CN207096089U - 基于光学吸收和干涉法检测气体浓度的装置 - Google Patents

基于光学吸收和干涉法检测气体浓度的装置 Download PDF

Info

Publication number
CN207096089U
CN207096089U CN201721070447.1U CN201721070447U CN207096089U CN 207096089 U CN207096089 U CN 207096089U CN 201721070447 U CN201721070447 U CN 201721070447U CN 207096089 U CN207096089 U CN 207096089U
Authority
CN
China
Prior art keywords
light
air chamber
gas
gas concentration
spectroscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201721070447.1U
Other languages
English (en)
Inventor
张忠民
吴壮壮
徐立佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Junray Intelligent Instrument Co Ltd
Original Assignee
Qingdao Junray Intelligent Instrument Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Junray Intelligent Instrument Co Ltd filed Critical Qingdao Junray Intelligent Instrument Co Ltd
Priority to CN201721070447.1U priority Critical patent/CN207096089U/zh
Application granted granted Critical
Publication of CN207096089U publication Critical patent/CN207096089U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本实用新型提出一种基于光学吸收和干涉法检测气体浓度的装置,包括光发射器、分光镜、参比气室、样气气室、全反镜及光电检测器,所述光发射器发射入射光与分光镜呈45°,经分光后分为反射光和透射光,两束光分别照射参比气室和样气气室后,经设置在气室后的反光镜反射回分光镜,合束后同方向射出的两束光产生干涉,光电检测器检测零级条纹处光线强度。与现有的基于光学吸收的气体浓度检测装置相比,该装置具有检测限低,分辨率高的特点,可有效检测低含量气体的浓度值。

