CN206401943U - 一种能检测自身故障的复合开关 - Google Patents

一种能检测自身故障的复合开关 Download PDF

Info

Publication number
CN206401943U
CN206401943U CN201720048448.XU CN201720048448U CN206401943U CN 206401943 U CN206401943 U CN 206401943U CN 201720048448 U CN201720048448 U CN 201720048448U CN 206401943 U CN206401943 U CN 206401943U
Authority
CN
China
Prior art keywords
diode
controller
switch
reverse
blocking tetrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201720048448.XU
Other languages
English (en)
Inventor
王君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201720048448.XU priority Critical patent/CN206401943U/zh
Application granted granted Critical
Publication of CN206401943U publication Critical patent/CN206401943U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本实用新型公开了一种能检测自身故障的复合开关,涉及开关技术领域,该复合开关既能检测自身投切故障,又能准确检测交流电电压过零点时并能进行投切。可控硅开关Kb的一端和磁保持继电器开关Kc的一端分别与一号节点连接,可控硅开关Kb的另一端和电感La的一端分别与节点Ma连接,电感La的另一端和六号开关的一端分别与节点Mb连接,磁保持继电器开关Kc的另一端、一号开关的另一端和二号开关的另一端分别与节点Mc连接,电容C2的一端、四号开关的另一端、二极管D1的正极端和二极管D3的负极端分别与节点Md连接,硅驱动电路分别与可控硅开关Kb的控制端和控制器连接,磁驱动电路分别与磁保持继电器开关Kc的控制端和控制器连接。

