱中的水均被加热。
进一步,所述第二阀和第一阀均打开时,第二水泵将水从热水储箱的底部泵入太阳能集热器和吸热流道,从热水储箱中泵出的水在太阳能集热器内吸收太阳能,并在吸热流道内吸收冷凝流道中高温高压的冷媒气体的放热,水温升高,再流回热水储箱的顶部,所述第二水泵再将水从热水储箱的底部泵入太阳能集热器和吸热流道直至整个热水储箱中的水均被加热。
进一步,所述散热水箱的外侧设有散热风扇,所述散热水箱连通膨胀水箱,所述膨胀水箱为散热水箱供应冷却水并提供水温变化时所需的体积膨胀空间,所述散热风扇加速散热水箱外部空气的对流,进而加速所述散热水箱的散热。
进一步,所述质子交换膜燃料电池电堆连接一直流-直流变换器,所述质子交换膜燃料电池电堆上设有氢气入口、氢气出口、空气入口和空气出口,所述空气和氢气分别经空气入口和氢气入口进入质子交换膜燃料电池电堆,所述氢气和空气中的氧气在所述质子交换膜燃料电池电堆中反应产生直流电,所述直流电通过所述直流-直流变换器转换为稳定直流电。
与现有技术相比,本实用新型具有以下有益效果:通过氢能和太阳能的互补,改善了太阳能运行成本低但严重受限于天气,氢能不受天气影响但运行费用又较高的问题,使得***的综合能效得到较好的平衡;充分利用低品位的、温度较低的燃料电池余热和太阳能,通过热泵效应得到高品位的、温度较高的热水,从而使得燃料电池余热和太阳能的用途更广泛,利用价值更高;***中的压缩机、水泵等可以用燃料电池所发的直流电直接驱动,可以实现脱网运行,在沙漠、海岛等边远无电地区也能应用;具有多种运行模式,可适应不同的季节和天气条件;全部由可再生能源驱动(氢能、太阳能),零污染、零排放,对环境友好。
附图说明
图1是本实用新型氢能和太阳能互补的热泵***的一示意图。
具体实施方式
为使本实用新型的目的、技术方案和优点更加清楚,下面将结合附图对本实用新型实施方式作进一步地描述。
请参考图1,本实用新型的实施例提供了氢能和太阳能互补的热泵***,包括质子交换膜燃料电池电堆1、蒸发器2、散热水箱3、第一水泵4、压缩机5、冷凝器6、膨胀阀7、太阳能集热器8、热水储箱9和第二水泵10。
质子交换膜燃料电池电堆1连接一直流-直流变换器11,质子交换膜燃料电池电堆1上设有氢气入口、氢气出口、空气入口和空气出口,空气和氢气分别经空气入口和氢气入口进入质子交换膜燃料电池电堆1,氢气和空气中的氧气在质子交换膜燃料电池电堆1中反应产生直流电,直流电通过直流-直流变换器11转换为稳定直流电。
散热水箱3的外侧设有散热风扇12,所述散热水箱3连通膨胀水箱13,所述膨胀水箱13为散热水箱3供应冷却水并提供水温变化时所需的体积膨胀空间,所述散热风扇12加速散热水箱3外部空气的对流,进而加速所述散热水箱3的散热。
蒸发器2包括第一流道21和第二流道22,所述第一流道21为无相变散热流道,所述第二流道22为蒸发流道,冷凝器6包括冷凝流道61和吸热流道62。
第一流道21依次连接散热水箱3、第一水泵4、质子交换膜燃料电池电堆1构成燃料电池冷却水回路,第一水泵4将散热水箱3中的冷却水泵入质子交换膜燃料电池电堆1中,所述冷却水带走质子交换膜燃料电池电堆1中的反应热,所述冷却水的温度升高,并流入第一流道21,所述冷却水的热量在第一流道21中被所述第二流道22的吸热介质吸收,所述冷却水的温度降低,并流回散热水箱3,所述冷却水在散热水箱3中进一步散热,所述冷却水的温度进一步降低至能够再次冷却质子交换膜燃料电池电堆1。