Description

基于光学吸收和干涉法检测气体浓度的装置
技术领域
本实用新型属于气体浓度检测领域,尤其涉及一种基于光学吸收和干涉法检测气体浓度的装置。
背景技术
当前污染源和大气中特定气体检测中,基于光学吸收原理进行检测的仪器基本上都是基于朗伯-比尔定律的。其原理是通过检测特定波长的光经过样气后,部分光能量被样气中的特定组分吸收,首先利用光电检测器检测出光源发出的光的初始能量作为参比光,然后检测出经过样气吸收后的出射光能量,和参比光进行比对计算后可以计算出样气对特定波长的吸光度。不同气体的吸收波长不同,根据朗伯-比尔定律,吸光度大小和样气中与波长对应的有害气体组分的浓度成正比,因此通过测量计算出特定波长的吸光度变化可以计算出对应的有害气体浓度。
随着人们环保意识的增强,以及对有害气体危害的深刻认知,气体浓度的检测要求也越来越高,检测设备需精确的检测出更低含量气体的浓度值。然而, 当样气中的待测气体浓度较低时,气体吸光度很小,因此被吸收的光能量占比很小,即被测气体浓度信息光信号能量占比小,而光谱仪的灵敏度、动态范围和信噪比有限,以至于被测气体吸收的光能量数值上接近光谱仪本身的噪声大小,被测气体产生的光电信号的信噪比很低,所以能够实现的气体浓度检出限高,而浓度分辨率低,难以满足目前环境监测对污染物浓度提出的更低检出限和更高分辨率的要求。
实用新型内容
本实用新型针对上述的技术问题,提出一种基于光吸收原理,并结合干涉法的气体浓度检测装置,该装置在采用现有光电检测器的状况下,可极大的提高检测仪器的分辨率和检出限性能,有效检测低含量气体的浓度。
为了达到上述目的,本实用新型采用的技术方案为:
一种基于光学吸收和干涉法检测气体浓度的装置,包括光发射器、分光镜、参比气室、样气气室、全反镜及光电检测器,所述光发射器发射入射光与分光镜呈45°,经分光后分为反射光和透射光,两束光分别照射参比气室和样气气室后,经设置在气室后的反光镜反射回分光镜,合束后同方向射出的两束光产生干涉,光电检测器检测零级条纹处光线强度。
作为优选,所述分光镜光入射面设置有半反半透膜,所述反射光光路上设置有补偿镜。
作为优选,所述光发射器发射的光为红外光、可见光或紫外光。
作为优选,所述光电检测器为光谱仪,检测不同波长的光强度。
与现有技术相比,本实用新型的优点和积极效果在于:
1、本实用新型所述的检测气体浓度的装置相比于现有的吸光度发检测气体浓度的方法,大大提高了光电检测器接收到的光信号中气体浓度信息的能量占比,在采用相同光电传感器的情况下,能够大幅度提高检测气体的分辨率和检出限性能1个数量级以上,从而获得更低的检出限和更高的分辨率。
2、相比于现有的低浓度检测方法荧光法或者离子色谱法,本实用新型实时性好,能够快速检测特定气体浓度,并且结构较为简单,能够实现便携式测量。
附图说明
图1为本实用新型的结构示意图;
上各图中:1、光发射器;2、分光镜;3、半反半透膜;6、参比气室;7、进气口;8、出气口;9、样气气室;10、反光镜A;11、反光镜B;12、光电检测器;13、补偿镜。
具体实施方式
为了更好的理解本实用新型,下面结合附图和实施例做具体说明。
实施例1:一种基于光学吸收和干涉法检测气体浓度的方法,包括以下步骤:
1、将连续光谱光源发射的入射光a呈45°照射在入射面设置有半反半透膜的分光镜上;
2、入射光a经半反半透膜分为能量相等的反射光r和透射光t。由波动理论可知,入射光在光疏媒质中前进,遇到光密媒质界面时,在反射过程中产生半波损失。由于半反半透膜的折射率大于空气折射率,入射光a经空气进入半反半透膜在入射点发生反射,因此反射光r产生半波损失。
3、反射光r和透射光t分别照射容纳在相同气室内的参比气体和样气气体,气室后设置有全反镜,参比气体采用对光源无吸收的气体,如高纯氮气。
4、反射光r和透射光t分别经全反镜反射后再次经过气室,照射在分光镜上,r经分光镜后的透射光r’,与t经分光镜后的反射光t’合为同一束光。由于半反半透膜的折射率小于分光镜本体的折射率,因此t经分光镜后的反射光t’没有半波损失,并且反射光路和透射光路光学条件相同,因此r’与t’的位相相反。
5、由于样气气室9内的气体对一定波长的光具有吸收,因此t’的光强比r’减弱,r’与t’干涉相消后剩余部分光强,采用光谱仪或光电传感器检测零级条纹处的剩余光强,即对应气体吸收的部分光能,可以计算出特定波长的吸光度变化从而计算出对应的待测气体浓度。
本实施例所述的检测气体浓度的方法采用分光镜将同光源光束分为两束位相和光强相同的相干光,其中一束光存在半波损失从而位相相反。两束光经过光学条件相同的两气室后经反射镜反射回到分光镜,再次分光后得到两束同路径的位相相反的相干光。若两气室内为吸光度相同气体,则两束相干光相消,光谱仪处光能量为0。若一个气室内装有吸光气体,基于光学吸收原理,特定波长部分光能量被样气中的特定组分吸收。则此光束中特定波长的能量减弱,那么两束光干涉相消后,将有部分光剩余,经光谱仪检测剩余光强,并根据朗伯-比尔定律即可计算出气体浓度。与现有的基于光学吸收的气体浓度检测装置相比,该检出限低,分辨率高,可有效检测低含量气体的浓度值。
实施例2:如图1所示,一种基于光学吸收和干涉法检测气体浓度的装置,包括光发射器1、分光镜2、参比气室6、样气气室9、全反镜及光电检测器12。所述分光镜2与水平面呈45°夹角设置,所述光发射器1发射单一波长或连续光谱的入射光a水平照射在分光镜2上。所述分光镜2在入射面设置有折射率小于分光镜2基体的半反半透膜3,入射光a分为能量相同的反射光r和透射光t,由于空气与半反半透膜3相比为光疏介质,因此入射光中所有波长的反射光r发生半波损失,与透射光t位相相反。反射光r光路上设置有参比气室6,透射光t光路上设置有样气气室9。参比气室6和样气气室9两端均为全透玻璃,气室上设置有进气口7和出气口8,两气室后方均设置有全反镜。参比气室6内装有对光子无吸收或与待测气体吸收波长无重叠的参比气体,样气气室9内装有待测气体。反射光r经过参比气室6后穿出,经反光镜A10反射回分光镜2,其中一束光投过分光镜2向下射出称为r1。透射光t经过样气气室9后经反光镜B11反射回分光镜2,其中一束光经半分半透膜反射向下射出成为t1。由于分光镜2的半反半透膜3的折射率小于分光镜基体折射率,因此透射光t向下反射时不会产生半波损失。由于t和t1均从分光镜2内经过,因此在参比气室6前设置补偿镜13,补偿镜13材质和厚度均与分光镜2基体一致,平行于分光镜2安放。参比气室6与样气气室9及全反镜的安装位置均相同,因此反射光r和透射光t到达光电检测器12的光程相等。
由于r1与t1为同光源相差半波长的相干光源,因此二者产生干涉并且相消。本实施例所述光电检测器12选用光电传感器,其设置于零级条纹处,检测该处的光强。
为了增加光电传感器接收光的能量变化幅度,可采用汇聚透镜进行汇聚,能够提高检测的精度和速度。
当参比气室6和样气气室9内装有相同气体时,r1与t1完全相消,光电传感器检测到的光强为0。当样气气室9内气体对特定波长的光子进行吸收后,相消后r1仍有部分光剩余,被光电传感器检测到。检测到的光强即反应气体吸收的光能,根据朗伯-比尔定律即可计算出气体浓度。
该装置与现有的基于光学吸收的气体浓度检测装置相比,大大提高了光电检测器接收到的光信号中气体浓度信息的占比,在采用相同光电传感器的情况下,能够大幅度提高检测气体的分辨率和检出限性能1个数量级以上,可有效检测低含量气体的浓度。
现有技术中也有采用干涉法观察干涉条纹移动的气体浓度检测装置,其依赖于待测气体与样气气体的折射率不同,然而当待测气体浓度较低时,折射率变化非常微小,干涉条纹移动难以监测。当监测低浓度气体时,对光学器件的制作精度要求非常高,微小偏差即导致条纹难以形成或发生偏移。而且当待测气体不是单一组分时,不同气体均影响折射率,从而无法使用。若样气中含有不止一种吸收气体,在吸收气体吸收峰没有重叠的情况下,采用本装置可通过光谱仪分析不同波长的光线强度,从而分析收哪种气体产生的吸收,可同时检测多种气体的浓度。
以上所述,仅是本实用新型的较佳实施例而已,并非是对本实用新型作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本实用新型技术方案内容,依据本实用新型的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本实用新型技术方案的保护范围。