Description

一种能检测自身故障的复合开关
技术领域
本实用新型涉及开关技术领域,具体涉及一种能检测自身故障的复合开关。
背景技术
现有连接在交流电路上的开关一般都不能检测自身的投切故障,当开关自身出现闭合或断开的投切故障时,现有开关都不能对自身闭合或断开的故障进行检测,导致用户不易知道开关是否出现了闭合或断开的投切故障,因此设计一种能检测自身投切故障的开关显得非常必要。
实用新型内容
本实用新型是为了解决现有开关不能检测自身投切故障的不足,提供一种能智能自动检测自身投切故障,结构简单,智能化程度高,安全可靠,易对自用电供电模块的电池组进行充放电控制的一种能检测自身故障的复合开关。
为了实现上述目的,本实用新型采用以下技术方案:
一种能检测自身故障的复合开关,包括一号节点、二号节点、节点Ma、节点Mb、电感La、电容Ca、电容C2、二极管D1、二极管D2、二极管D3、二极管D4、光电耦合器OPT、电阻R0、电阻R1、电阻R2、切换开关Ka、磁驱动电力路、硅驱动电路、自用电供电模块、接地端SGND和含有脉冲计数器的控制器;所述切换开关Ka包括可控硅开关Kb和磁保持继电器开关Kc,所述光电耦合器OPT包括发光二极管D5和光敏三极管Q0;所述可控硅开关Kb的一端和磁保持继电器开关Kc的一端分别与一号节点连接,所述可控硅开关Kb的另一端、电阻R1的一端和电感La的一端分别与节点Ma连接,所述电感La的另一端、磁保持继电器开关Kc的另一端、电阻R2的一端和电容Ca的一端分别与节点Mb连接,所述电容Ca的另一端连接在二号节点上,电阻R1的另一端与电容C2的一端连接,所述二极管D1的正极端和二极管D3的负极端分别连接在电容C2的另一端上,所述二极管D2的正极端和二极管D4的负极端分别连接在电阻R2的另一端上,所述二极管D1的负极端和二极管D2的负极端分别连接在发光二极管D5的正极端上,所述二极管D3的正极端和二极管D4的正极端分别连接在发光二极管D5的负极端上,所述光敏三极管Q0的集电极端分别与电阻R0的一端和控制器连接,所述光敏三极管Q0的发射极与信号接地端SGND连接,所述自用电供电模块分别与电阻R0的另一端、磁驱动电路、硅驱动电路和控制器连接,所述硅驱动电路分别与可控硅开关Kb的控制端和控制器连接,所述磁驱动电路分别与磁保持继电器开关Kc的控制端和控制器连接;自用电供电模块包括控制器、电池连接模块、能由若干个相互独立的单体电池依次串联连接而成的电池组;自用电供电模块还包括分别与单体电池个数相等的充电器、切换开关和限流模块;电池连接模块包括与单体电池个数相等的体充电连接机构;在每个体充电连接机构上分别设有体电压检测芯片;每个充电器的电源输出端一对一连接在每个切换开关选择端的一个接线端上;每个切换开关的转动端一对一连接在限流模块的一端上,每个限流模块的另一端一对一连接在电池连接模块的体充电连接机构上;电池连接模块连接在电池组上,所述电池连接模块的控制端、每个体电压检测芯片、每个限流模块的控制端和每个切换开关的控制端分别与控制器连接;并在控制器的控制下,当不为电池组充电时,电池连接模块能将电池组内各个相互独立的单体电池依次串联连接在一起变成串联电池,当为电池组充电时,电池连接模块能将电池组内依次串联连接在一起的串联电池变成相互独立的单体电池。
本方案的复合开关在使用时,把一号节点连接在交流电源的火线C上,把二号节点连接在交流电源的零线N上。
本方案的复合开关故障自检原理如下:
当需要投切复合开关时,控制器向可控硅开关Kb发出导通控制信号,使可控硅开关Kb导通。电流经可控硅开关Kb、电感La和电容Ca形成闭合回路,并联在电感La两端的电容C2、二极管D1、二极管D2、二极管D3、二极管D4、光电耦合器OPT、电阻R1、电阻R0、电阻R2、自用电供电模块和接地端SGND共同形成了可控硅开关Kb的运行检测电路。在电流流过可控硅开关Kb时该可控硅开关Kb的运行检测电路会产生触发脉冲信号,保持一定时间后,控制器向磁保持继电器开关Kc发出闭合控制信号,使磁保持继电器开关Kc闭合。磁保持继电器开关Kc闭合后将可控硅开关Kb与电感La组成的串联支路短路,此时可控硅开关Kb的运行检测电路将不会产生触发脉冲。然后,控制器向可控硅开关Kb发出断开控制信号,使可控硅开关Kb断开,由磁保持继电器开关Kc保持供电回路工作。
当需要切除复合开关时,控制器向可控硅开关Kb发出导通控制信号,使可控硅开关Kb导通,保持一定时间后,控制器向磁保持继电器开关Kc发出断开控制信号,磁保持继电器开关Kc随即断开,此时,可控硅运行检测电路将有触发脉冲出现。最后,控制器向可控硅开关Kb再次发出断开控制信号,可控硅开关Kb随即断开。至此就完全切除了复合开关。
本方案的复合开关具备在开关动作的过程中能进行自我故障检测,且无需在复合开关中另外设置检测故障的仪器,从而使复合开关的结构更加简单,体积小,结构可靠,成本低廉,降低了复合开关使用时投切不成功的安全隐患。
本方案的复合开关自身投切故障包括可控硅开关Kb的无法导通故障、磁保持继电器开关Kc的无法闭合故障、磁保持继电器开关Kc的无法断开故障和可控硅开关Kb的无法关断故障。因此,判断复合开关自身投切故障的方法包括:
(2-1)判断可控硅开关Kb为无法导通故障的方法是:
在投入复合开关时,假设可控硅开关Kb处于关断状态,且磁保持继电器开关Kc也处于断开状态的前提下,