第二流道22依次连接压缩机5、冷凝流道61、膨胀阀7构成热泵循环回路,压缩机5将冷媒气体压缩为高温高压的冷媒气体,并流进冷凝流道61,所述高温高压的冷媒气体在所述冷凝流道61中向吸热流道放热,并冷凝为高温高压的液体,所述高温高压的液体经膨胀阀7变为低温低压的气液混合物,所述低温低压的气液混合物流入第二流道22,所述低温低压的气液混合物就是第二流道22中的吸热介质,所述低温低压的气液混合物在第二流道22中吸收热量蒸发为冷媒气体。
吸热流道62依次连接热水储箱9和第二水泵10构成第一热水循环回路,所述吸热流道62和第二水泵10间设有第二阀14。
太阳能集热器8依次连接热水储箱9和第二水泵10构成第二热水循环回路,所述第二水泵10和太阳能集热器8间设有第一阀15。
通过控制所述第一阀15和第二阀14的打开和关闭,使所述第一热水循环回路或第二热水循环回路开始工作。
第二阀14打开,所述第一阀15关闭,第二水泵10将水从热水储箱9的底部泵入吸热流道62,并在吸热流道62内吸收冷凝流道61中高温高压的冷媒气体的放热,水温升高,再流回热水储箱9的顶部,所述第二水泵10再将水从热水储箱9的底部泵入吸热流道直至整个热水储箱9中的水均被加热。
第二阀14关闭,所述第一阀15打开时,第二水泵10将水从热水储箱9的底部泵入太阳能集热器8,并在太阳能集热器8内吸收太阳能,水温升高,再流回热水储箱9的顶部,所述第二水泵10再将水从热水储箱9的底部泵入太阳能集热器8直至整个热水储箱9中的水均被加热。
第二阀14和第一阀15均打开时,第二水泵10将水从热水储箱9的底部泵入太阳能集热器8和吸热流道62,从热水储箱9中泵出的水在太阳能集热器8内吸收太阳能,并在吸热流道62内吸收冷凝流道中高温高压的冷媒气体的放热,水温升高,再流回热水储箱9的顶部,所述第二水泵10再将水从热水储箱9的底部泵入太阳能集热器8和吸热流道62直至整个热水储箱9中的水均被加热。
在上述过程中,热量最终释放到热水储箱9中的水中,使得热水储箱9中水的温度高于质子交换膜燃料电池冷却水的温度,从而达到热泵效应,典型地,可以将50℃左右的质子交换膜燃料电池发电***的余热温度提升到75℃以上,使得无论是燃料电池的余热的温度,还是太阳能的集热温度都得到大幅提升,因而更有利用价值。
第一种工作模式:质子交换膜燃料电池电堆1单独供电运行模式。
在这种模式下,仅质子交换膜燃料电池电堆1工作,此种模式适用于仅需要单独供电,且不需要利用余热的场合,在此模式下,第一水泵4运行,第二水泵10、压缩机5不运行;第一阀15关闭、第二阀14关闭,此时,第一水泵4从散热水箱3底部抽水,泵入质子交换膜燃料电池电堆1,以冷却质子交换膜燃料电池电堆1,由质子交换膜燃料电池电堆1流出的冷却水经过蒸发器2中的第一流道21返回散热水箱3,在散热水箱3中冷却水借助散热风扇12向空气散热,温度降低,从而再次具备冷却质子交换膜燃料电池电堆1的能力,此时质子交换膜燃料电池电堆1发电***的余热全部散到空气中去,余热没有被利用。
第二种工作模式:太阳能集热器8单独运行模式
在这种模式下,仅太阳能集热器8和热水循环回路工作,此种模式适用于阳光充足的夏季,在此模式下,质子交换膜燃料电池电堆1不工作,无需供给氢气等燃料;第一水泵4关闭,第二水泵10运行;压缩机5不运行;第一阀15开启,第二阀14关闭,此时第二水泵10从热水储箱9的底部抽水,泵入太阳能集热器8,水在太阳能集热,8中吸收太阳热,温度升高,返回到热水储箱9,经过第二水泵10的不断循环,最终使得整个热水储箱9的水温均升高,达到将太阳能以热能的形式储存到热水储箱9中的目的。