Claims (4)

1.一种基于光学吸收和干涉法检测气体浓度的装置,其特征在于:包括光发射器、分光镜、参比气室、样气气室、全反镜及光电检测器,所述光发射器发射入射光与分光镜呈45°,经分光后分为反射光和透射光,两束光分别照射参比气室和样气气室后,经设置在气室后的反光镜反射回分光镜,合束后同方向射出的两束光产生干涉,光电检测器检测零级条纹处光线强度。
2.根据权利要求1所述的基于光学吸收和干涉法检测气体浓度的装置,其特征在于:所述分光镜光入射面设置有半反半透膜,所述反射光光路上设置有补偿镜。
3.根据权利要求2所述的基于光学吸收和干涉法检测气体浓度的装置,其特征在于:所述光发射器发射的光为红外光、可见光或紫外光。
4.根据权利要求3所述的基于光学吸收和干涉法检测气体浓度的装置,其特征在于:所述光电检测器为光谱仪,检测不同波长的光强度。
CN201721070447.1U 2017-08-25 2017-08-25 基于光学吸收和干涉法检测气体浓度的装置 Active CN207096089U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201721070447.1U CN207096089U (zh) 2017-08-25 2017-08-25 基于光学吸收和干涉法检测气体浓度的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721070447.1U CN207096089U (zh) 2017-08-25 2017-08-25 基于光学吸收和干涉法检测气体浓度的装置

Publications (1)

Publication Number Publication Date
CN207096089U true CN207096089U (zh) 2018-03-13

Family

ID=61539953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721070447.1U Active CN207096089U (zh) 2017-08-25 2017-08-25 基于光学吸收和干涉法检测气体浓度的装置

Country Status (1)