(2-1-1)先由控制器向可控硅开关Kb发出导通控制信号,控制器等待可控硅开关Kb的运行检测电路返回的触发脉冲信号,并用控制器的脉冲计数器进行触发触发脉冲计数,当延时设定时间后,若控制器接收到的触发脉冲个数大于设定个数时,即可认为该可控硅开关Kb能正常导通,若控制器接收到的触发脉冲个数小于设定个数时,
(2-1-2)再由控制器向可控硅开关Kb发出导通控制信号,并将脉冲计数器清零,再次延时设定时间后,若控制器接收到的触发脉冲个数仍小于设定个数时,即可判断该可控硅开关Kb为无法导通故障。
(2-2)判断磁保持继电器开关Kc为无法闭合故障的方法是:
在投入复合开关时,假设可控硅开关Kb能正常导通,且可控硅开关Kb已处于导通状态和磁保持继电器开关Kc处于断开状态的前提下,
(2-2-1)先由控制器向磁保持继电器开关Kc发出闭合控制信号,并将脉冲计数器清零,延时设定时间后,若控制器接收到可控硅开关Kb的触发脉冲个数大于设定个数时,
(2-2-2)再由控制器向磁保持继电器开关Kc发出断开控制信号,并将脉冲计数器清零,再延时设定时间后,若控制器接收到可控硅开关Kb的触发脉冲个数大于也设定个数时,
(2-2-3)再次由控制器向磁保持继电器开关Kc发出闭合控制信号,并将脉冲计数器清零,再次延时设定时间后,此时如果控制器接收到可控硅开关Kb的触发脉冲计数仍大于设定个数时,即可判断该磁保持继电器开关Kc为无法闭合故障。
(2-3)判断磁保持继电器开关Kc为无法断开故障的方法是:
在切除复合开关时,假设可控硅开关Kb能正常导通,且可控硅开关Kb已处于断开状态和磁保持继电器开关Kc已处于闭合状态的前提下,
(2-3-1)先由控制器向可控硅开关Kb发出导通控制信号让可控硅开关Kb导通,并延时设定时间让可控硅开关Kb可靠导通后,又由控制器向磁保持继电器开关Kc发出断开控制信号,并将脉冲计数器清零,等待设定时间后,若控制器接收到可控硅开关Kb的触发脉冲个数小于设定个数时;
(2-3-2)再由控制器向磁保持继电器开关Kc发出断开控制信号,并将脉冲计数器清零,再次等待设定时间后,若控制器接收到可控硅开关Kb的触发脉冲个数仍小于设定个数时,即可判断磁保持继电器开关Kc为无法断开故障。
(2-4)判断可控硅开关Kb为无法关断故障的方法是:
在切除复合开关时,假设磁保持继电器开关Kc能正常断开,且磁保持继电器开关Kc已处于断开状态和可控硅开关Kb还处于导通状态的前提下,
(2-4-1)先由控制器向可控硅开关Kb发出关断控制信号,并将脉冲计数器清零,延时设定时间后,若控制器接收到可控硅开关Kb的触发脉冲个数大于设定个数时;
(2-4-2)再由控制器向可控硅开关Kb发出关断控制信号,并将脉冲计数器清零,再次延时设定时间后,若控制器接收到可控硅开关Kb的触发脉冲个数仍大于设定个数时,即可判断可控硅开关Kb为无法关断故障。
本方案的复合开关能进行复合开关自身投切故障的智能化检测,能及时让用户知道复合开关是否出现了故障,便于及时更换,结构简单,可靠性高,安全性好,易对自用电供电模块的电池组进行充放电控制。
作为优选,还包括与控制器连接的存储器。存储器能够存储火线C的电压过零点的时间点,便于控制器直接调用。
作为优选,还包括与控制器连接的显示器。显示器便于用户观察,使用方便简单。
作为优选,电感La的电感为70-75微亨。电感La采用电感为几十微亨的高频电感,大大提高了可控硅开关Kb在导通瞬间的抑制冲击电流的作用,可靠性较高。
作为优选,还包括与控制器连接的报警器。当复合开关自身投切出现故障后控制器向报警器发出报警指令,报警器随即发出报警声音,便于用户及时更换复合开关。
本实用新型能够达到如下效果:
本实用新型的复合开关能智能自动检测自身投切故障,智能化程度高,能自动检测自身投切故障,能及时让用户知道复合开关是否出现了故障,便于及时更换,结构简单,可靠性高,安全性好,易对自用电供电模块的电池组进行充放电控制。
附图说明
图1是本实用新型实施例自用电供电模块的一种电路原理连接结构示意图。
图2是本实用新型实施例自用电供电模块的一号体充电连接机构处上电磁铁压紧在下电磁铁上时的一种连接结构示意图。
图3是本实用新型实施例自用电供电模块的一号体充电连接机构处上电磁铁没有压在下电磁铁上时的一种连接结构示意图。
图4是本实用新型实施例自用电供电模块的通电先后控制机构处充电器和微控制器都还未上电时的一种使用状态连接结构示意图。
图5是本实用新型实施例自用电供电模块的通电先后控制机构处在上电时,只有微控制器的电源输入端正极已经接通电源时的一种使用状态连接结构示意图。
图6是本实用新型实施例自用电供电模块的通电先后控制机构处在上电时,只有微控制器的电源输入端正极接通电源和微控制器的电源输入端负极也已接通电源时的一种使用状态连接结构示意图。
图7是本实用新型实施例自用电供电模块的通电先后控制机构处在上电时,只有微控制器的电源输入端正极接通电源、微控制器的电源输入端负极也已接通电源和充电器的电源输入端正极也已接通电源时的一种使用状态连接结构示意图。
图8是本实用新型实施例自用电供电模块的通电先后控制机构处在上电时,微控制器的电源输入端正极接通电源、微控制器的电源输入端负极也已接通电源、充电器的电源输入端正极也已接通电源和充电器的电源输入端负极也已接通电源时的一种使用状态连接结构示意图。
图9是本实用新型的一种电路原理连接结构示意图。
图10是本实用新型的一种波形示意图。
图11是本实施例自用电供电模块的各部件与控制器相连接的一种电路原理连接结构示意框图。
具体实施方式
下面通过实施例,并结合附图,对本实用新型的技术方案作进一步具体的说明。