第三种工作模式:质子交换膜燃料电池电堆1和压缩机5联合运行模式
在这种模式下,太阳能集热器8不工作,质子交换膜燃料电池电堆1、压缩机5和热水循环回路工作,此种模式适用于阳光不充足的冬季,仅靠太阳能集热8达不到所需的水温时,在此模式下,质子交换膜燃料电池电堆1工作;第一阀15关闭,第二阀14开启;第一水泵4、第二水泵10、压缩机5运行,此时,冷媒气体在蒸发器5的第二流道52中进行蒸发,第二流道52吸收质子交换膜燃料电池电堆1来的冷却水的热量,使质子交换膜燃料电池电堆1来的冷却水的温度降低,蒸发后的冷媒气体进入压缩机5,在其中被压缩,温度升高、压力升高,进入冷凝器6中的冷凝流道61,在冷凝流道61中,向吸热流道62中的水放热,自身冷凝成液体,冷媒液体经过膨胀阀7后,温度降低、压力降低,进入蒸发器6,再次具备吸热的能力,而吸热流道62中的水在吸收了冷媒的冷凝热后温度升高,返回热水储箱9,经过第二水泵10的不断循环,最终使得整个热水储箱9的水温均升高,达到将质子交换膜燃料电池电堆1的余热提升温度后再储存到热水储箱9中的目的。
第四种工作模式:太阳能集热器8、质子交换膜燃料电池电堆1和压缩机5联合运行模式。
在这种模式下,质子交换膜燃料电池电堆1的余热作为压缩机5的低温热源,同时太阳能集热器8收集的太阳热也同时得到了利用,在此模式下,第一水泵4、第二水泵10均运行;压缩机5运行、第一阀15、第二阀14均开启。冷媒在蒸发器的第二流道22中进行蒸发,第一流道21中的从质子交换膜燃料电池电堆1来的冷却水的热量,使质子交换膜燃料电池电堆1来的冷却水的温度降低,蒸发后的冷媒进入压缩机5,在其中被压缩,温度升高、压力升高,然后进入冷凝器6中的冷凝流道61,在冷凝流道61中,冷媒向吸热流道62中的水放热,自身冷凝成液体,冷媒液体经过膨胀阀6后,温度降低、压力降低,进入蒸发器2,再次具备吸热的能力,第二水泵10抽取热水储箱9底部的水,分别泵入冷凝器6中的吸热流道62和太阳能集热器8,进入吸热流道62中的水在吸收了冷媒的冷凝热后温度升高,进入太阳能集热器8中的水在吸收了太阳热能后温度也升高,这两股升温后的水混合后一起进入热水储箱9,经过第二水泵10的不断循环,最终使得整个热水储箱9的水温均升高,达到将太阳能以及提升温度后的质子交换膜燃料电池电堆1余热的储存到热水储箱9中的目的。
本实用新型通过氢能和太阳能的互补,改善了太阳能运行成本低但严重受限于天气,氢能不受天气影响但运行费用又较高的问题,使得***的综合能效得到较好的平衡;充分利用低品位的、温度较低的燃料电池余热和太阳能,通过热泵效应得到高品位的、温度较高的热水,从而使得燃料电池余热和太阳能的用途更广泛,利用价值更高;***中的压缩机、水泵等可以用燃料电池所发的直流电直接驱动,可以实现脱网运行,在沙漠、海岛等边远无电地区也能应用;具有多种运行模式,可适应不同的季节和天气条件;全部由可再生能源驱动(氢能、太阳能),零污染、零排放,对环境友好。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本实用新型的较佳实施例,并不用以限制本实用新型,凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (8)