Country Link
CN (1) CN207096089U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107345904A (zh) * 2017-08-25 2017-11-14 青岛众瑞智能仪器有限公司 基于光学吸收和干涉法检测气体浓度的方法及装置
CN109406358A (zh) * 2018-12-10 2019-03-01 山西鑫华翔科技发展有限公司 一种反射加透射法雾霾颗粒流浓度冗余测量装置
CN110749549A (zh) * 2019-11-22 2020-02-04 山东大学 一种恶臭气体成分及浓度监测装置与方法
CN115877032A (zh) * 2022-12-08 2023-03-31 青岛众瑞智能仪器股份有限公司 光干涉闪烁法检测烟气流速的方法及新型烟气流速测量仪

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107345904A (zh) * 2017-08-25 2017-11-14 青岛众瑞智能仪器有限公司 基于光学吸收和干涉法检测气体浓度的方法及装置
CN107345904B (zh) * 2017-08-25 2023-10-03 青岛众瑞智能仪器股份有限公司 基于光学吸收和干涉法检测气体浓度的方法及装置
CN109406358A (zh) * 2018-12-10 2019-03-01 山西鑫华翔科技发展有限公司 一种反射加透射法雾霾颗粒流浓度冗余测量装置
CN110749549A (zh) * 2019-11-22 2020-02-04 山东大学 一种恶臭气体成分及浓度监测装置与方法
CN115877032A (zh) * 2022-12-08 2023-03-31 青岛众瑞智能仪器股份有限公司 光干涉闪烁法检测烟气流速的方法及新型烟气流速测量仪
CN115877032B (zh) * 2022-12-08 2023-08-08 青岛众瑞智能仪器股份有限公司 光干涉闪烁法检测烟气流速的方法及烟气流速测量仪

Similar Documents

Publication Publication Date Title
CN107345904A (zh) 基于光学吸收和干涉法检测气体浓度的方法及装置
CN207096089U (zh) 基于光学吸收和干涉法检测气体浓度的装置
CN105424631B (zh) 一种基于紫外可见波段吸收光谱的超高灵敏度氮氧化物测量***
CN108760681A (zh) 一种基于波形分解的路径平均温度测量***与方法
CN102435582B (zh) 高精度激光吸收率测量装置
CN106596058B (zh) 光栅衍射效率光谱测量装置和测量方法
CN103837520A (zh) 一种光学行波腔增强激光拉曼气体浓度检测装置
CN201194005Y (zh) 多源层析激光测量烟气、颗粒浓度和温度分布的装置
CN103398964A (zh) 一种基于腔增强技术的气体探测方法
CN103364371A (zh) 同轴式光热干涉的大气气溶胶吸收系数差分测量新方法
CN105987864A (zh) 积分球内嵌光热干涉的气溶胶散射与吸收同步测量装置
CN105823755A (zh) 一种基于可调谐半导体激光的自混合气体吸收传感***
CN207147963U (zh) 一种检测气体浓度的装置
CN103472014A (zh) 多维激光自动对准气体多次反射池探测装置
CN101710068B (zh) 一种基于傅里叶变换光谱术的光纤气体传感器
CN107561008A (zh) 一种用于真空紫外漫反射板brdf特性测量的装置
CN203534960U (zh) 多维激光自动对准气体多次反射池探测装置
CN103163090B (zh) 一种用于反应堆厂房内部的钋气溶胶浓度检测***
CN104568249A (zh) 一种基于太赫兹时域光谱***的应力测量方法
CN108088815A (zh) 基于石墨烯表面波的高灵敏多光束折射率探测装置和方法
CN103471994A (zh) 单光纤传输气体多次反射池探测装置
CN101281126B (zh) 光纤式光学外差法倏逝波腔衰荡光谱分析装置
CN207366434U (zh) 一种96孔全波长酶标仪
Liyun et al. Optical fiber sensor determination of the water salinity based on surface plasmon resonance
CN201532360U (zh) 一种光纤气体传感器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 266000 No. 1 Xueyue Road, Chengyang District, Qingdao City, Shandong Province

Patentee after: Qingdao Zhongrui Intelligent Instrument Co.,Ltd.

Address before: No.3, Xiandong Road, Xiazhuang street, Chengyang District, Qingdao City, Shandong Province 266109

Patentee before: QINGDAO ZHONGRUI INTELLIGENT INSTRUMENT Co.,Ltd.