实施例:一种能检测自身故障的复合开关,参见图9所示,包括一号节点701、二号节点702、节点Ma、节点Mb、电感La、电容Ca、电容C2、二极管D1、二极管D2、二极管D3、二极管D4、光电耦合器OPT、电阻R0、电阻R1、电阻R2、切换开关Ka、磁驱动电力路502、硅驱动电路503、自用电供电模块901、接地端SGND和含有脉冲计数器805的控制器107;所述切换开关Ka包括可控硅开关Kb和磁保持继电器开关Kc,所述光电耦合器OPT包括发光二极管D5和光敏三极管Q0;所述可控硅开关Kb的一端和磁保持继电器开关Kc的一端分别与一号节点连接,所述可控硅开关Kb的另一端、电阻R1的一端和电感La的一端分别与节点Ma连接,所述电感La的另一端、磁保持继电器开关Kc的另一端、电阻R2的一端和电容Ca的一端分别与节点Mb连接,所述电容Ca的另一端连接在二号节点上,电阻R1的另一端与电容C2的一端连接,所述二极管D1的正极端和二极管D3的负极端分别连接在电容C2的另一端上,所述二极管D2的正极端和二极管D4的负极端分别连接在电阻R2的另一端上,所述二极管D1的负极端和二极管D2的负极端分别连接在发光二极管D5的正极端上,所述二极管D3的正极端和二极管D4的正极端分别连接在发光二极管D5的负极端上,所述光敏三极管Q0的集电极端分别与电阻R0的一端和控制器连接,所述光敏三极管Q0的发射极与信号接地端SGND连接,所述自用电供电模块分别与电阻R0的另一端、磁驱动电路、硅驱动电路和控制器连接,所述硅驱动电路分别与可控硅开关Kb的控制端和控制器连接,所述磁驱动电路分别与磁保持继电器开关Kc的控制端和控制器连接。电感La的电感为70-75微亨。
参见图1、图11所示,自用电供电模块包括电池连接模块t22、能由若干个相互独立的单体电池依次串联连接而成的电池组t26;自用电供电模块还包括分别与单体电池个数相等的充电器、切换开关和限流模块;电池连接模块包括与单体电池个数相等的体充电连接机构;在每个体充电连接机构上分别设有体电压检测芯片t101;每个充电器的电源输出端一对一连接在每个切换开关选择端的一个接线端上;每个切换开关的转动端一对一连接在限流模块的一端上,每个限流模块的另一端一对一连接在电池连接模块的体充电连接机构上;电池连接模块连接在电池组上,所述电池连接模块t22的控制端、每个体电压检测芯片t101、每个限流模块的控制端和每个切换开关的控制端分别与控制器连接;并在控制器的控制下,当不为电池组充电时,电池连接模块能将电池组内各个相互独立的单体电池依次串联连接在一起变成串联电池,当为电池组充电时,电池连接模块能将电池组内依次串联连接在一起的串联电池变成相互独立的单体电池。
本实例中的充电器为充电器t2、充电t3和充电器t4。本实例中的切换开关为切换开关t5、切换开关t6和切换开关t7。本实例中的限流模块为限流模块t9、限流模块t10和限流模块t11。每个切换开关的选择端都包括接线端d、接线端e和接线端f。本实例中的控制器即为微控制器。
参见图1所示,设本实施例电池组的单体电池共有三个,并设这三个单体电池分别为一号单体电池t19、二号单体电池t20和三号单体电池t21;电池连接模块的体充电连接机构共有三个,并设这三个体充电连接机构分别为一号体充电连接机构t12、二号体充电连接机构t13和三号体充电连接机构t14;电池连接模块还包括组电源输出接口t15、一号单刀双掷开关t17、二号单刀双掷开关t18和单刀开关t16;一号单体电池的正极连接在一号单刀双掷开关的转动端上,一号单刀双掷开关的一号触点连接在一号体充电连接机构的正极接线端上,一号单刀双掷开关的二号触点连接在二号单刀双掷开关的二号触点上,一号单体电池的负极连接在一号体充电连接机构的负极接线端上,一号单体电池的负极也连接在组电源输出接口的负极接线端上;二号单体电池的正极连接在二号体充电连接机构的正极接线端上,二号单体电池的正极也连接在组电源输出接口的正极接线端上,二号单体电池的负极连接在二号体充电连接机构的负极接线端上,二号单体电池的负极也连接在单刀开关的一端上;三号单体电池的负极t25连接在二号单刀双掷开关的转动端上,二号单刀双掷开关的一号触点连接在三号体充电连接机构的负极接线端上,三号单体电池的正极t23连接在三号体充电连接机构的正极接线端上,三号单体电池的正极也连接在单刀开关的另一端上;所述一号单刀双掷开关的控制端、二号单刀双掷开关的控制端和单刀开关的控制端分别与控制器连接。
所述一号单刀双掷开关的二号触点和二号单刀双掷开关的二号触点均为常闭触点,在电池组充电时一号单刀双掷开关的二号触点和二号单刀双掷开关的二号触点均处于断开状态,在电池组没充电时一号单刀双掷开关的二号触点和二号单刀双掷开关的二号触点均处于闭合状态;所述一号单刀双掷开关的一号触点和二号单刀双掷开关的一号触点均为常开触点,在电池组充电时一号单刀双掷开关的一号触点和二号单刀双掷开关的一号触点均处于闭合状态,在电池组没充电时一号单刀双掷开关的一号触点和二号单刀双掷开关的一号触点均处于断开状态;所述单刀开关在电池组充电时处于断开状态,在电池组没充电时处于闭合状态。