1.氢能和太阳能互补的热泵***,包括质子交换膜燃料电池电堆、蒸发器、散热水箱、第一水泵、压缩机、冷凝器、膨胀阀、太阳能集热器、热水储箱和第二水泵,其特征在于,所述蒸发器包括第一流道和第二流道,所述第一流道为无相变散热流道,所述第二流道为蒸发流道,所述冷凝器包括冷凝流道和吸热流道,所述第一流道依次连接散热水箱、第一水泵、质子交换膜燃料电池电堆构成燃料电池冷却水回路,所述第二流道依次连接压缩机、冷凝流道、膨胀阀构成热泵循环回路,所述吸热流道依次连接热水储箱和第二水泵构成第一热水循环回路,所述太阳能集热器依次连接热水储箱和第二水泵构成第二热水循环回路,所述第二水泵和太阳能集热器间设有第一阀,所述吸热流道和第二水泵间设有第二阀,通过控制所述第一阀和第二阀的打开和关闭,使所述第一热水循环回路或第二热水循环回路开始工作。
2.根据权利要求1所述的氢能和太阳能互补的热泵***,其特征在于,所述第一水泵将散热水箱中的冷却水泵入质子交换膜燃料电池电堆中,所述冷却水带走质子交换膜燃料电池电堆中的反应热,所述冷却水的温度升高,并流入第一流道,所述冷却水的热量在第一流道中被所述第二流道的吸热介质吸收,所述冷却水的温度降低,并流回散热水箱,所述冷却水在散热水箱中进一步散热,所述冷却水的温度进一步降低至能够再次冷却质子交换膜燃料电池电堆。
3.根据权利要求1所述的氢能和太阳能互补的热泵***,其特征在于,所述压缩机将冷媒气体压缩为高温高压的冷媒气体,并流进冷凝流道,所述高温高压的冷媒气体在所述冷凝流道中向吸热流道放热,并冷凝为高温高压的液体,所述高温高压的液体经膨胀阀变为低温低压的气液混合物,所述低温低压的气液混合物流入第二流道,所述低温低压的气液混合物就是第二流道中的吸热介质,所述低温低压的气液混合物在第二流道中吸收热量蒸发为冷媒气体。
4.根据权利要求1所述的氢能和太阳能互补的热泵***,其特征在于,所述第二阀打开,所述第一阀关闭,所述第二水泵将水从热水储箱的底部泵入吸热流道,并在吸热流道内吸收冷凝流道中高温高压的冷媒气体的放热,水温升高,再流回热水储箱的顶部,所述第二水泵再将水从热水储箱的底部泵入吸热流道直至整个热水储箱中的水均被加热。
5.根据权利要求1所述的氢能和太阳能互补的热泵***,其特征在于,所述第二阀关闭,所述第一阀打开时,第二水泵将水从热水储箱的底部泵入太阳能集热器,并在太阳能集热器内吸收太阳能,水温升高,再流回热水储箱的顶部,所述第二水泵再将水从热水储箱的底部泵入太阳能集热器直至整个热水储箱中的水均被加热。
6.根据权利要求1所述的氢能和太阳能互补的热泵***,其特征在于,所述第二阀和第一阀均打开时,第二水泵将水从热水储箱的底部泵入太阳能集热器和吸热流道,从热水储箱中泵出的水在太阳能集热器内吸收太阳能,并在吸热流道内吸收冷凝流道中高温高压的冷媒气体的放热,水温升高,再流回热水储箱的顶部,所述第二水泵再将水从热水储箱的底部泵入太阳能集热器和吸热流道直至整个热水储箱中的水均被加热。
7.根据权利要求1所述的氢能和太阳能互补的热泵***,其特征在于,所述散热水箱的外侧设有散热风扇,所述散热水箱连通膨胀水箱,所述膨胀水箱为散热水箱供应冷却水并提供水温变化时所需的体积膨胀空间,所述散热风扇加速散热水箱外部空气的对流,进而加速所述散热水箱的散热。
8.根据权利要求1所述的氢能和太阳能互补的热泵***,其特征在于,所述质子交换膜燃料电池电堆连接一直流-直流变换器,所述质子交换膜燃料电池电堆上设有氢气入口、氢气出口、空气入口和空气出口,所述空气和氢气分别经空气入口和氢气入口进入质子交换膜燃料电池电堆,所述氢气和空气中的氧气在所述质子交换膜燃料电池电堆中反应产生直流电,所述直流电通过所述直流-直流变换器转换为稳定直流电。
CN201720545240.9U 2017-05-15 2017-05-15 氢能和太阳能互补的热泵*** Active CN207350992U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201720545240.9U CN207350992U (zh) 2017-05-15 2017-05-15 氢能和太阳能互补的热泵***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201720545240.9U CN207350992U (zh) 2017-05-15 2017-05-15 氢能和太阳能互补的热泵***