参见图2、图3所示,每个体充电连接机构都包括滑腔t29、绝缘下横块t30、绝缘滑动块t38、绝缘上横块t36、滑动杆t32和活动横块t31,体充电连接机构的正极接线端包括上正极接线端头t28和下正极接线端头t27,体充电连接机构的负极接线端包括上负极接线端头t39和下负极接线端头t40;绝缘滑动块滑动设置在滑腔内,绝缘下横块固定设置在绝缘滑动块下方的滑腔内,绝缘上横块固定设置在绝缘滑动块上方的滑腔内,活动横块活动布置在绝缘上横块上方的滑腔内,上正极接线端头和上负极接线端头均设置在绝缘滑动块的下表面上,下正极接线端头和下负极接线端头均设置在绝缘下横块的上表面上,在绝缘上横块上设有竖直通孔t34,滑动杆滑动设置在竖直通孔内,滑动杆上端固定连接在活动横块上,滑动杆下端固定连接在绝缘上横块上,在绝缘上横块与绝缘滑动块之间的滑动杆上设有拉开弹簧t37,拉开弹簧的两端分别挤压连接在绝缘上横块的下表面上和绝缘滑动块的上表面上;在绝缘上横块的上表面上固定设有下电磁铁t35,在活动横块上设有上电磁铁t33,并且上电磁铁通电时产生的电磁力与下电磁铁通时电产生的电磁力相互吸引,且上电磁铁通电时产生的电磁力与下电磁铁通时电产生的电磁力相互吸引后能推动绝缘滑动块往下移动,并能将上正极接线端头压紧导电连接在下正极接线端头上和能将上负极接线端头压紧导电连接在下负极接线端头上。
每个单体电池的正极一对一电连接在下正极接线端头上,每个单体电池的负极一对一电连接在下负极接线端头上,每个限流模块的另一端的正极一对一电连接上正极接线端头上,每个限流模块的另一端的负极一对一电连接上负极接线端头上。
参见图4-图8所示,每个充电器的电源输入端和控制器的电源输入端都导电连接在一个通电先后控制机构t75上,并且在上电时通电先后控制机构先给控制器通电,然后再给充电器通电;在下电时通电先后控制机构先让充电器断电,然后再让控制器断电。
参见图4-图8所示,通电先后控制机构包括右端密封的绝缘管t62、绝缘支块t64、绝缘滑动杆t63和手柄t61,绝缘支块固定在绝缘管内t66,在绝缘支块上横向设有滑孔t65,绝缘滑动杆滑动设置在滑块内,手柄固定连接在绝缘滑动杆的左端;在绝缘管的内管壁下底面上从左到右依次固定设有一号正极接线端头t71、一号负极接线端头t72、二号正极接线端头t73和二号负极接线端头t74,并且一号正极接线端头的高度高于一号负极接线端头的高度高,一号负极接线端头的高度高于二号正极接线端头的高度高,二号正极接线端头的高度高高于二号负极接线端头的高度高;在绝缘支块右方的绝缘滑动杆的下表面上从左到右依次固定设有三号正极接线端头t67、三号负极接线端头t68、四号正极接线端头t69和四号负极接线端头t70,并且在绝缘滑动杆移动到设定位置时,三号正极接线端头能压紧导电连接在一号正极接线端头上,三号负极接线端头能压紧导电连接在一号负极接线端头上,四号正极接线端头能压紧导电连接在二号正极接线端头上,四号负极接线端头能压紧导电连接在二号负极接线端头上;控制器的电源输入端正极电连接在一号正极接线端头的下端,控制器的电源输入端负极电连接在一号负极接线端头的下端,充电器的电源输入端正极电连接在二号正极接线端头的下端,充电器的电源输入端负极电连接在二号负极接线端头的下端;三号正极接线端头和四号正极接线端头都电连接在通电先后控制机构的电源输入端的正极上;三号负极接线端头和四号负极接线端头都电连接在通电先后控制机构的电源输入端的负极上。
本实施例的复合开关在使用时,把一号节点连接在交流电源的火线C上,把二号节点连接在交流电源的零线N上。
本实施例的复合开关故障自检原理如下:
当需要投切复合开关时,控制器向可控硅开关Kb发出导通控制信号,使可控硅开关Kb导通。电流经可控硅开关Kb、电感La和电容Ca形成闭合回路,并联在电感La两端的电容C2、二极管D1、二极管D2、二极管D3、二极管D4、光电耦合器OPT、电阻R1、电阻R0、电阻R2、自用电供电模块和接地端SGND共同形成了可控硅开关Kb的运行检测电路501。在电流流过可控硅开关Kb时该可控硅开关Kb的运行检测电路会产生触发脉冲信号,保持一定时间后,控制器向磁保持继电器开关Kc发出闭合控制信号,使磁保持继电器开关Kc闭合。磁保持继电器开关Kc闭合后将可控硅开关Kb与电感La组成的串联支路短路,此时可控硅开关Kb的运行检测电路将不会产生触发脉冲。然后,控制器向可控硅开关Kb发出断开控制信号,使可控硅开关Kb断开,由磁保持继电器开关Kc保持供电回路工作。
当需要切除复合开关时,控制器向可控硅开关Kb发出导通控制信号,使可控硅开关Kb导通,保持一定时间后,控制器向磁保持继电器开关Kc发出断开控制信号,磁保持继电器开关Kc随即断开,此时,可控硅运行检测电路将有触发脉冲出现。最后,控制器向可控硅开关Kb再次发出断开控制信号,可控硅开关Kb随即断开。至此就完全切除了复合开关。
本实施例的复合开关具备在开关动作的过程中能进行自我故障检测,且无需在复合开关中另外设置检测故障的仪器,从而使复合开关的结构更加简单,体积小,结构可靠,成本低廉,降低了复合开关使用时投切不成功的安全隐患。
本实施例的复合开关自身投切故障包括可控硅开关Kb的无法导通故障、磁保持继电器开关Kc的无法闭合故障、磁保持继电器开关Kc的无法断开故障和可控硅开关Kb的无法关断故障。因此,判断复合开关自身投切故障的方法包括:
(2-1)判断可控硅开关Kb为无法导通故障的方法是:
在投入复合开关时,假设可控硅开关Kb处于关断状态,且磁保持继电器开关Kc也处于断开状态的前提下,
(2-1-1)先由控制器向可控硅开关Kb发出导通控制信号,控制器等待可控硅开关Kb的运行检测电路返回的触发脉冲信号,并用控制器的脉冲计数器进行触发触发脉冲计数,当延时0.2s后,若控制器接收到的触发脉冲个数大于5个时,即可认为该可控硅开关Kb能正常导通,若控制器接收到的触发脉冲个数小于设定个数时,
(2-1-2)再由控制器向可控硅开关Kb发出导通控制信号,并将脉冲计数器清零,再次延时0.2s后,若控制器接收到的触发脉冲个数仍小于5个时,即可判断该可控硅开关Kb为无法导通故障。
(2-2)判断磁保持继电器开关Kc为无法闭合故障的方法是:
在投入复合开关时,假设可控硅开关Kb能正常导通,且可控硅开关Kb已处于导通状态和磁保持继电器开关Kc处于断开状态的前提下,
(2-2-1)先由控制器向磁保持继电器开关Kc发出闭合控制信号,并将脉冲计数器清零,延时0.6s后,若控制器接收到可控硅开关Kb的触发脉冲个数大于20个时,
(2-2-2)再由控制器向磁保持继电器开关Kc发出断开控制信号,并将脉冲计数器清零,再延时0.6s时间后,若控制器接收到可控硅开关Kb的触发脉冲个数大于也20个时,
(2-2-3)再次由控制器向磁保持继电器开关Kc发出闭合控制信号,并将脉冲计数器清零,再次延时0.6s后,此时如果控制器接收到可控硅开关Kb的触发脉冲计数仍大于20个时,即可判断该磁保持继电器开关Kc为无法闭合故障。
(2-3)判断磁保持继电器开关Kc为无法断开故障的方法是:
在切除复合开关时,假设可控硅开关Kb能正常导通,且可控硅开关Kb已处于断开状态和磁保持继电器开关Kc已处于闭合状态的前提下,
(2-3-1)先由控制器向可控硅开关Kb发出导通控制信号让可控硅开关Kb导通,并延时0.4s后让可控硅开关Kb可靠导通,又由控制器向磁保持继电器开关Kc发出断开控制信号,并将脉冲计数器清零,等待0.6s后,若控制器接收到可控硅开关Kb的触发脉冲个数小于20个时;
(2-3-2)再由控制器向磁保持继电器开关Kc发出断开控制信号,并将脉冲计数器清零,再次等待0.6s后,若控制器接收到可控硅开关Kb的触发脉冲个数仍小于20个时,即可判断磁保持继电器开关Kc为无法断开故障。
(2-4)判断可控硅开关Kb为无法关断故障的方法是:
在切除复合开关时,假设磁保持继电器开关Kc能正常断开,且磁保持继电器开关Kc已处于断开状态和可控硅开关Kb还处于导通状态的前提下,
(2-4-1)先由控制器向可控硅开关Kb发出关断控制信号,并将脉冲计数器清零,延时0.2s后,若控制器接收到可控硅开关Kb的触发脉冲个数大于5个时;
(2-4-2)再由控制器向可控硅开关Kb发出关断控制信号,并将脉冲计数器清零,再次延时0.2s后,若控制器接收到可控硅开关Kb的触发脉冲个数仍大于5个时,即可判断可控硅开关Kb为无法关断故障。
图10是本实用新型的一种波形示意图。(a)流过可控硅开关Kb的电流波形示意图,(a)流过可控硅开关Kb的运行检测电路上产生的触发脉冲波形示意图。
本实施例的复合开关能智能自动检测自身投切故障,智能化程度高,能自动检测自身投切故障,能及时让用户知道复合开关是否出现了故障,便于及时更换,结构简单,可靠性高,安全性好。
本实施例的通电先后控制机构让控制器先通电,控制器通电后就让电池连接模块将电池组内依次串联连接在一起的串联电池变成相互独立的单体电池,然后通电先后控制机构才让充电器通电,这样能够充分保证在充电器通电时,各个单体电池之间是相互独立的,各个单体电池之间充电就不会受影响。
本实施例在充电时,电压检测芯片能对对应的单体电池进行电压检测。当某个单体电池要充满时可通过限流模块降低充电电流,当某个单体电池还远没充满时可通过限流模块增大充电电流。从而尽量让单体电池所含电压相同。当每个单体电池充满并且每个单体电池的电压相同时即可断开充电电源。或者当每个单体电池并未充满并且每个单体电池的电压相同时也可断开充电电源。这样让单体电池串联后,串联连接的单体电池之间不会有电流流动,电池的可靠性高。每个充电器的充电电流或充电电压相互之间可不相同。通过切换开关可给某个单体电池选择不同的充电器。切换开关和限流模块的配合能更好的为需要充电的单体电池实时提供充电电流和充电电压,从而便于对各个单体电池的充电进度进行单独控制,也便于对各个单体电池的充电电压进行单独控制。在充电过程中通过温度检测机构能对单体电池的温度进行检测,并在充电时能对单体电池进行过温保护控制。通过双电源机构使本实施例具有双电源供电功能,大大提高了可靠性和实用性。
本实施例能使单个单体电池的损坏不会影响其它单体电池充电,并在没为电池组充电时能将电池组内各个相互独立的单体电池依次串联连接在一起变成串联电池,在为电池组充电时能将电池组内依次串联连接在一起的串联电池变成相互独立的单体电池,对每个单体电池的充电过程还能进行电压检测,并可对各个单体电池的充电进度进行单独控制,还可对各个单体电池的充电电压进行单独控制。并在充电时能对单体电池进行过温保护控制。采用双电源机构供电实现用电设备的不间断供电。安全性高,可靠性好,并设有通电先后控制机构对电池组上电充电过程中先让串联连接的单体电池变成独立的单体电池后再充电,充电可靠性高。
本实施例的电池连接模块能很好的让电池组充电时能将电池组内各个相互独立的单体电池依次串联连接在一起变成串联电池,在为电池组充电时能将电池组内依次串联连接在一起的串联电池变成相互独立的单体电池,可靠性高。
本实施例能提高了电池组在使用过程中能始终保持电池组内各个相互独立的单体电池依次串联连接在一起变成串联电池,易对自用电供电模块的电池组进行充放电控制,可靠性高。
上面结合附图描述了本实用新型的实施方式,但实现时不受上述实施例限制,本领域普通技术人员可以在所附权利要求的范围内做出各种变化或修改。

Claims (5)

1.一种能检测自身故障的复合开关,其特征在于,包括一号节点(701)、二号节点(702)、节点Ma、节点Mb、电感La、电容Ca、电容C2、二极管D1、二极管D2、二极管D3、二极管D4、光电耦合器OPT、电阻R0、电阻R1、电阻R2、切换开关Ka、磁驱动电力路(502)、硅驱动电路(503)、自用电供电模块(901)、接地端SGND和含有脉冲计数器(805)的控制器(107);所述切换开关Ka包括可控硅开关Kb和磁保持继电器开关Kc,所述光电耦合器OPT包括发光二极管D5和光敏三极管Q0;所述可控硅开关Kb的一端和磁保持继电器开关Kc的一端分别与一号节点连接,所述可控硅开关Kb的另一端、电阻R1的一端和电感La的一端分别与节点Ma连接,所述电感La的另一端、磁保持继电器开关Kc的另一端、电阻R2的一端和电容Ca的一端分别与节点Mb连接,所述电容Ca的另一端连接在二号节点上,电阻R1的另一端与电容C2的一端连接,所述二极管D1的正极端和二极管D3的负极端分别连接在电容C2的另一端上,所述二极管D2的正极端和二极管D4的负极端分别连接在电阻R2的另一端上,所述二极管D1的负极端和二极管D2的负极端分别连接在发光二极管D5的正极端上,所述二极管D3的正极端和二极管D4的正极端分别连接在发光二极管D5的负极端上,所述光敏三极管Q0的集电极端分别与电阻R0的一端和控制器连接,所述光敏三极管Q0的发射极与信号接地端SGND连接,所述自用电供电模块分别与电阻R0的另一端、磁驱动电路、硅驱动电路和控制器连接,所述硅驱动电路分别与可控硅开关Kb的控制端和控制器连接,所述磁驱动电路分别与磁保持继电器开关Kc的控制端和控制器连接;自用电供电模块包括控制器、电池连接模块、能由若干个相互独立的单体电池依次串联连接而成的电池组;自用电供电模块还包括分别与单体电池个数相等的充电器、切换开关和限流模块;电池连接模块包括与单体电池个数相等的体充电连接机构;在每个体充电连接机构上分别设有体电压检测芯片;每个充电器的电源输出端一对一连接在每个切换开关选择端的一个接线端上;每个切换开关的转动端一对一连接在限流模块的一端上,每个限流模块的另一端一对一连接在电池连接模块的体充电连接机构上;电池连接模块连接在电池组上,所述电池连接模块的控制端、每个体电压检测芯片、每个限流模块的控制端和每个切换开关的控制端分别与控制器连接;并在控制器的控制下,当不为电池组充电时,电池连接模块能将电池组内各个相互独立的单体电池依次串联连接在一起变成串联电池,当为电池组充电时,电池连接模块能将电池组内依次串联连接在一起的串联电池变成相互独立的单体电池。
2.根据权利要求1所述的一种能检测自身故障的复合开关,其特征在于,还包括与控制器连接的存储器(106)。
3.根据权利要求1所述的一种能检测自身故障的复合开关,其特征在于,还包括与控制器连接的显示器(504)。
4.根据权利要求1所述的一种能检测自身故障的复合开关,其特征在于,所述电感La的电感为70-75亨。
5.根据权利要求1所述的一种能检测自身故障的复合开关,其特征在于,还包括与控制器连接的报警器(507)。
CN201720048448.XU 2017-01-12 2017-01-12 一种能检测自身故障的复合开关 Expired - Fee Related CN206401943U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201720048448.XU CN206401943U (zh) 2017-01-12 2017-01-12 一种能检测自身故障的复合开关

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201720048448.XU CN206401943U (zh) 2017-01-12 2017-01-12 一种能检测自身故障的复合开关

Publications (1)

Publication Number Publication Date
CN206401943U true CN206401943U (zh) 2017-08-11

Family

ID=59519535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201720048448.XU Expired - Fee Related CN206401943U (zh) 2017-01-12 2017-01-12 一种能检测自身故障的复合开关

Country Status (1)

Country Link
CN (1) CN206401943U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113705A (zh) * 2021-11-23 2022-03-01 中车大连机车车辆有限公司 一种带自检测故障状态的二极管端子排及其检测电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113705A (zh) * 2021-11-23 2022-03-01 中车大连机车车辆有限公司 一种带自检测故障状态的二极管端子排及其检测电路
CN114113705B (zh) * 2021-11-23 2023-09-22 中车大连机车车辆有限公司 一种带自检测故障状态的二极管端子排及其检测电路

Similar Documents

Publication Publication Date Title
CN108705943B (zh) 一种电池组加热装置与控制方法
CN106680704B (zh) 复合开关及其过零投切控制与自身投切故障判断方法
CN201210622Y (zh) 一种锂离子或聚合物电池的电芯充放电控制管理电路
CN103532188B (zh) 电动车蓄电池充电过程监测装置
CN205753523U (zh) 一种储能电池组充放电控制及检测装置
CN104184192A (zh) 一种锂离子动力电池组充放电主动均衡电路
CN109273294A (zh) 一种电磁斥力操动机构及其储能模块、储能装置
CN107017672B (zh) 能进行电池组单体充电串联放电的充电装置
CN105375616B (zh) 一种配网馈线终端电源管理***及方法
CN206401943U (zh) 一种能检测自身故障的复合开关
CN204597511U (zh) 一种新型电池预充电电路
CN205666656U (zh) 高电压电池包充电器实现安规的双重保护电路
CN203406658U (zh) 一种直流***的蓄电池检测装置
CN106646215B (zh) 复合开关及其自身投切故障判断方法
CN106585418B (zh) 电动汽车充电装置
CN106680703B (zh) 具有检测复合开关自身故障的电能表
CN107579555B (zh) 空间用高压蓄电池软启动***及其方法
CN203103906U (zh) 矿井本安型便携式探测机器人本体驱动电源装置
CN203660607U (zh) 使用弱电开关控制输出的充电电池保护装置
CN103595088B (zh) 用于将蓄电池转变到放电的状态的方法
CN106653434B (zh) 复合开关及其精确过零投切控制方法
CN206436845U (zh) 一种电动汽车充电装置
CN206401891U (zh) 一种能检测自身故障的三相四线电能表
CN106646214B (zh) 三相四线电能表及过零投切控制与自身投切故障判断方法
CN107508457A (zh) 直流双电源起动和切换限流电路

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170811

Termination date: 20180112

CF01 Termination of patent right due to non-payment of annual fee