Publications (1)

Publication Number Publication Date
CN207350992U true CN207350992U (zh) 2018-05-11

Family

ID=62362420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201720545240.9U Active CN207350992U (zh) 2017-05-15 2017-05-15 氢能和太阳能互补的热泵***

Country Status (1)

Country Link
CN (1) CN207350992U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109000381A (zh) * 2018-07-05 2018-12-14 燕山大学 太阳能光伏-环路热水***及运行控制方法
CN110108045A (zh) * 2019-05-23 2019-08-09 广东电网有限责任公司 一种太阳能供能装置
CN113153675A (zh) * 2020-01-22 2021-07-23 电力规划总院有限公司 一种发电***
US20220407091A1 (en) * 2019-09-30 2022-12-22 Ceres Intellectual Property Company Limited Sofc cooling system, fuel cell and hybrid vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109000381A (zh) * 2018-07-05 2018-12-14 燕山大学 太阳能光伏-环路热水***及运行控制方法
CN109000381B (zh) * 2018-07-05 2020-02-11 燕山大学 太阳能光伏-环路热水***及运行控制方法
CN110108045A (zh) * 2019-05-23 2019-08-09 广东电网有限责任公司 一种太阳能供能装置
US20220407091A1 (en) * 2019-09-30 2022-12-22 Ceres Intellectual Property Company Limited Sofc cooling system, fuel cell and hybrid vehicle
US11901592B2 (en) * 2019-09-30 2024-02-13 Ceres Intellectual Property Company Limited SOFC cooling system, fuel cell and hybrid vehicle
CN113153675A (zh) * 2020-01-22 2021-07-23 电力规划总院有限公司 一种发电***

Similar Documents

Publication Publication Date Title
CN106871483A (zh) 一种氢能和太阳能互补的热泵***
CN206959110U (zh) 一种太阳能光伏光热一体化联合空气源热泵供暖***
CN201246923Y (zh) 热泵***蒸发器与太阳能光伏集热器复合热源装置
CN207350992U (zh) 氢能和太阳能互补的热泵***
CN104633980B (zh) 太阳能‑地能互补风能热泵***
CN109114804A (zh) 太阳能光伏-市电联合驱动的光伏光热一体化双源热泵热水***及其运行方法
CN106482389B (zh) 一种热电耦合利用太阳能***及方法
CN207035564U (zh) 蓄能型分时pvt热泵热电冷三联供***
CN101566406A (zh) 太阳能光伏与光热联产式混合动力热泵
CN106685338B (zh) 一种利用太阳能、空气能、地热能和空调余热实现冷热电联供***
CN204373270U (zh) 光伏空调热泵热水器
CN207568778U (zh) 一种基于可再生能源的冷热电联供***
CN101825373A (zh) 太阳热水空调建筑一体化***
CN206709440U (zh) 一种氢能和太阳能互补的热泵***
CN202598955U (zh) 太阳能光伏热泵***
CN102080635A (zh) 一种利用太阳能和地热发电的装置及该装置的使用方法
CN105737437B (zh) 光伏供电式太阳能喷射与直接蒸发复合制冷装置
CN205783976U (zh) 一种太阳能吸收式制冷与吸附式制冷复合的制冷***
CN206875753U (zh) 氢能和太阳能互补的热泵***
CN208222868U (zh) 双温区蓄能供热型太阳能热水***
CN206709441U (zh) 一种氢能和太阳能互补的热泵***
CN212806110U (zh) 利用自然能的储能装置和二氧化碳热泵耦合***
CN111981709A (zh) 利用自然能的储能装置和二氧化碳热泵耦合***及方法
CN204757451U (zh) 一种太阳能辅助式热泵机组
CN205119519U (zh) 一种太阳能热水***和热泵制热制冷***

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant